Skip to main content
Log in

Effects of long-term addition of Cu(II) and Ni(II) on the biochemical properties of aerobic granules in sequencing batch reactors

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Copper (Cu(II)) and nickel (Ni(II)) are often encountered in wastewaters. This study investigated the individual toxic effects of long-term addition of Cu(II) and Ni(II) on the biochemical properties of aerobic granules in sequencing batch reactors (SBRs). The biochemical properties of aerobic granules were characterized by extracellular polymeric substances (EPS) content, dehydrogenase activity, microbial community biodiversity, and SBR performance. One SBR was used as a control system, while another two received respective concentration of Cu(II) and Ni(II) equal to 5 mg/L initially and increased to 15 mg/L on day 27. Results showed that the addition of Cu(II) drastically reduced the biomass concentration, bioactivity, and biodiversity of aerobic granules, and certainly deteriorated the treatment performance. The toxic effect of Ni(II) on the biodiversity of aerobic granules was milder and the aerobic granular system elevated the level of Ni(II) toxicity tolerance. Even at a concentration of 15 mg/L, Ni(II) still stimulated the biomass yield and bioactivity of aerobic granules to some extent. The elevated tolerance seemed to be owed to the concentration gradient developed within granules, increased biomass concentration, and promoted EPS production in aerobic granular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adav SS, Lee DJ, Lai JY (2008) Intergeneric coaggregation of strains isolated from phenol-degrading aerobic granules. Appl Microbiol Biotechnol 79:657–661

    Article  CAS  Google Scholar 

  • Adav SS, Lee DJ, Lai JY (2009) Biological nitrification–denitrification with alternating oxic and anoxic operations using aerobic granules. Appl Microbiol Biotechnol 84:1181–1189

    Article  CAS  Google Scholar 

  • Allison DG, Maira-Litran T, Gilbert P (2000) Antimicrobial resistance of biofilms. In: Evans LV (ed) Biofilms: recent advances in their study and control. Harwood, Amsterdam, pp 149–166

    Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington

    Google Scholar 

  • Barrena R, Vazquez F, Sanchez A (2008) Dehydrogenase activity as a method for monitoring the composting process. Bioresour Technol 99:905–908

    Article  CAS  Google Scholar 

  • Benndorf D, Loffhagen N, Babel W (2001) Protein synthesis patterns in Acinetobacter calcoaceticus induced by phenol and catechol show specificities of responses to chemostress. FEMS Microbiol Lett 200:247–252

    Article  CAS  Google Scholar 

  • Beun JJ, van Loosdrecht MCM, Heijnen JJ (2002) Aerobic granulation in a sequencing batch airlift reactor. Water Res 36:702–712

    Article  CAS  Google Scholar 

  • Campbell PGC (1995) Interaction between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, NY, pp 45–102

    Google Scholar 

  • Chiu ZC, Chen MY, Lee DJ, Wang CH, Lai JY (2007) Oxygen diffusion in active layer of aerobic granule with step change in surrounding oxygen levels. Water Res 41:884–892

    Article  CAS  Google Scholar 

  • Colussi I, Cortesi A, Vedova LD, Gallo V, Robles FKC (2009) Start-up procedures and analysis of heavy metals inhibition on methanogenic activity in EGSB reactor. Bioresour Technol 100:6290–6294

    Article  CAS  Google Scholar 

  • de Kreuk MK, Heijnen JJ, Van Loosdrecht MCM (2005) Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol Bioeng 90:761–769

    Article  Google Scholar 

  • Delgado LF, Schetrite S, Gonzalez C, Albasi C (2010) Effect of cytostatic drugs on microbial behaviour in membrane bioreactor system. Bioresour Technol 101:527–536

    Article  CAS  Google Scholar 

  • Fang HHP, Chan OC (1997) Toxicity of phenol towards anaerobic biogranules. Water Res 31:2229–2242

    Article  CAS  Google Scholar 

  • Fang HHP, Xu LC, Chan KY (2002) Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res 36:4709–4716

    Article  CAS  Google Scholar 

  • Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758

    Article  Google Scholar 

  • Henriques IDS, Love NG (2007) The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. Water Res 41:4177–4185

    Article  CAS  Google Scholar 

  • Howard PJA (1999) Analysis of inter-sample distances from BIOLOG plate data in Euclidean and simplex spaces. Soil Biol Biochem 31:1323–1330

    Article  CAS  Google Scholar 

  • Howlett NG, Avery SV (1997) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2976

    CAS  Google Scholar 

  • Hu Z, Chandran K, Grasso D, Smets BF (2002) Effect of nickel and cadmium speciation on nitrification inhibition. Environ Sci Technol 36:3074–3078

    Article  CAS  Google Scholar 

  • Hu Z, Chandran K, Grasso D, Smets BF (2003) Impact of metal sorption and internalization on nitrification inhibition. Environ Sci Technol 37:728–734

    Article  CAS  Google Scholar 

  • Hu Z, Chandran K, Grasso D, Smets BF (2004) Comparison of nitrification inhibition by metals in batch and continuous flow reactors. Water Res 38:3949–3959

    Article  CAS  Google Scholar 

  • Jiang HL, Tay JH, Maszenan AM, Tay STL (2004a) Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl Environ Microbiol 70:6767–6775

    Article  CAS  Google Scholar 

  • Jiang HL, Tay JH, Tay STL (2004b) Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading. Appl Microbiol Biotechnol 63:602–608

    Article  CAS  Google Scholar 

  • Juang YC, Adav SS, Lee DJ, Lai JY (2009) Biodiversity in aerobic granule membrane bioreactor at high organic loading rates. Appl Microbiol Biotechnol 85:383–388

    Article  CAS  Google Scholar 

  • Juliastuti SR, Baeyens J, Creemers C, Bixio D, Lodewyckx E (2003) The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge. J Hazard Mater 100:271–283

    Article  CAS  Google Scholar 

  • Kim KT, Kim IS, Hwang SH, Kim SD (2006) Estimating the combined effects of copper and phenol to nitrifying bacteria in wastewater treatment plants. Water Res 40:561–568

    Article  CAS  Google Scholar 

  • Lee YW, Ong SK, Sato C (1997) Effects of heavy metals on nitrifying bacteria. Water Sci Technol 36:69–74

    CAS  Google Scholar 

  • Lee YW, Tian Q, Ong S, Sato C, Chung J (2009) Inhibitory effects of copper on nitrifying bacteria in suspended and attached growth reactors. Water Air Soil Pollut 203:17–27

    Article  CAS  Google Scholar 

  • Li Y, Liu Y (2005) Diffusion of substrate and oxygen in aerobic granule. Biochem Eng J 27:45–52

    Article  CAS  Google Scholar 

  • Li XY, Yang SF (2007) Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res 41:1022–1030

    Article  CAS  Google Scholar 

  • Li Y, Liu Y, Shen L, Chen F (2008) DO diffusion profile in aerobic granule and its microbiological implications. Enzyme Microb Technol 43:349–354

    Article  CAS  Google Scholar 

  • Liu Y, Wang ZW, Tay JH (2005) A unified theory for upscaling aerobic granular sludge sequencing batch reactors. Biotechnol Adv 23:335–344

    Article  CAS  Google Scholar 

  • McCarthy PL (1964) Anaerobic waste treatment fundamentals. Part III: toxic materials and their control. Public Works 95:91–94

    Google Scholar 

  • McDermott GN, Post MA, Jackson BN, Ettinger MB (1965) Nickel in relation to activated sludge and anaerobic digestion processes. J Water Pollut Control Fed 37:163–177

    CAS  Google Scholar 

  • Ni BJ, Xie WM, Liu SG, Yu HQ, Wang YZ, Wang G, Dai XL (2009) Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res 43:751–761

    Article  CAS  Google Scholar 

  • Nicolau A, Martins MJ, Mota M, Lima N (2005) Effect of copper in the protistan community of activated sludge. Chemosphere 58:605–614

    Article  CAS  Google Scholar 

  • Nies DH (1992) Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27:17–28

    Article  CAS  Google Scholar 

  • Ong SA, Toorisaka E, Hirata M, Hano T (2004) Effects of nickel(II) addition on the activity of activated sludge microorganisms and activated sludge process. J Hazard Mater 113:111–121

    Article  CAS  Google Scholar 

  • Özbelge TA, Özbelge HÖ, Altınten P (2007) Effect of acclimatization of microorganisms to heavy metals on the performance of activated sludge process. J Hazard Mater 142:332–339

    Article  Google Scholar 

  • Principi P, Villa F, Bernasconi M, Zanardini E (2006) Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization. Water Res 40:99–106

    Article  CAS  Google Scholar 

  • Raunkjaer K, Hvitved-Jacobsen T, Nielsen PH (1994) Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Res 28:251–262

    Article  CAS  Google Scholar 

  • Sani RK, Peyton BM, Brown LT (2001) Copper-induced inhibition of growth of Desulfovibrio desulfuricans G20: assessment of its toxicity and correlation with those of zinc and lead. Appl Environ Microbiol 67:4765–4772

    Article  CAS  Google Scholar 

  • Japan Association for Sewage (1984) Standard examination method for wastewater. Japan Association for Sewage, Japan, pp 299–300

    Google Scholar 

  • Sheng GP, Yu HQ, Yue ZB (2005) Production of extracellular polymeric substances from rhodopseudomonas acidophila in the presence of toxic substances. Appl Microbiol Biotechnol 69:216–222

    Article  CAS  Google Scholar 

  • Sirianuntapiboon S, Boonchupleing M (2009) Effect of bio-sludge concentration on the efficiency of sequencing batch reactor (SBR) system to treat wastewater containing Pb2+and Ni2+. J Hazard Mater 166:356–364

    Article  CAS  Google Scholar 

  • Stillman MJ, Presta A (2000) In molecular biology and toxicology of metals, edn. Taylor & Francis, New York

    Google Scholar 

  • Sujarittanonta S, Sherrard JH (1981) Activated sludge nickel toxicity studies. J Water Pollut Control Fed 53:1314–1322

    CAS  Google Scholar 

  • Tay STL, Ivanov V, Yi S, Zhuang WQ, Tay JH (2002) Presence of anaerobic bacteroides in aerobically grown microbial granules. Microb Ecol 44:278–285

    Article  CAS  Google Scholar 

  • Toh SK, Tay JH, Moy BYP, Ivanov V, Tay STL (2003) Size-effect on the physical characteristics of the aerobic granule in a SBR. Appl Microbiol Biotechnol 60:687–695

    CAS  Google Scholar 

  • Vandevivere P, Ficara E, Terras C, Julies E, Verstraete W (1998) Copper-mediated selective removal of nitrification inhibitors from industrial wastewaters. Environ Sci Technol 32:1000–1006

    Article  CAS  Google Scholar 

  • Wang XH, Zhang HM, Yang FL, Xia LP, Gao MM (2007) Improved stability and performance of aerobic granules under stepwise increased selection pressure. Enzyme Microb Technol 41:205–211

    Article  CAS  Google Scholar 

  • Wang XH, Zhang HM, Yang FL, Wang YF, Gao MM (2008) Long-term storage and subsequent reactivation of aerobic granules. Bioresour Technol 99:8304–8309

    Article  CAS  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675–2679

    Article  CAS  Google Scholar 

  • Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances. In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances: characterization, structure and function. Springer, Berlin, pp 1–19

    Google Scholar 

  • Yao H, Xu J, Huang C (2003) Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils. Geoderma 115:139–148

    Article  CAS  Google Scholar 

  • Yetis U, Gokcay CF (1989) Effect of nickel(II) on activated sludge. Water Res 23:1003–1007

    Article  CAS  Google Scholar 

  • Yi S, Zhuang WQ, Wu B, Tay STL, Tay JH (2006) Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor. Environ Sci Technol 40:2396–2401

    Article  CAS  Google Scholar 

  • You SJ, Tsai YP, Huang RY (2009) Effect of heavy metals on nitrification performance in different activated sludge processes. J Hazard Mater 165:987–994

    Article  CAS  Google Scholar 

  • Zhang LL, Chen JM, Fang F (2008) Biodegradation of methyl t -butyl ether by aerobic granules under a cosubstrate condition. Appl Microbiol Biotechnol 78:543–550

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (No. 20090461216), the Postdoctoral Innovation Foundation of Shandong Province (No. 200903049), and the Independent Innovation Foundation of Shandong University (No. 2009TS022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Guang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XH., Gai, LH., Sun, XF. et al. Effects of long-term addition of Cu(II) and Ni(II) on the biochemical properties of aerobic granules in sequencing batch reactors. Appl Microbiol Biotechnol 86, 1967–1975 (2010). https://doi.org/10.1007/s00253-010-2467-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2467-9

Keywords

Navigation