Skip to main content

PIWD: A Plugin-Based Framework for Well-Designed SPARQL

  • Conference paper
  • First Online:
Semantic Technology (JIST 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10055))

Included in the following conference series:

  • 732 Accesses

Abstract

In the real world datasets (e.g., DBpedia query log), queries built on well-designed patterns containing only AND and OPT operators (for short, WDAO-patterns) account for a large proportion among all SPARQL queries. In this paper, we present a plugin-based framework for all SELECT queries built on WDAO-patterns, named PIWD. The framework is based on a parse tree called well-designed AND-OPT tree (for short, WDAO-tree) whose leaves are basic graph patterns (BGP) and inner nodes are the OPT operators. We prove that for any WDAO-pattern, its parse tree can be equivalently transformed into a WDAO-tree. Based on the proposed framework, we can employ any query engine to evaluate BGP for evaluating queries built on WDAO-patterns in a convenient way. Theoretically, we can reduce the query evaluation of WDAO-patterns to subgraph homomorphism as well as BGP since the query evaluation of BGP is equivalent to subgraph homomorphism. Finally, our preliminary experiments on gStore and RDF-3X show that PIWD can answer all queries built on WDAO-patterns effectively and efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We give each OPT operator a subscript to differentiate them so that readers understand clearly.

  2. 2.

    http://swat.cse.lehigh.edu/projects/lubm/.

References

  1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: SW-store: a vertically partitioned DBMS for semantic web data management. VLDB J. 18(2), 385–406 (2009)

    Article  Google Scholar 

  2. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88564-1_8

    Chapter  Google Scholar 

  3. Arenas, M., Pérez, J.: Querying semantic web data with SPARQL. In: Proceedings of SIGMOD 2011, pp. 305–316 (2011)

    Google Scholar 

  4. Barcelo, P., Pichler, R., Skritek, S.: Efficient evaluation and approximation of well-designed pattern trees. In: Proceedings of PODS 2015, pp. 131–144 (2015)

    Google Scholar 

  5. Boncz, P.A., Zukowski, M., Nes, N.J.: MonetDB/x100: Hyper-pipelining query execution. In: Proceedings of CIDR 2005 (2005)

    Google Scholar 

  6. Broekstra, J., Kampman, A., Harmelen, F.: Sesame: a generic architecture for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002). doi:10.1007/3-540-48005-6_7

    Chapter  Google Scholar 

  7. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena: implementing the semantic web recommendations. In: Proceedings of WWW 2004, pp. 74–83 (2004)

    Google Scholar 

  8. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. Studies in Computational Intelligence, pp. 7–24 (2009)

    Google Scholar 

  9. Han, X., Feng, Z., Zhang, X., Wang, X., Rao, G.: On the statistical analysis of practical SPARQL queries. In: Proceedings of WebDB 2016, Article 2(2016)

    Google Scholar 

  10. Han, W.S., Lee, J., Lee, J.H.: Turbo ISO: Towards ultrafast and robust subgraph isomorphism search in large graph databases. In: Proceedings of SIGMOD 2013, pp. 337–348 (2013)

    Google Scholar 

  11. He, H., Singh, A.K.: Query language and access methods for graph databases. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data. Springer, Heidelberg (2010)

    Google Scholar 

  12. Letelier, A., Pérez, J., Pichler, R., Skritek, S.: Static analysis and optimization of semantic web queries. Proceedings of PODS 38(4), 84–87 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Letelier, A., Pérez, J., Pichler, R., Skritek, S.: SPAM: a SPARQL analysis and manipulation tool. Proc. VLDB 5(12), 1958–1961 (2012)

    Article  Google Scholar 

  14. Luigi, P.C., Pasquale, F., Carlo, S., Mario, V.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004)

    Article  Google Scholar 

  15. Medha, A.: Left bit right: for SPARQL join queries with OPTIONAL patterns (left-outer-joins). In: Proceedings of SIGMOD 2015, pp. 1793–1808 (2015)

    Google Scholar 

  16. Neumann, T., Weikum, G.: The RDF3X engine for scalable management of RDF data. VLDB J. 19(1), 91–113 (2010)

    Article  Google Scholar 

  17. Peng, P., Zou, L., Özsu, M.T., Chen, L., Zhao, D.: Processing SPARQL queries over distributed RDF graphs. VLDB J. 25(2), 243–268 (2016)

    Article  Google Scholar 

  18. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34(3), 30–43 (2009)

    Article  Google Scholar 

  19. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommendation (2008)

    Google Scholar 

  20. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.-C.N.: LSQ: the linked SPARQL queries dataset. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 261–269. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25010-6_15

    Chapter  Google Scholar 

  21. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient algorithm for testing subgraph isomorphism. Proc. VLDB 1(1), 364–375 (2008)

    Article  Google Scholar 

  22. Song, Z., Feng, Z., Zhang, X., Wang, X., Rao, G.: Efficient approximation of well-designed SPARQL queries. In: Song, S., Tong, Y. (eds.) WAIM 2016. LNCS, vol. 9998, pp. 315–327. Springer, Heidelberg (2016). doi:10.1007/978-3-319-47121-1_27

    Chapter  Google Scholar 

  23. Swick, R.R.: Resource description framework (RDF) model and syntax specification. In: W3C Recommendation (1998)

    Google Scholar 

  24. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)

    Article  MathSciNet  Google Scholar 

  25. Wang, H.: Efficient subgraph matching on billion node graphs. In: Proc. of VLDB 2012, 5: article 9 (2012)

    Google Scholar 

  26. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. Proc. VLDB 1, 1008–1019 (2008)

    Article  Google Scholar 

  27. Yuan, P., Liu, P., Wu, B., Jin, H., Zhang, W., Liu, L.: Triplebit: a fast and compact system for large scale RDF data. Proc. VLDB 6(7), 517–528 (2013)

    Article  Google Scholar 

  28. Zhang, X., Feng, Z., Wang, X., Rao, G., Wu, W.: Context-free path queries on RDF graphs. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 632–648. Springer, Heidelberg (2016). doi:10.1007/978-3-319-46523-4_38

    Chapter  Google Scholar 

  29. Zhang, X., Van den Bussche, J.: On the power of SPARQL in expressing navigational queries. Computer J. 58(11), 2841–2851 (2015)

    Article  Google Scholar 

  30. Zhang, X., Van den Bussche, J.: On the primitivity of operators in SPARQL. Inf. Process. Lett. 114(9), 480–485 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, X., Van den Bussche, J.: On the satisfiability problem for SPARQL patterns. J. Artif. Intell. Res. 56, 403–428 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Zhao, P., Han, J.: On graph query optimization in large networks. Proc. VLDB 3(1–2), 340–351 (2010)

    Article  Google Scholar 

  33. Zou, L., Mo, J., Chen, L., Özsu, M.T., Zhao, D.: gStore: answering SPARQL queries via subgraph matching. Proc. VLDB 4(8), 482–493 (2011)

    Article  Google Scholar 

  34. Zou, L., Özsu, M.T., Chen, L., Shen, X., Huang, R., Zhao, D.: gStore: a graph-based SPARQL query engine. VLDB J. 23(4), 565–590 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the programs of the National Key Research and Development Program of China (2016YFB1000603), the National Natural Science Foundation of China (NSFC) (61502336), and the open funding project of Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education (K93-9-2016-05). Xiaowang Zhang is supported by Tianjin Thousand Young Talents Program and the project-sponsored by School of Computer Science and Technology in Tianjin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zhang, X., Song, Z., Feng, Z., Wang, X. (2016). PIWD: A Plugin-Based Framework for Well-Designed SPARQL. In: Li, YF., et al. Semantic Technology. JIST 2016. Lecture Notes in Computer Science(), vol 10055. Springer, Cham. https://doi.org/10.1007/978-3-319-50112-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50112-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50111-6

  • Online ISBN: 978-3-319-50112-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics