Skip to main content

Eye Movements and Visual Search in Homonymous Visual Field Defects

  • Chapter
  • First Online:
Homonymous Visual Field Defects

Abstract

Eye movements in hemianopia can serve as an index of perceptual changes, residual visual function, or adaptive changes to altered vision. Central fixations are shifted towards the blind hemifield and saccades into the seeing hemifield are prolonged and less reliable. Targets in the blind hemifield are initially found with an inefficient series of small saccades, but some patients develop a compensatory search hypermetria. Blindsight studies have reported on the accuracy and reliability of saccades or pursuit responses to targets in the blind hemifield, with variable results. How hemianopic subjects scan visual information has been studied with search displays, line bisection and reading. The efficiency of scanning by hemianopic subjects is an important determinant of success in daily life activities such as driving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pöppel E, Held R, Frost D. Letter: residual visual function after brain wounds involving the central visual pathways in man. Nature. 1973;243(5405):295–6.

    Article  PubMed  Google Scholar 

  2. Barton JJ, Behrmann M, Black S. Ocular search during line bisection. The effects of hemi-neglect and hemianopia. Brain. 1998;121(Pt 6):1117–31.

    Article  PubMed  Google Scholar 

  3. Gassel MM, Williams D. Visual function in patients with homonymous hemianopia II Oculomotor mechanisms. Brain. 1963;86:1–36.

    Article  CAS  PubMed  Google Scholar 

  4. Reinhard JI, Damm I, Ivanov IV, Trauzettel-Klosinski S. Eye movements during saccadic and fixation tasks in patients with homonymous hemianopia. J Neuroophthalmol. 2014;34(4):354–61.

    Article  PubMed  Google Scholar 

  5. Liepmann H, Kalmus E. Über einer Augenmaßstörung beu Hemianopikern. Berlin Klin Wochenschr. 1900;38:838–42.

    Google Scholar 

  6. Barton JJ, Black SE. Line bisection in hemianopia. J Neurol Neurosurg Psychiatry. 1998;64(5):660–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rovamo J, Virsu V. An estimation and application of the human cortical magnification factor. Exp Brain Res. 1979;37(3):495–510.

    Article  CAS  PubMed  Google Scholar 

  8. Tolhurst DJ, Ling L. Magnification factors and the organization of the human striate cortex. Hum Neurobiol. 1988;6(4):247–54.

    CAS  PubMed  Google Scholar 

  9. Fortenbaugh FC, VanVleet TM, Silver MA, Robertson LC. Spatial distortions in localization and midline estimation in hemianopia and normal vision. Vision Res. 2015;111(Pt A):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nielsen KE, Intriligator J, Barton JJ. Spatial representation in the normal visual field. A study of hemifield line bisection. Neuropsychologia. 1999;37(3):267–77.

    Article  CAS  PubMed  Google Scholar 

  11. Behrmann M, Watt S, Black SE, Barton JJ. Impaired visual search in patients with unilateral neglect: an oculographic analysis. Neuropsychologia. 1997;35(11):1445–58.

    Article  CAS  PubMed  Google Scholar 

  12. Machner B, Sprenger A, Hansen U, Heide W, Helmchen C. Acute hemianopic patients do not show a contralesional deviation in the line bisection task. J Neurol. 2009;256(2):289–90.

    Article  PubMed  Google Scholar 

  13. Schuett S, Kentridge RW, Zihl J, Heywood CA. Is the origin of the hemianopic line bisection error purely visual? Evidence from eye movements in simulated hemianopia. Vision Res. 2009;49(13):1668–80.

    Article  PubMed  Google Scholar 

  14. Mitra AR, Abegg M, Viswanathan J, Barton JJ. Line bisection in simulated homonymous hemianopia. Neuropsychologia. 2010;48(6):1742–9.

    Article  PubMed  Google Scholar 

  15. Hess RF, Pointer JS. Spatial and temporal contrast sensitivity in hemianopia. A comparative study of the sighted and blind hemifields. Brain. 1989;112(Pt 4):871–94.

    Article  PubMed  Google Scholar 

  16. Rizzo M, Robin DA. Bilateral effects of unilateral occipital lobe lesions in humans. Brain. 1996;119(Pt 3):951–63.

    Article  PubMed  Google Scholar 

  17. Barton JJ, Sharpe JA. Ocular tracking of step-ramp targets by patients with unilateral cerebral lesions. Brain. 1998;121(Pt 6):1165–83.

    Article  PubMed  Google Scholar 

  18. Meienberg O, Zangemeister WH, Rosenberg M, Hoyt WF, Stark L. Saccadic eye movements in patients with homonymous hemianopia. Ann Neurol. 1981;9(6):537–44.

    Article  CAS  PubMed  Google Scholar 

  19. Sharpe JA, Lo AW, Rabinovitch HE. Control of the saccadic and smooth pursuit systems after cerebral hemidecortication. Brain. 1979;102(2):387–403.

    Article  CAS  PubMed  Google Scholar 

  20. Traccis S, Puliga MV, Ruiu MC, Marras MA, Rosati G. Unilateral occipital lesion causing hemianopia affects acoustic saccadic programming. Neurology. 1991;41(10):1633–8.

    Article  CAS  PubMed  Google Scholar 

  21. Fayel A, Chokron S, Cavézian C, Vergilino-Perez D, Lemoine C, Doré-Mazars K. Characteristics of contralesional and ipsilesional saccades in hemianopic patients. Exp Brain Res. 2014;232(3):903–17.

    Article  PubMed  Google Scholar 

  22. Girotti F, Casazza M, Musicco M, Avanzini G. Oculomotor disorders in cortical lesions in man: the role of unilateral neglect. Neuropsychologia. 1983;21(5):543–53.

    Article  CAS  PubMed  Google Scholar 

  23. Meienberg O. Clinical examination of saccadic eye movements in hemianopia. Neurology. 1983;33(10):1311–5.

    Article  CAS  PubMed  Google Scholar 

  24. Meienberg O, Harrer M, Wehren C. Oculographic diagnosis of hemineglect in patients with homonymous hemianopia. J Neurol. 1986;233(2):97–101.

    Article  CAS  PubMed  Google Scholar 

  25. Barton JJ, Sharpe JA. Smooth pursuit and saccades to moving targets in blind hemifields. A comparison of medial occipital, lateral occipital, and optic radiation lesions. Brain. 1997;120(Pt 4):681–99.

    Article  PubMed  Google Scholar 

  26. Rizzo M, Hurtig R. Visual search in hemi-neglect: what stirs idle eyes ? Clin Vis Sci. 1992;7:39–52.

    Google Scholar 

  27. Schoepf D, Zangemeister WH. Target predictability influences the distribution of coordinated eye-head gaze saccades in patients with homonymous hemianopia. Neurol Res. 1996;18(5):425–39.

    Article  CAS  PubMed  Google Scholar 

  28. Mezey LE, Harris CM, Shawkat FS, Timms C, Kriss A, West P, Taylor DS. Saccadic strategies in children with hemianopia. Dev Med Child Neurol. 1998;40(9):626–30.

    Article  CAS  PubMed  Google Scholar 

  29. Kerkhoff G, Münssinger U, Meier EK. Neurovisual rehabilitation in cerebral blindness. Arch Neurol. 1994;51(5):474–81.

    Article  CAS  PubMed  Google Scholar 

  30. Kato R, Takaura K, Ikeda T, Yoshida M, Isa T. Contribution of the retino-tectal pathway to visually guided saccades after lesion of the primary visual cortex in monkeys. Eur J Neurosci. 2011;33(11):1952–60.

    Article  PubMed  Google Scholar 

  31. Sanders MD, Warrington EK, Marshall J, Weiskrantz L. "Blindsight": vision in a field defect. Lancet. 1974;1(7860):707–8.

    Article  CAS  PubMed  Google Scholar 

  32. Weiskrantz L, Warrington EK, Sanders MD, Marshall J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain. 1974;97(4):709–28.

    Article  CAS  PubMed  Google Scholar 

  33. Weiskrantz L. Residual vision in a scotoma: a follow-up study of ‘form’ discrimination. Brain. 1987;110(Pt 1):77–92.

    Article  PubMed  Google Scholar 

  34. Carey DP, Sahraie A, Trevethan CT, Weiskrantz L. Does localisation blindsight extend to two-dimensional targets? Neuropsychologia. 2008;46(13):3053–60.

    Article  PubMed  Google Scholar 

  35. Perenin MT, Jeannerod M. Visual functions within the hemianopic field following early cerebral hemidecortication in man – I. Spatial localization. Neuropsychologia. 1978;16(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  36. Blythe IM, Bromley JM, Kennard C, Ruddock KH. Visual discrimination of target displacement remains after damage to the striate cortex in humans. Nature. 1986;320(6063):619–21.

    Article  CAS  PubMed  Google Scholar 

  37. Blythe IM, Kennard C, Ruddock KH. Residual vision in patients with retrogeniculate lesions of the visual pathways. Brain. 1987;110(Pt 4):887–905.

    Article  PubMed  Google Scholar 

  38. Mohler CW, Wurtz RH. Role of striate sortex and superior colliculus in visual guidance of saccadic eye movements in monkey. J Neurophysiol. 1977;40(1):74–94.

    CAS  PubMed  Google Scholar 

  39. Zihl J. “Blindsight”: improvement of visually guided eye movements by systematic practice in patients with cerebral blindness. Neuropsychologia. 1980;18(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  40. Zihl J, Werth R. Contributions to the study of "blindsight" - II. the role of specific practice for saccadic localization in patients with postgeniculate visual field defects. Neuropsychologia. 1984;22(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  41. Braddick O, Atkinson J, Hood B, Harkness W, Jackson G, Vargha-Khadem F. Possible blindsight in infants lacking one cerebral hemisphere. Nature. 1992;360(6403):461–3.

    Article  CAS  PubMed  Google Scholar 

  42. Doyle M, Walker R. Curved saccade trajectories: voluntary and reflexive saccades curve away from irrelevant distractors. Exp Brain Res. 2001;139(3):333–44.

    Article  CAS  PubMed  Google Scholar 

  43. Van der Stigchel S, Theeuwes J. Relation between saccade trajectories and spatial distractor locations. Brain Res Cogn Brain Res. 2005;25(2):579–82.

    Article  PubMed  Google Scholar 

  44. Van der Stigchel S, van Zoest W, Theeuwes J, Barton JJ. The influence of "blind" distractors on eye movement trajectories in visual hemifield defects. J Cogn Neurosci. 2008;20(11):2025–36.

    Article  PubMed  Google Scholar 

  45. Findlay JM. Global visual processing for saccadic eye movements. Vision Res. 1982;22(8):1033–45.

    Article  CAS  PubMed  Google Scholar 

  46. Glimcher PW, Sparks DL. Representation of averaging saccades in the superior colliculus of the monkey. Exp Brain Res. 1993;95(3):429–35.

    Article  CAS  PubMed  Google Scholar 

  47. Viswanathan J, Barton JJ. The global effect for antisaccades. Exp Brain Res. 2013;225(2):247–59.

    Article  PubMed  Google Scholar 

  48. Van der Stigchel S, Nijboer TC, Bergsma DP, Abegg M, Barton JJ. Anomalous global effects induced by ‘blind’ distractors in visual hemifield defects. Brain Cogn. 2010;74(1):66–73.

    Article  CAS  PubMed  Google Scholar 

  49. Hallett PE. Primary and secondary saccades to goals defined by instructions. Vision Res. 1978;18(10):1279–96.

    Article  CAS  PubMed  Google Scholar 

  50. Munoz DP, Everling S. Look away: the anti-saccade task and the voluntary control of eye movement. Nat Rev Neurosci. 2004;5(3):218–28.

    Article  CAS  PubMed  Google Scholar 

  51. Savina O, Bergeron A, Guitton D. Blindsight after hemidecortication: visual stimuli in blind hemifield influence anti-saccades directed there. Cortex. 2013;49(3):861–76.

    Article  PubMed  Google Scholar 

  52. Walker R, Mannan S, Maurer D, Pambakian AL, Kennard C. The oculomotor distractor effect in normal and hemianopic vision. Proc Biol Sci. 2000;267(1442):431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ten Brink AF, Nijboer TC, Bergsma DP, Barton JJ, Van der Stigchel S. Lack of multisensory integration in hemianopia: no influence of visual stimuli on aurally guided saccades to the blind hemifield. PLoS One. 2015;10(4):e0122054.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rodman HR, Gross CG, Albright TD. Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. J Neurosci. 1989;9(6):2033–50.

    CAS  PubMed  Google Scholar 

  55. Girard P, Salin PA, Bullier J. Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. J Neurophysiol. 1992;67(6):1437–46.

    CAS  PubMed  Google Scholar 

  56. Rosa MG, Tweedale R, Elston GN. Visual responses of neurons in the middle temporal area of new world monkeys after lesions of striate cortex. J Neurosci. 2000;20(14):5552–63.

    CAS  PubMed  Google Scholar 

  57. Girard P, Salin PA, Bullier J. Visual activity in areas V3a and V3 during reversible inactivation of area V1 in the macaque monkey. J Neurophysiol. 1991;66(5):1493–503.

    CAS  PubMed  Google Scholar 

  58. Gross CG. Contributions of striate cortex and the superior colliculus to visual functions in area MT, the superior temporal polysensory area and inferior temporal cortex. Neuropsychologia. 1991;29(6):497–515.

    Article  CAS  PubMed  Google Scholar 

  59. Collins CE, Xu X, Khaytin I, Kaskan PM, Casagrande VA, Kaas JH. Optical imaging of visually evoked responses in the middle temporal area after deactivation of primary visual cortex in adult primates. Proc Natl Acad Sci U S A. 2005;102(15):5594–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. ffytche D, Guy CN, Zeki S. The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. Brain. 1995;118(Pt 6):1375–94.

    Article  PubMed  Google Scholar 

  61. Beckers G, Zeki S. The consequences of inactivating areas V1 and V5 in visual motion perception. Brain. 1995;118(Pt 1):49–60.

    Article  PubMed  Google Scholar 

  62. Hotson J, Braun D, Herzberg W, Boman D. Transcranial magnetic stimulation of extrastriate cortex degrades human motion direction discrimination. Vision Res. 1994;34(16):2115–23.

    Article  CAS  PubMed  Google Scholar 

  63. Bridgeman B, Staggs D. Plasticity in human blindsight. Vision Res. 1982;22(9):1199–203.

    Article  CAS  PubMed  Google Scholar 

  64. Ptito A, Lepore F, Ptiito M, Lassonde M. Target detection and movement discrimination in the blind field of hemispherectomized patients. Brain. 1991;114(Pt 1B):497–512.

    Article  PubMed  Google Scholar 

  65. van Hof-van Duin J, Mohn G. Optokinetic and spontaneous nystagmus in children with neurological disorders. Behav Brain Res. 1983;10(1):163–75.

    Article  CAS  PubMed  Google Scholar 

  66. Simpson JI. The accessory optic system. Annu Rev Neurosci. 1984;7:13–41.

    Article  CAS  PubMed  Google Scholar 

  67. ter Braak JW, Schenk VW, van Vliet AG. Visual reactions in a case of long-lasting cortical blindness. J Neurol Neurosurg Psychiatry. 1971;34(2):140–7.

    Article  PubMed Central  Google Scholar 

  68. Perenin MT, Ruel J, Hécaen H. Residual visual capacities in a case of cortical blindness. Cortex. 1980;16(4):605–12.

    Article  CAS  PubMed  Google Scholar 

  69. Verhagen WI, Huygen PL, Mulleners WM. Lack of optokinetic nystagmus and visual motion perception in acquired cortical blindness. Neuro Ophthalmol. 1997;17(4):211–8.

    Article  Google Scholar 

  70. Perenin MT. Discrimination of motion direction in perimetrically blind fields. Neuroreport. 1991;2(7):397–400.

    Article  CAS  PubMed  Google Scholar 

  71. Barton JJ, Simpson T, Kiriakopoulos E, Stewart C, Guthrie B, Wood M, et al. Functional MRI of lateral occipitotemporal cortex during pursuit and motion perception. Ann Neurol. 1996;40:387–98.

    Article  CAS  PubMed  Google Scholar 

  72. Intriligator JM, Xie R, Barton JJ. Blindsight modulation of motion perception. J Cogn Neurosci. 2002;14(8):1174–83.

    Article  PubMed  Google Scholar 

  73. Wyatt HJ, Pola J, Fortune B, Posner M. Smooth pursuit eye movements with imaginary targets defined by extrafoveal cues. Vision Res. 1994;34(6):803–20.

    Article  CAS  PubMed  Google Scholar 

  74. Chédru F, Leblanc M, Lhermitte F. Visual searching in normal and brain-damaged subjects (contribution to the study of unilateral inattention). Cortex. 1973;9(1):94–111.

    Article  PubMed  Google Scholar 

  75. Zihl J. Visual scanning behavior in patients with homonymous hemianopia. Neuropsychologia. 1995;33(3):287–303.

    Article  CAS  PubMed  Google Scholar 

  76. Hardiess G, Papageorgiou E, Schiefer U, Mallot HA. Functional compensation of visual field deficits in hemianopic patients under the influence of different task demands. Vision Res. 2010;50(12):1158–72.

    Article  PubMed  Google Scholar 

  77. Machner B, Sprenger A, Sander T, Heide W, Kimmig H, Helmchen C, Kömpf D. Visual search disorders in acute and chronic homonymous hemianopia: lesion effects and adaptive strategies. Ann N Y Acad Sci. 2009;1164:419–26.

    Article  PubMed  Google Scholar 

  78. Tant ML, Cornelissen FW, Kooijman AC, Brouwer WH. Hemianopic visual field defects elicit hemianopic scanning. Vision Res. 2002;42(10):1339–48.

    Article  CAS  PubMed  Google Scholar 

  79. Machner B, Sprenger A, Kompf D, Sander T, Heide W, Kimmig H, et al. Visual search disorders beyond pure sensory failure in patients with acute homonymous visual field defects. Neuropsychologia. 2009;47(13):2704–11.

    Article  PubMed  Google Scholar 

  80. Mannan SK, Pambakian AL, Kennard C. Compensatory strategies following visual search training in patients with homonymous hemianopia: an eye movement study. J Neurol. 2010;257(11):1812–21.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Martin T, Riley ME, Kelly KN, Hayhoe M, Huxlin KR. Visually-guided behavior of homonymous hemianopes in a naturalistic task. Vision Res. 2007;47(28):3434–46.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ishiai S, Furukawa T, Tsukagoshi H. Eye-fixation patterns in homonymous hemianopia and unilateral spatial neglect. Neuropsychologia. 1987;25(4):675–9.

    Article  CAS  PubMed  Google Scholar 

  83. Pambakian AL, Wooding DS, Patel N, Morland AB, Kennard C, Mannan SK. Scanning the visual world: a study of patients with homonymous hemianopia. J Neurol Neurosurg Psychiatry. 2000;69(6):751–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Papageorgiou E, Hardiess G, Mallot HA, Schiefer U. Gaze patterns predicting successful collision avoidance in patients with homonymous visual field defects. Vision Res. 2012;65:25–37.

    Article  PubMed  Google Scholar 

  85. Hardiess G, Hansmann-Roth S, Mallot HA. Gaze movements and spatial working memory in collision avoidance: a traffic intersection task. Front Behav Neurosci. 2013;7:62.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Simpson SA, Abegg M, Barton JJ. Rapid adaptation of visual search in simulated hemianopia. Cereb Cortex. 2011;21(7):1593–601.

    Article  PubMed  Google Scholar 

  87. Ishiai S, Furukawa T, Tsukagoshi H. Visuo-spatial processes of line bisection and the mechanisms underlying spatial neglect. Brain. 1989;112(Pt 6):1485–502.

    Article  PubMed  Google Scholar 

  88. Trauzettel-Klosinski S, Brendler K. Eye movements in reading with hemianopic field defects: the significance of clinical parameters. Graefes Arch Clin Exp Ophthalmol. 1998;236(2):91–102.

    Article  CAS  PubMed  Google Scholar 

  89. de Luca M, Spinelli D, Zoccolotti P. Eye movement patterns in reading as a function of visual field defects and contrast sensitivity loss. Cortex. 1996;32(3):491–502.

    Article  PubMed  Google Scholar 

  90. Zihl J. Eye movement patterns in hemianopic dyslexia. Brain. 1995;118(Pt 4):891–912.

    Article  PubMed  Google Scholar 

  91. Schuett S, Heywood CA, Kentridge RW, Zihl J. The significance of visual information processing in reading: insights from hemianopic dyslexia. Neuropsychologia. 2008;46(10):2445–62.

    Article  PubMed  Google Scholar 

  92. Rayner K, Slattery TJ, Belanger NN. Eye movements, the perceptual span, and reading speed. Psychon Bull Rev. 2010;17(6):834–9.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Leff AP, Scott SK, Crewes H, Hodgson TL, Cowey A, Howard D, Wise RJ. Impaired reading in patients with right hemianopia. Ann Neurol. 2000;47(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  94. Spitzyna GA, Wise RJ, McDonald SA, Plant GT, Kidd D, Crewes H, Leff AP. Optokinetic therapy improves text reading in patients with hemianopic alexia: a controlled trial. Neurology. 2007;68(22):1922–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wood JM, McGwin Jr G, Elgin J, Vaphiades MS, Braswell RA, DeCarlo DK, et al. Hemianopic and quadrantanopic field loss, eye and head movements, and driving. Invest Ophthalmol Vis Sci. 2011;52(3):1220–5.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bahnemann M, Hamel J, De Beukelaer S, Ohl S, Kehrer S, Audebert H, et al. Compensatory eye and head movements of patients with homonymous hemianopia in the naturalistic setting of a driving simulation. J Neurol. 2015;262(2):316–25.

    Article  PubMed  Google Scholar 

  97. Ong YH, Jacquin-Courtois S, Gorgoraptis N, Bays PM, Husain M, Leff AP. Eye-Search: a web-based therapy that improves visual search in hemianopia. Ann Clin Transl Neurol. 2015;2(1):74–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. S. Barton MD, PhD, FRCPC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Barton, J.J.S. (2017). Eye Movements and Visual Search in Homonymous Visual Field Defects. In: Skorkovská, K. (eds) Homonymous Visual Field Defects. Springer, Cham. https://doi.org/10.1007/978-3-319-52284-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52284-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52282-1

  • Online ISBN: 978-3-319-52284-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics