Skip to main content

Various Sludge Pretreatments: Their Impact on Biogas Generation

  • Chapter
  • First Online:
Waste Biomass Management – A Holistic Approach

Abstract

Biogas produced through anaerobic degradation of waste activated sludge (WAS) in wastewater treatment plants has gained much more attention as it is a renewable energy resource. An apparent advantage of anaerobic digestion is the generation of biogas that presents a renewable substitute for utilization of fossil fuels. It was observed that pretreatment has to be done prior to anaerobic degradation (AD) to enhance the biogas generation. This review deals with various pretreatments—chemical, physical, mechanical, combinative, phase-separated pretreatment, their mode of action, advantages and their impact on biogas generation. An extensive review of these pretreatment techniques could plausibly aid in increasing the biogas production and thus rises the sustainable energy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL (2009) Defining the Biomethane Potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934. doi:10.2166/wst.2009.040

    Article  CAS  PubMed  Google Scholar 

  • Appels L, Baeyens J, Degreve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energ Combust Sci 234:755–781. doi:10.1016/j.pecs.2008.06.002

    Article  CAS  Google Scholar 

  • Appels L, Houtmeyers S, Degreve J, Impe JV, Dewil R (2013) Influence of microwave pre-treatment on sludge solubilization and pilot scale semicontinuous anaerobic digestion. Bioresour Technol 128:598–603. doi:10.1016/j.biortech.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  • Aquino SF, Tuckey DC (2008) Integrated model of the production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in anaerobic chemostats during transient conditions. Biochem Eng J 38:138–146. doi:10.1016/j.bej.2007.06.010

    Article  CAS  Google Scholar 

  • Bala Subramanian S, Yan S, Tyagi RD, Surampalli RY (2010) Extracellular Polymeric Substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering. Water Res 44:2253–2266. doi:10.1016/j.watres.2009.12.046

    Article  CAS  PubMed  Google Scholar 

  • Banu RJ, Kaliappan S (2007) Treatment of tannery wastewater using hybrid upflow anaerobic sludge blanket reactor. J Environ Eng Sci 6:415–421. doi:10.1139/s06-063

    Article  CAS  Google Scholar 

  • Banu RJ, Kaliappan S, Beck D (2006) High rate anaerobic treatment of Sago wastewater using HUASB with PUF as carrier. Int J Environ Sci Technol 3:69–77. doi:10.1007/BF03325909

    Article  CAS  Google Scholar 

  • Banu RJ, Kaliappan S, Yeom IT (2007a) Treatment of domestic wastewater using upflow anaerobic sludge blanket reactor. Int J Environ Sci Technol 4:363–370. doi:10.1007/BF03326295

    Article  CAS  Google Scholar 

  • Banu RJ, Kaliappan S, Yeom IT (2007b) Two-stage anaerobic treatment of dairy wastewater using HUASB with PUF and PVC carrier. Biotechnol Bioprocess Eng 12:257–264. doi:10.1007/BF02931101

    Article  CAS  Google Scholar 

  • Banu RJ, Arulazhagan P, Adish Kumar S, Kaliappan S, Lakshmi AM (2014) Anaerobic co-digestion of chemical- and ozone-pretreated sludge in hybrid upflow anaerobic sludge blanket reactor. Desalin Water Treat 54:3269–3278. doi:10.1080/19443994.2014.912156

    Article  CAS  Google Scholar 

  • Bougrier C, Carrere H, Delgenes JP (2005) Solubilisation of waste activated sludge by ultrasonic treatment. Chem Eng J 106:163–169. doi:10.1016/j.cej.2004.11.013

    Article  CAS  Google Scholar 

  • Bougrier C, Albasi C, Delgenes JP, Carrere H (2006) Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem Eng Process Process Intensif 45:711–718. doi:10.1016/j.cep.2006.02.005

    Article  CAS  Google Scholar 

  • Bougrier C, Delgenes JP, Carrere H (2008) Effects of thermal treatments on five different waste activated sludge samples solubilization, physical properties and anaerobic digestion. J Chem Eng 139:236–244. doi:10.1016/j.cej.2007.07.099

    Article  CAS  Google Scholar 

  • Cacho Rivero JA (2005) Anaerobic digestion of excess municipal sludge, optimization for increased solid destruction. Ph.D. thesis. Department of Civil and Environmental Engineering of the University of Cincinnati, USA

    Google Scholar 

  • Cadoret A, Conrad A, Block JC (2002) Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges. Enzyme Microb Technol 31:179–186. doi:http://dx.doi.org/10.1016/S0141-0229(02)00097-2

  • Camocho P (2001) Excess sludge process reduction by physical, alkaline or biological coupling. Ph.D thesis. Institute National des Sciences Appliquees, Toulouse, France

    Google Scholar 

  • Camocho P, Ginestet P, Audic JM (2003) Pilot plant demonstration of reduction technology during activated sludge treatment of waste water WEFTEC’03, October 11-15, Los Angeles, USA

    Google Scholar 

  • Carballa M, Manterola G, Larrea L, Ternes T, Omil F, Lema JM (2007) Influence of ozone pre-treatment on sludge anerobic digestion: removal of pharmaceutical and personal care products. Chemosphere 67:1444–1452. doi:10.1016/j.chemosphere.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  • Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pretreatment on anaerobic digestion: a review. Waste Manage 32:1634–50. doi:10.1016/j.wasman.2012.04.016

    Article  CAS  Google Scholar 

  • Carrere H, Dumas C, Battimelli A, Batsone DJ, Delgenes JP, Steyer JP (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15. doi:10.1016/j.jhazmat.2010.06.129

    Article  CAS  PubMed  Google Scholar 

  • Cho SK, Shin HS, Kim DH (2012) Waste activated sludge hydrolysis during ultrasonication: two-step disintegration. Bioresour Technol 121:480–483. doi:10.1016/j.biortech.2012.07.024

    Article  CAS  PubMed  Google Scholar 

  • Chu CP, Lee DJ, Chang BV, You CS, Tay JH (2002) Weak ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids. Water Res 36:2681–2688. doi:10.1016/S0043-1354(01)00515-2

    Article  CAS  PubMed  Google Scholar 

  • Confer DR, Logan BE (1998) Location of protein and polysaccharide hydrolytic activity in suspended and biofilm wastewater cultures. Water Res 32:31–38. doi:10.1016/S0043-1354(97)00194-2

    Article  CAS  Google Scholar 

  • De Mes TZD, Stams AJM, Reith JH, Zeeman G (2003) Methane production by anaerobic digestion of wastewater and solid wastes. In: Reith JH, Wijffels RH, Barten H (eds) Bio-methane and bio-hydrogen. Status and perspectives of biological methane and hydrogen production. Netherland Agency for Energy and the Environment (Novem), pp 58–102

    Google Scholar 

  • Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources, 1st edn. Wiley, Weinheim. doi:10.1002/9783527632794.

    Google Scholar 

  • Dogan I, Sanin FD (2009) Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method. Water Res 43:2139–2148. doi:10.1016/j.watres.2009.02.023

    Article  CAS  PubMed  Google Scholar 

  • Dohanyos M, Zabranska J, Kutil J, Jenıcek P (2004) Improvement of anaerobic digestion of sludge. Water Sci Technol 49:89–96. doi:10.1007/s11356-015-4677-2

    CAS  PubMed  Google Scholar 

  • Ebenezer VA, Kaliappan S, Adish Kumar S, Yeom IT, Banu JR (2015a) Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge. Bioresour Technol 185:194–201. doi:10.1016/j.biortech.2015.02.102

    Article  CAS  PubMed  Google Scholar 

  • Ebenezer VA, Arulazhagan P, Adish Kumar S, Yeom I-T, Banu JR (2015b) Effect of deflocculation on the efficiency of low-energy microwave pretreatment and anaerobic biodegradation of waste activated sludge. Appl Energy 145:104–110. doi:10.1016/j.apenergy.2015.01.133

    Article  CAS  Google Scholar 

  • Esakki Raj S, Kaliappan S, Adish kumar S, Banu JR (2012) Combinative treatment (thermal-anaerobic) of EBPR sludge for the enhanced release and recovery of phosphorous. Int J Environ Eng 4:93–105. doi:10.1504/IJEE.2012.048097

    Google Scholar 

  • Esakki Raj S, Banu JR, Adish Kumar S, Kaliappan S (2013) Effect of side stream thermal P recovery on the performance of AAO system integrated with sludge pretreatment. Bioresour Technol 140:376–384. doi:10.1016/j.biortech.2013.04.061

    Article  PubMed  CAS  Google Scholar 

  • Eskicioglu C, Kennedy KJ, Droste RL (2007) Enhancement of batch waste activated sludge digestion by microwave pretreatment. Water Environ Res 11:2304–2317. doi:10.2175/106143007X184069

    Article  CAS  Google Scholar 

  • European Commission, Environmental, economic and social impacts of the use of sewage sludge on land (accessed 2010). http://ec.europa.eu/environment/waste/sludge/pdf/part_iii_report.pdf

  • Ferrer I, Ponsa S, Vazquez F, Font X (2008) Increasing biogas production by thermal (70°C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem Eng J 42:186–192. doi:10.1016/j.bej.2008.06.020

    Article  CAS  Google Scholar 

  • Fraser KD (2010) Increased anaerobic digestion efficiencies via the use of thermal hydrolysis MSc thesis. Virginia Polytechnic Institute and State University Blacksburg

    Google Scholar 

  • Frolund B, Griebe T, Nielsen PH (1995) Enzymatic activity in the activated-sludge floc matrix. Appl Microbiol Biotechnol 43:755–761. doi:10.1007/BF00164784

    Article  CAS  PubMed  Google Scholar 

  • Frolund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:749–1758. doi:10.1016/0043-1354(95)00323-1

    Article  Google Scholar 

  • Gayathri T, Kavitha S, Adish Kumar S, Kaliappan S, Yeom IT, Banu JR (2015) Effect of citric acid induced deflocculation on the ultrasonic pretreatment efficiency of dairy waste activated sludge. Ultrason Sonochem 22:333–340. doi:10.1016/j.ultsonch.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  • Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley-Interscience, Wiley, pp 127–140. doi:10.1002/0471468967

    Google Scholar 

  • Gibb GD, Strohl WR (1987) Physiological regulation of protease activity in Streptomyces peucetius. Can J Microbiol 34:187–190. doi:10.1139/m88-034

    Article  Google Scholar 

  • Godvin Sharmila V, Kavitha S, Rajashankar K, Yeom IT, Banu JR (2015) Effects of titanium dioxide mediated dairy waste activated sludge deflocculation on the efficiency of bacterial disintegration and cost of sludge management. Bioresour Technol 197:64–71. doi:10.1016/j.biortech.2015.08.038

    Article  CAS  PubMed  Google Scholar 

  • Goel R, Mino T, Satoh H, Matsuo T (1998) Comparison of hydrolytic enzyme systems in pure culture and activated sludge under different electron acceptor conditions. Water Sci Technol 37:335–343. doi:10.1016/S0273-1223(98)00126-7

    Article  CAS  Google Scholar 

  • Gopi KS, Merrylin J, Kaliappan S, Adish Kumar S, Yeom IT, Banu JR (2012) Effect of cation binding agents on sludge solubilisation potential of bacteria. Biotechnol Bioprocess Eng 17:346–352. doi:10.1007/s12257-011-0465-0

    Article  CAS  Google Scholar 

  • Gopi KS, Arulazhagan P, Kavitha S, Adish Kumar S, Banu JR (2015) Evaluation of operational parameters for semi-continuous anaerobic digester treating pretreated waste activated sludge. Desalin Water Treatment 4:1–8. doi:10.1080/19443994.2015.1029526

    Google Scholar 

  • Guang HY, He PJ, Shao LM, Lee DJ (2007) Enzyme activities in activated sludge flocs. Appl Microbiol Biotechnol 77:605–612. doi:10.1007/s00253-007-1204-5

    Article  CAS  Google Scholar 

  • Gupta R, Beeg QK, Loranz P (2002a) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32. doi:10.1007/s00253-002-0975-y

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Beeg QK, Khan S, Chauhan B (2002b) An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biotechnol 60:381–395. doi:10.1007/s00253-002-1142-1

    Article  CAS  PubMed  Google Scholar 

  • Haner A, Mason CA, Hamer G (1994) Death and lysis during aerobic thermophilic sludge treatment: Characterization of recalcitrant products. Water Res 28:863–869. doi:10.1016/0043-1354(94)90092-2

    Article  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass: a review. Bioresour Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027

    Article  CAS  PubMed  Google Scholar 

  • Jacquel N, Lo CW, Wei YH, Wu HS, Wang SS (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem Eng J 39:15–27. doi:10.1016/j.bej.2007.11.029

    Article  CAS  Google Scholar 

  • Jones DA, Lelyveld TP, Mavrofidis SD, Kingman SW, Miles NJ (2002) Microwave heating applications in environmental engineering—a review. Resour Conserv Recyl 34:75–90. doi:10.1016/S0921-3449(01)00088-X

    Article  Google Scholar 

  • Kavitha S, Adish Kumar S, Yoga Lakshmi KN, Kaliappan S, Banu JR (2013) Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA. Bioresour Technol 150:210–219. doi:10.1016/j.biortech.2013.10.021

    Article  CAS  PubMed  Google Scholar 

  • Kavitha S, Jayashree C, Adish Kumar S, Kaliappan S, Banu JR (2014a) Enhancing the functional and economical efficiency of a novel combined thermo chemical disperser disintegration of waste activated sludge for biogas production. Bioresour Technol 173:32–41. doi:10.1016/j.biortech.2014.09.078

    Article  CAS  PubMed  Google Scholar 

  • Kavitha S, Jayashree C, Adish Kumar S, Yeom IT, Banu JR (2014b) The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment. Bioresour Technol 168:159–166. doi:10.1016/j.biortech.2014.01.118

    Article  CAS  PubMed  Google Scholar 

  • Kavitha S, Adish Kumar S, Kaliappan S, Yeom IT, Banu JR (2014c) Improving the amenability of municipal waste activated sludge for biological pretreatment by phase-separated sludge disintegration. Bioresour Technol 169:700–706. doi:10.1016/j.biortech.2014.07.065

    Article  CAS  PubMed  Google Scholar 

  • Kavitha S, Yukesh Kannah R, Yeom IT, Uan DK, Banu JR (2015a) Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production. Bioresour Technol 197:383–392. doi:10.1016/j.biortech.2015.08.131

    Article  CAS  PubMed  Google Scholar 

  • Kavitha S, Kaliappan S, Adish Kumar S, Yeom IT, Banu JR (2015b) Effect of NaCl induced floc disruption on biological disintegration of sludge for enhanced biogas production. Bioresour Technol 192:807–811. doi:10.1016/j.biortech.2015.05.071

    Article  CAS  PubMed  Google Scholar 

  • Kavitha S, Saranya T, Kaliappan S, Adish Kumar S, Yeom IT, Banu JR (2015c) Accelerating the sludge disintegration potential of a novel bacterial strain Planococcus jake 01 by CaCl2 induced deflocculation. Bioresour Technol 175:396–405. doi:10.1016/j.biortech.2014.10.122

    Article  CAS  PubMed  Google Scholar 

  • Kavitha S, Kumar A, Kaliappan S, Yeom IT, Banu JR (2015d) Achieving profitable biological sludge disintegration through phase separation and predicting its anaerobic biodegradability by nonlinear regression model. Chem Eng J 279:478–487. doi:10.1016/j.cej.2015.05.051

    Article  CAS  Google Scholar 

  • Kavitha S, Jessin Brindha GM, Sally Gloriana A, Rajashankar K, Yeom IT, Banu JR (2016a) Enhancement of aerobic biodegradability potential of municipal waste activated sludge by ultrasonic aided bacterial disintegration. Bioresour Technol 200:161–169. doi:10.1016/j.biortech.2015.10.026

    Article  CAS  PubMed  Google Scholar 

  • Kavitha S, Jessin Brindha GM, Sally Gloriana A, Rajashankar K, Yeom IT, Banu JR (2016b) Enhancement of aerobic biodegradability potential of municipal waste activated sludge by ultrasonic aided bacterial disintegration. Bioresour Technol 200:161–169. doi:10.1016/j.biortech.2015.10.026

    Article  CAS  PubMed  Google Scholar 

  • Kavitha S, Saji Pray S, Yogalakshmi KN, Adish Kumar S, Yeom IT, Banu JR (2016c) Effect of chemo-mechanical disintegration on sludge anaerobic digestion for enhanced biogas production. Environ Sci Pollut Res 23:2402–2414. doi:10.1007/s11356-015-5461-z

    Article  CAS  Google Scholar 

  • Khanal SK, Grewell D, Sung S, Leeuwen JV (2007) Ultrasound application in wastewater sludge pre-treatment: a review. Critical Rev Environ Sci Technol 37:277–313. doi:10.1080/10643380600860249

    Article  CAS  Google Scholar 

  • Kim J, Park C, Kim TH, Lee M, Kim S, Kim K, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95:271–275. doi:10.1016/S1389-1723(03)80028-2

    Article  CAS  PubMed  Google Scholar 

  • Klass D (2004) Biomass for renewable energy and fuels. In: Encyclopedia of energy, vol. 1. Elsevier, pp 193–212

    Google Scholar 

  • Kohlmann KL, Nielsen SS, Stevenson LR, Ladisch MR (1991) Production of proteases by psychrotrophic microorganisms. J Dairy Sci 74:3275–3283. doi:10.3168/jds.S0022-0302(91)78513-5

    Article  CAS  PubMed  Google Scholar 

  • Levlin E (2010) Maximizing sludge and biogas production for counteracting global warming. International scientific seminar, Research and application of new technologies in wastewater treatment and municipal solid waste disposal in Ukraine, Sweden and Poland 23–25 September 2009 Stockholm, Polish-Swedish, TRITA-LWR REPORT 3026, pp 95–10

    Google Scholar 

  • Li CL, Fang HHP (2007) Inhibition of heavy metals on fermentative hydrogen production by granular sludge. Chemosphere 67:668–673. doi:10.1016/j.chemosphere.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Noike T (1992) Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment. J Water Sci Technol 26:857–866. doi:10.2166/wst.2009.510

    CAS  Google Scholar 

  • Li XY, Yang SF (2007a) Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res 41:1022–1030. doi:10.1016/j.watres.2006.06.037

    Article  CAS  PubMed  Google Scholar 

  • Li XY, Yang SF (2007b) Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res 41:1022–1030. doi:10.1016/j.watres.2006.06.037

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li C, Liu W, Zou S (2012) Optimized alkaline pretreatment of sludge before anaerobic digestion. Bioresour Technol 123:189–194. doi:10.1016/j.biortech.2012.08.017

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Wang D, Wu S, Wang C (2009) Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. J Hazard Mater 170:366–373. doi:http://dx.doi.org/10.1016/j.jhazmat.2009.04.086

  • Mata Alvarez J (2003) Biomethanization of the organic fraction municipal solid wastes. IWA Cornwall, London

    Google Scholar 

  • Mata-Alvarez J, Macé S, Llabrés P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16. doi:10.1016/S0960-8524(00)00023-7

    Article  CAS  Google Scholar 

  • Mendes AA, Pereira EB, De Castro HF (2006) Effect of the enzymatic hydrolysis pre-treatment of lipids-rich wastewater on the anaerobic bio digestion. Biochem Eng J 32:185–190. doi:10.1016/j.bej.2006.09.021

    Article  CAS  Google Scholar 

  • Merrylin J, Adish Kumar S, Kaliappan S, Yeom IT, Banu JR (2013a) Biological pretreatment of non-flocculated sludge augments the biogas production in the anaerobic digestion of the pretreated waste activated sludge. Environ Technol 34:13–14. doi:10.1080/09593330.2013.810294

    Article  CAS  Google Scholar 

  • Merrylin J, Adish Kumar S, Kaliappan S, Yeom I-T, Banu JR (2013b) Effect of extracellular polymeric substances (EPS) on sludge reduction potential of Bacillus licheniformis. Int J Environ Sci Tech 8:85–92. doi:10.1007/s13762-012-0141-8

    Article  CAS  Google Scholar 

  • Merrylin J, Adish Kumar S, Kaliappan S, Yeom I-T, Banu JR (2014a) Effect of EPS removal on the sludge reduction potential of B. licheniformis on its optimized pH conditions. Water Environ J 28:95–103. doi:10.1111/wej.12014

    Article  CAS  Google Scholar 

  • Merrylin J, Adish Kumar S, Kalippan S, Yeom IT, Banu JR (2014b) Enhancing aerobic digestion potential of municipal waste activated sludge through removal of EPS. Environ Sci Pollut Res 21:1112–1123. doi:10.1007/s11356-013-1976-3

    Article  CAS  Google Scholar 

  • Metcalf and Eddy Inc (2006) Wastewater engineering: treatment and reuse. McGraw Hill series in civil and environmental engineering. 5th edn, McGraw-Hill, New York, NY

    Google Scholar 

  • Monique R, Elisabeth GN, Etienne P, Dominique L (2008) A high yield multimethod extraction protocol for protein quantification in activated sludge. Bioresour Technol 99:7464–7471. doi:10.1016/j.biortech.2008.02.025

    Article  CAS  PubMed  Google Scholar 

  • Mudhoo A, Sharma SK (2011) Microwave irradiation technology in waste sludge and wastewater treatment research. Crit Rev Environ Sci Technol 41:999–1066. doi:10.1080/10643380903392767

    Article  CAS  Google Scholar 

  • Neyens E, Baeyens J, Dewill R, Heyder B (2004) Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J Hazard Mater 106:83–92. doi:10.1016/j.jhazmat.2003.11.014

    Article  CAS  PubMed  Google Scholar 

  • Nybroe O, Jorgensen PE, Henze M (1992) Enzyme activities in waste water and activated sludge. Water Res 26:579–584. doi:10.1016/0043-1354(92)90230-2

    Article  CAS  Google Scholar 

  • Oh YS, Shih IL, Tzeng YM, Wang SL (2000) Protease produced by Pesudomonas aeroginosa K-187 and its application in the deproteinization of shrimp and crab shell wastes. Enzyme Microb Technol 27:3–10. doi:10.1016/S0141-0229(99)00172-6

    Article  CAS  PubMed  Google Scholar 

  • Owen WF, Stuckey DC, Healy JB, Young LY, McCarty PL (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492. doi:10.1016/0043-1354(79)90043-5

    Article  CAS  Google Scholar 

  • Pan X, Liu J, Zhang D, Chen X, Li L, Song W, Yang JA (2010) Comparison of five extraction methods for extracellular polymeric substances (EPS) from biofilm by using three dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy. Water SA. 36:111–116. doi:10.4314/wsa.v36i1.50914

    Article  CAS  Google Scholar 

  • Panter K (2006) Energy prices rises fuel advanced digestion. World water and environmental engineering magazine, March/April 143

    Google Scholar 

  • Park WJ, Ahn JH, Hwang S, Lee CK (2010) Effect of output power, target temperature, and solid concentration on the solubilization of waste activated sludge using microwave irradiation. Bioresour Technol 101:S13–S16. doi:10.1016/j.biortech.2009.02.062

    Article  CAS  PubMed  Google Scholar 

  • Paul W, Ohlmeyer M, Leithoff H, Boonstra MJ, Pizzi A (2006) Optimising the properties of OSB by a onestep heat pre-treatment process. Holz als Roh- und Werkstoff 64:227–234. doi:10.1007/s00107-005-0073-9

    Article  CAS  Google Scholar 

  • Peppley BA (2006) Biomass for fuel cells: a technical and economic assessment. Int J Green Energy 3:201–218. doi:10.1080/01971520500439401

    Article  CAS  Google Scholar 

  • Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18:1–18. doi:10.1016/j.ultsonch.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  • Poornima DT, Vimala Ebenezer A, Adish Kumar S, Kaliappan S, Banu JR (2014) Effect of deflocculation on the efficiency of disperser induced dairy waste activated sludge disintegration and treatment cost. Bioresour Technol 167:151–158. doi:10.1016/j.biortech.2014.06.004

    Article  CAS  Google Scholar 

  • Rai CL, Rao PG (2009) Influence of sludge disintegration by high pressure homogenizer on microbial growth in sewage sludge: an approach for excess sludge reduction. Clean Technol Environ Policy 4:437–446. doi:10.1007/s10098-009-0202-y

    Article  CAS  Google Scholar 

  • Rajakumar R, Meenambal T, Banu JR, Yeom IT (2010) Treatment of poultry slaughterhouse wastewater in upflow anaerobic filter under low upflow velocity. Int J Environ Sci Technol 8:149–158. doi:10.1007/BF03326204

    Article  Google Scholar 

  • Ramesh A, Duu JL, Hong SG (2006) Soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge. J Environ Biotechnol 73:219–225. doi:10.1007/s00253-006-0446-y

    CAS  Google Scholar 

  • Sheng GP, Yu HQ (2006) Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res 40:1233–1239. doi:10.1016/j.watres.2006.01.023

    Article  CAS  PubMed  Google Scholar 

  • Show KY, Mao T, Lee DJ (2007) Optimization of sludge disruption by sonication. Water Res 41:4741–4747. doi:10.1016/j.watres.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  • Sowmya GP, Kavitha S, Adish Kumar S, Kaliappan S, Yeom IT, Banu JR (2015) Effect of sonically induced deflocculation on the efficiency of ozone mediated partial sludge disintegration for improved production of biogas. Ultrason Sonochem 26:241–248. doi:10.1016/j.ultsonch.2015.01.015

    Article  CAS  Google Scholar 

  • Sri Bala Kameswari K, Kalyanaraman C, Thanasekaran K (2011) Effect of ozonation and ultrasonication pretreatment processes on co-digestion of tannery solid wastes. Clean Technol Environ Policy 13:517–525. doi:10.1007/s-10098-010-0334-0

    Article  CAS  Google Scholar 

  • Suresh Karthik M, Krishna Kumar T, Arulazhagan P, Adish Kumar S, Yeom IT, Banu JR (2015) Effect of alkaline and ozone pretreatment on sludge reduction potential of a membrane bioreactor treating high-strength domestic wastewater. Desalin Wastewater Treatment 55:1127–1134. doi:10.1080/19443994.2014.923335

    Google Scholar 

  • Tang B, Yu LF, Huang SS, Luo JZ, Zhuo Y (2010) Energy efficiency of pretreating excess sewage sludge with microwave irradiation. Bioresour Technol 101:5092–5097. doi:10.1016/j.biortech.2010.01.132

    Article  CAS  PubMed  Google Scholar 

  • Tiehm A, Nickel K, Zellhorn M, Neis U (2001) Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res 35:2003–2009. doi:10.1016/S0043-1354(00)00468-1

    Article  CAS  PubMed  Google Scholar 

  • Uan DK, Banu JR, Chung IJ, Yeom IT (2009) Effect of thermochemical sludge pretreatment on sludge reduction and on performances of anoxic-aerobic membrane bioreactor treating low strength domestic wastewater. J Chem Technol Biotechnol 84:1350–1355. doi:10.1002/jctb.2189

    Article  CAS  Google Scholar 

  • Uan DK, Banu RJ, Son DH, Yeom IT (2012) Influence of ferrous sulfate on thermochemical sludge disintegration and on performances of wastewater treatment in a new process: anoxic–oxic membrane bioreactor coupled with sludge disintegration step. Biochem Eng J 66:20–26. doi:10.1016/j.bej.2012.04.013

    Article  CAS  Google Scholar 

  • Uan DK, Banu JR, Kaliappan S, Yeom IT (2013a) Influence of the thermochemical sludge pretreatment on the nitrification of A/O reactor with the removal of phosphorus by simultaneous precipitation. Biotechnol Bioprocess Eng 18:313–320. doi:10.1007/s12257-012-0492-5

    Article  CAS  Google Scholar 

  • Uan DK, Yeom IT, Arulazhagan P, Banu JR (2013b) Effects of sludge pretreatment on sludge reduction in a lab-scale anaerobic/anoxic/oxic system treating domestic wastewater. Int J Environ Sci Technol 10:495–502. doi:10.1007/s13762-012-0120-0

    Article  CAS  Google Scholar 

  • Uchida K, Mogi T, Fukushima O (1972) Microbial production of protease, amylase and lipase (Japan.) 7250.389. C.F. Chem. Abst 79

    Google Scholar 

  • Uma RR, Adish Kumar S, Kaliappan S, Yeom IT, Banu JR (2012a) Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process. Bioresour Technol 103:415–424. doi:10.1016/j.biortech.2011.09.124

    Article  CAS  Google Scholar 

  • Uma RR, Adish Kumar S, Kaliappan S, Banu JR (2012b) Combined treatment of alkaline and disperser for improving solubilization and anaerobic biodegradability of dairy waste activated sludge. Bioresour Technol 126:107–116. doi:10.1016/j.biortech.2012.09.027

    Article  CAS  Google Scholar 

  • Uma RR, Adish Kumar S, Kaliappan S, Yeom IT, Banu JR (2013a) Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge. Waste Manage 33:1119–1127. doi:10.1016/j.wasman.2013.01.016

    Article  CAS  Google Scholar 

  • Uma RR, Adish Kumar S, Kaliappan S, Yeom IT, Banu JR (2013b) Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment. Ultrason Sonochem 21:1065–1074. doi:10.1016/j.ultsonch.2013.11.007

    Google Scholar 

  • Valo A, Carrère H, Delgenès JP, Chem J (2004) Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion. Chem Technol Biotechnol 79:1197–1203. doi:10.1002/jctb.1106

    Article  CAS  Google Scholar 

  • Veera Lakshmi M, Merrylin J, Kavitha S, Adish Kumar S, Yeom IT, Banu JR (2014) Solubilisation of municipal sewage waste activated sludge by novel lytic bacterial strains. Environ Sci Pollut Res 21:2733–2743. doi:10.1007/s11356-013-2228-2

    Article  CAS  Google Scholar 

  • Vranitzky R, Lahnsteiner J (2002) Sewage sludge disintegration using ozone—a method of enhancing the anaerobic stabilisation of sewage sludge. In: Proceedings of the 7th European biosolids and organic residuals conference, Wakefield, UK

    Google Scholar 

  • Wang F, Wang Y, Ji M (2005) Mechanism and kinetic models for ultrasonic waste activated sludge pretreatment. J Hazard Mat 123:145–150. doi:10.1016/j.jhazmat.2005.03.033

    Article  CAS  Google Scholar 

  • Wang XH, Gai LH, Sun XF, Xie HJ, Gao MM, Wang SG (2010) Effects of long term addition of Cu (II) and Ni (II) on the bioalkaline properties of aerobic granules in sequencing batch reactors. Appl Microbiol Biotechnol 86:1967–1975

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Mattsson M, Rundstedt J, Karlsson N (2012) Different pretreatments to enhance biogas production. Mas. Sci. thesis, Halmstad University

    Google Scholar 

  • Watson SD, Akhurst T, Whiteley CG, Rose PD, Pletschke BI (2004) Primary sludge floc degradation is accelerated under biosulphidogenic conditions: enzymological aspects. Enzyme Microbial Technol 34:595–602. doi:10.1016/j.enzmictec.2004.01.004

    Article  CAS  Google Scholar 

  • Weemaes M, Grootaerd H, Simons F, Verstraete W (2000) Anaerobic digestion of ozonized biosolids. Water Sci Technol 34:2330–2336. doi:10.1016/S0043-1354(99)00373-5

    Article  CAS  Google Scholar 

  • Yang Q, Luo K, Li X, Wang D, Zheng W, Zeng G, Liu J (2010) Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresour Technol 101:2924–2930. doi:10.1016/j.biortech.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  • Yu GH, He PJ, Shao LM (2009) Characteristics of extracellular polymeric substances (EPS) fractions from excess sludge and their effects on bioflocculability. Bioresour Technol 100:3193–3198. doi:10.1016/j.biortech.2009.02.009

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Lei HY, Li Z, Li HL, Chen K, Zhang XH, Liang RL (2010) Physical and chemical properties of waste-activated sludge after microwave treatment. Water Res 44:2841–2849. doi:10.1016/j.watres.2009.11.057

    Article  CAS  PubMed  Google Scholar 

  • Yuxuan Z, Panyue Z, Guangming Z, Weifang M, Hao W, Boqiang M (2012) Sewage sludge disintegration by combined treatment of alkaline + high pressure homogenization. Bioresour Technol 123:514–519. doi:10.1016/j.biortech.2012.07.078

    Article  CAS  Google Scholar 

  • Zhang GM, Zhang PY, Yang J, Liu HZ (2008) Energy efficient sludge sonication: power and sludge characteristics. Bioresour Technol 99:9029–9031. doi:10.1016/j.biortech.2008.04.021

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Chen Y, Zhao Y, Zhu X (2010) New sludge pre-treatment method to improve methane production in waste activated sludge digestion. Environ Sci Technol 44:4802–4808. doi:10.1021/es1000209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the Department of Science and Technology, India, for providing financial support for this project (SR/FTP/ETA-0021/2010) under their Young Scientist Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rajesh Banu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Banu, J.R., Kavitha, S. (2017). Various Sludge Pretreatments: Their Impact on Biogas Generation. In: Singh, L., Kalia, V. (eds) Waste Biomass Management – A Holistic Approach. Springer, Cham. https://doi.org/10.1007/978-3-319-49595-8_3

Download citation

Publish with us

Policies and ethics