Skip to main content

Recent Advances in Green Sustainable Nanocellulosic Fiber: An Overview

  • Chapter
  • First Online:
Green Technologies and Environmental Sustainability

Abstract

The current scenario of economic and social aspects led to the development of smart and new biomaterials. Sustainable bio nano approaches are focusing on environmentally friendly biomaterials from renewable resources. The renewable bio nano materials are often produced directly from natural or recycled products. The natural products are biodegradable and mostly consist of cellulose, chitosan, starch, collagen, soy protein, and casein. The cellulose is a grade one biomaterial with appealing features including biocompatibility and biodegradability. These renewable materials play an important role in reducing global warming by preventing the release of carbon dioxide to the atmosphere. The cellulose microfibrils are made up of a linear chain of nanofibrils of amorphous and crystalline character. Natural cellulose represents the cellulose I type polymorph which is thermodynamically metastable. The isolation of nanocellulose from the cellulose involves several methods. Nanocellulose possesses unique propensities such as high surface area-to-volume ratio, young modulus, high tensile strength, and coefficient of thermal expansion. Nanocellulose is mainly of two types, nanofiber and nanocrystals. Nanocellulose could be altered in long fibers, suspension, and film through various processes and modifications.

The extraction of nanocellulose involves multistage processing with vigorous chemical and mechanical treatment. Chemical methods involve alkali pretreatment combined with acid hydrolysis, ultrasonication, enzymatic hydrolysis, high pressure homogenization, cryocrusing, TEMPO-mediated oxidation, and so on. The choice of selected method strongly influences the aspect ratio, surface features, and mechanical stiffness. Recently most cellulosic material has been involved in fabrication into a biopolymer composite system but cellulose’s intrinsic hydrophilic character of the original surface features hampers the interfacial interaction with other hydrophobic polymeric structures. Therefore the modification of the surface introduces new functionalities into the cellulosic chain to convert it into active nanocellulose. The surface can be modified via two approaches: (i) physical interaction between cellulose and other macromolecules through adsorption on the surface, and (ii) alteration in the chemical bonding between cellulose and other chemical agents. A high surface area and the presence of an hydroxyl group provide a classic condition for surface mediation. TEMPO-mediated oxidation, amination, silylation, acetylation, oxidation, esterification, surfactant, or polymer grafting are the methods most often applied for surface modification of nanocellulose.

Apart from this current physical treatment, surface fibrillation, electric discharge (corona, cold plasma), irradiation, ultrasonic, electric currents, and the like have been applied to create a modified surface. Thus the use of modified reinforced biopolymer fibers instead of traditional fibers provides several advantages in different sectors including pharmaceuticals, paper, biomedicine, and the development of other novel smart materials. The presence of exceptional mechanical properties, surface groups, and biological properties makes it a suitable material for tissue scaffolds, drug delivery agents, and enzyme and protein immobilizing material. In addition to this, in the development of aerogel, biofoam, nanofiber, and additives for new devices or material, nanocellulose plays an important role. The application of nanocellulose in different sectors needs the proper assessment of biodegradability, toxicological profiling, and biocompatibility. Development of a new research platform for the creation of various supramolecular structures and engineered biobased material by the utilization of nanocellulose is the need of the hour. The economic and scientific points of view suggest that nanocellulose is a promising reinforcing green sustainable biomaterial that might be helpful in creating revolutionary changes in current technology and helping in advancement in various sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abidin Z, Mohd NA, Aziz FA, Radiman S, Ismail A, Yunus WMZW, Nor NM, Sohaimi RM, Sulaiman AZ, Halim NA (2016) Isolation of microfibrillated cellulose (MFC) from local hardwood waste, Resak (Vatica spp.). In: Materials Science Forum. Trans Tech Publ, pp 679–682

    Google Scholar 

  • Adel AM, El-Gendy AA, Diab MA, Abou-Zeid RE, El-Zawawy WK, Dufresne A (2016) Microfibrillated cellulose from agricultural residues. Part I: Papermaking application. Ind Crop Prod

    Google Scholar 

  • Alila S, Besbes I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crop Prod 41:250–259

    Article  Google Scholar 

  • Anwar B, Rosyid NH, Effendi DB, Nandiyanto ABD, Mudzakir A, Hidayat T (2016) Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method. In: Proceedings of International Seminar on Mathematics, Science, and Computer Science Education (MSCEIS 2015). AIP Publishing, p 040001

    Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  Google Scholar 

  • Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83

    Article  Google Scholar 

  • Chen P, Yu H, Liu Y, Chen W, Wang X, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellul 20(1):149–157

    Article  Google Scholar 

  • Chen Y, Wu Q, Huang B, Huang M, Ai X (2014) Isolation and characteristics of cellulose and nanocellulose from Lotus Leaf Stalk Agro-wastes. BioResources 10(1):684–696

    Google Scholar 

  • Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37(1-2):20–28

    Google Scholar 

  • Ciolacu D, Rudaz C, Vasilescu M, Budtova T (2016) Physically and chemically cross-linked cellulose cryogels: structure, properties and application for controlled release. Carbohydrate Polymers

    Google Scholar 

  • Cozzolino CA, Nilsson F, Iotti M, Sacchi B, Piga A, Farris S (2013) Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled-release packaging. Colloids Surf B Biointerfaces 110:208–216

    Article  Google Scholar 

  • Cranston ED, Gray DG (2006) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules 7(9):2522–2530

    Article  Google Scholar 

  • Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crop Prod 83:346–352

    Article  Google Scholar 

  • Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41(24):9755–9759

    Article  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227

    Article  Google Scholar 

  • Eichhorn S, Davies G (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellul 13(3):291–307

    Article  Google Scholar 

  • Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Review: Current international research into cellulosic fibres and composites. J Mater Sci 36(9):2107–2131. doi:10.1023/a:1017512029696

    Article  Google Scholar 

  • Eichhorn SJ, Young RJ, Davies GR (2005) Modeling crystal and molecular deformation in regenerated cellulose fibers. Biomacromolecules 6(1):507–513

    Article  Google Scholar 

  • George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54. doi:10.2147/nsa.s64386

    Article  Google Scholar 

  • Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646

    Article  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. doi:10.1021/cr900339w

    Article  Google Scholar 

  • Hassan ML, Bras J, Hassan EA, Silard C, Mauret E (2014) Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Ind Crop Prod 55:102–108

    Article  Google Scholar 

  • Hassan ML, Bras J, Mauret E, Fadel SM, Hassan EA, El-Wakil NA (2015) Palm rachis microfibrillated cellulose and oxidized-microfibrillated cellulose for improving paper sheets properties of unbeaten softwood and bagasse pulps. Ind Crop Prod 64:9–15

    Article  Google Scholar 

  • Henrique MA, Silvério HA, Neto WPF, Pasquini D (2013) Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J Environ Manage 121:202–209

    Article  Google Scholar 

  • Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16(21):8210–8212

    Article  Google Scholar 

  • Huang L, Chen X, Nguyen TX, Tang H, Zhang L, Yang G (2013) Nano-cellulose 3D-networks as controlled-release drug carriers. J Mater Chem B 1(23):2976–2984

    Article  Google Scholar 

  • Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15(7):11922–11940. doi:10.3390/ijms150711922

    Article  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576

    Article  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89(2):461–466. doi:10.1007/s00339-007-4175-6

    Article  Google Scholar 

  • Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine 6:321

    Google Scholar 

  • Jiang F, Hsieh Y-L (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68

    Article  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellul 22(2):935–969

    Article  Google Scholar 

  • Kalashnikova I, Bizot H, Bertoncini P, Cathala B, Apron I (2013) Cellulosic nanorods of various aspect for oil in water Pickering emulsions. Soft Matter 9:952–959

    Google Scholar 

  • Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr Polym 137:608–616

    Article  Google Scholar 

  • Kim J, Zhai L, Mun S, Ko H-U, Yun Y-M (2015) Cellulose nanocrystals, nanofibers, and their composites as renewable smart materials. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, pp 94340G-94340G-94346

    Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. In: Klemm D (ed) Polysaccharides II. Springer, Berlin, pp 49–96. doi:10.1007/12_097

    Chapter  Google Scholar 

  • Kolakovic R, Laaksonen T, Peltonen L, Laukkanen A, Hirvonen J (2012a) Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 430(1–2):47–55

    Article  Google Scholar 

  • Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T (2012b) Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 82(2):308–315

    Article  Google Scholar 

  • Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Comp Sci Technol 105:15–27

    Article  Google Scholar 

  • Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90(4):1609–1613

    Article  Google Scholar 

  • Lin N, Dufresne A (2013) Supramolecular hydrogels from in situ host–guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromolecules 14(3):871–880

    Article  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J 59:302–325

    Article  Google Scholar 

  • Mahmoud KA, Mena JA, Male KB, Hrapovic S, Kamen A, Luong JH (2010) Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater Interfaces 2(10):2924–2932

    Article  Google Scholar 

  • Mariño M, Lopes da Silva L, Durán N, Tasic L (2015) Enhanced materials from nature: nanocellulose from citrus waste. Molecules 20(4):5908–5923

    Article  Google Scholar 

  • Mishra D, Yadav V, Khare P, Das MR, Meena A, Shanker K (2016) Development of crystalline cellulosic fibres for sustained release of drug. Curr Top Med Chem 16(18):2026–2035

    Article  Google Scholar 

  • Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766

    Article  Google Scholar 

  • Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102(2):579–592

    Article  Google Scholar 

  • Neto WPF, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue–Soy hulls. Ind Crop Prod 42:480–488

    Article  Google Scholar 

  • Oun AA, Rhim J-W (2016) Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: Effect of isolation method. Mater Lett 168:146–150

    Article  Google Scholar 

  • Padalkar S, Capadona JR, Rowan SJ, Weder C, Won Y-H, Stanciu LA, Moon RJ (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26(11):8497–8502

    Article  Google Scholar 

  • Paschoal GB, Muller CM, Carvalho GM, Tischer CA, Mali S (2015) Isolation and characterization of nanofibrillated cellulose from oat hulls. Química Nova 38(4):478–482

    Google Scholar 

  • Pereira ALS, do Nascimento DM, JPS M, Vasconcelos NF, Feitosa JP, AIS B, Rosa Md F (2014) Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydr Polym 112:165–172

    Article  Google Scholar 

  • Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomed Nanotechnol 4(2):165

    Google Scholar 

  • Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources 8(2):1893–1908

    Article  Google Scholar 

  • Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93(3):033111

    Article  Google Scholar 

  • Shanmugarajah B, Kiew PL, Chew IML, Choong TSY, Tan KW (2015) Isolation of nanocrystalline cellulose (NCC) from palm oil empty fruit bunch (EFB): preliminary result on FTIR and DLS analysis. Chem Eng 45:04002

    Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellul 17(3):459–494. doi:10.1007/s10570-010-9405-y

    Article  Google Scholar 

  • Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Compos Part A Appl Sci Manuf 40(6):791–799

    Article  Google Scholar 

  • Sukul M, Nguyen TBL, Min Y-K, Lee S-Y, Lee B-T (2015) Effect of local sustainable release of BMP2-VEGF from nano-cellulose loaded in sponge biphasic calcium phosphate on bone regeneration. Tissue Eng Part A 21(11-12):1822–1836

    Article  Google Scholar 

  • Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellul 21(1):335–346

    Article  Google Scholar 

  • Thielemans W, Warbey CR, Walsh DA (2009) Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem 11(4):531–537

    Article  Google Scholar 

  • Villanova JCO, Ayres E, Carvalho SM, Patrício PS, Pereira FV, Oréfice RL (2011) Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery. Eur J Pharm Sci 42(4):406–415

    Article  Google Scholar 

  • Wang H, Qian C, Roman M (2011) Effects of pH and salt concentration on the formation and properties of chitosan–cellulose nanocrystal polyelectrolyte–macroion complexes. Biomacromolecules 12(10):3708–3714

    Article  Google Scholar 

  • Wang Y, Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83(4):1937–1946

    Article  Google Scholar 

  • Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86. doi:10.1002/app.36943

    Article  Google Scholar 

  • Yu X, Yang Y, Xu H (eds) (2014) Lightweight materials from biopolymers and biofibers. ACS Symposium Series, vol 1175. American Chemical Society. doi:10.1021/bk-2014-1175

  • Zhang C, Liu R, Xiang J, Kang H, Liu Z, Huang Y (2014) Dissolution mechanism of cellulose in N,N-Dimethylacetamide/Lithium chloride: revisiting through molecular interactions. J Phys Chem B 118 (31):9507-9514. doi:10.1021/jp506013c

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puja Khare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mishra, D., Shanker, K., Khare, P. (2017). Recent Advances in Green Sustainable Nanocellulosic Fiber: An Overview. In: Singh, R., Kumar, S. (eds) Green Technologies and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-50654-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50654-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50653-1

  • Online ISBN: 978-3-319-50654-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics