Skip to main content

Reinforced Natural Rubber Nanocomposites: Next Generation Advanced Material

  • Chapter
  • First Online:
Green Biocomposites

Abstract

Undoubtedly, the advanced green composites have replaced the use of many conventional mineral based or naturally occurring single materials in wide spread industrial applications including aerospace, automotive, locomotive, chemical and biomedical industries. Specially, the reinforced natural rubber nanocomposites have drawn the attention of the research as well as industrial worlds greatly because of their superior thermal and mechanical properties without major compromise of transperancy/clarity. This chapter presents the preparation of rubber nanocomposites, characterization techniques, and the properties of the developed nanocomposites such as mechanical and thermal characteristics along with the recent applications of these nanocomposites. The rubber nanocomposite (RNC) have found their niche commercially in the tyre and sports industries providing reduced weight and energy dissipation, and enhanced air retention to the applied products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed K (2015) Hybrid composites prepared from Industrial waste: Mechanical and swelling behavior. J Adv Res 6(2):225–232

    Article  Google Scholar 

  • Ahmed K, Nizami SS (2014) Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica. J Adv Res 5(2):165–173

    Article  Google Scholar 

  • Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265:1212–1214

    Article  Google Scholar 

  • Al-Hartomy OA, Al-Ghamdi AA, Al-Salamy F, Dishovsky N, Slavcheva D, El-Tantawy F (2012) Properties of natural rubber-based composites containing fullerene. Int J Polym Sci, Article ID 967276, 8 p

    Google Scholar 

  • Anand KA, Jose TS, Alex R, Joseph R, Anoop AK, Sunil JT, Rosamma A, Rani J (2010) Natural rubber-carbon nanotube composites through latex compounding. Int J Polym Mater 59:33–44

    Article  Google Scholar 

  • Anoop AK, Jose S, Alex TR, Joseph R (2009) Natural rubber-carbon nanotube composites through latex compounding. Int J Polym Mater 59:33–44

    Article  Google Scholar 

  • Atieh MA, Girun N, Mahdi ES, Tahir H, Guan CT, Alkhatib MF, Ahmadun FR, Baik DR (2006) Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber. Fuller Nanotub Carbon Nanostruct 14:641–649

    Article  Google Scholar 

  • Atieh MA, Nazir N, Yusof F, Fettouhi M, Ratnam CT, Alharthi M, Abu-Ilaiwi F, Mohammed K, Al-Amer A (2010) Fuller Nanotub Carbon Nanostruct 18:56–71

    Article  Google Scholar 

  • Aziz AA, Ismail NI, Su M NS, Rusop CM (2012) Characterization of functionalized multi-walled carbon nanotubes in pre-vulcanized natural rubber latex. AIP Conf Proc 1455:124–130

    Article  Google Scholar 

  • Bahl K, Miyoshi T, Jana SC (2014) Hybrid fillers of lignin and carbon black for lowering of viscoelastic loss in rubber compounds. Polymer 55(16):3825–3835

    Article  Google Scholar 

  • Baik J, Kang S-J, Hwang H-N, Hwang C-C, Kim K-J, Kim B, An K-S, Park C-Y, Shin H-J (2012) Chemical functionalization of epitaxial graphene on SiC using tetra(4-carboxyphenyl)porphine. Surf Sci 606:481–484

    Article  Google Scholar 

  • Barrie CL, Griffiths PC et al (2004) Rheology of aqueous carbon black dispersions. J Colloid Interface Sci 272(1):210–217

    Article  Google Scholar 

  • Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470

    Article  Google Scholar 

  • Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605–607

    Article  Google Scholar 

  • Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44(8):2373–2377

    Article  Google Scholar 

  • Bhattacharyyaa S, Sinturela C, Bahloula O, Saboungia M, Thomas S, Salvetata J (2008) Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 46:1037–1045

    Article  Google Scholar 

  • Bin YZ, Kitanaka M, Zhu D, Matsuo M (2003) Development of highly oriented polyethylene filled with aligned carbon nanotubes by Gelation/Crystallization from solutions. Macromolecules 36(16):6213–6219

    Article  Google Scholar 

  • Birkett PR et al (1992) Preparation and characterization of C 60Br 6 and C 60Br 8. Nature 357(6378):479–481

    Article  Google Scholar 

  • Bokobza L, Belin C (2007) Effect of strain on the properties of a styrene-butadiene rubber filled with multiwall carbon nanotubes. J Appl Polymer Sci 105(4):2054–2061

    Article  Google Scholar 

  • Bokobza L, Kolodziej M (2006) On the use of carbon nanotubes as reinforcing fillers for elastomeric materials. Polymer Int 55(9):1090–1098

    Article  Google Scholar 

  • Broda J (2003) Polymorphism in Polypropylene Fibers. J Appl Polym Sci 89(12):3364–3370

    Article  Google Scholar 

  • Brodie BC (1859) Philos Trans R Soc Lon 149:249–259

    Article  Google Scholar 

  • Bubert H, Haiber S, Brandl W, Marginean G, Heintze M, Brüser V (2003) Characterization of the uppermost layer of plasma-treated carbon nanotubes. Diam Relat Mater 12(3–7):811–815

    Article  Google Scholar 

  • Bunshah RF, Jou S, Prakash S, Doerr HJ, Isaacs L, Wehrsig A, Yeretzian C, Cynn H, Diederich F (1992) Fullerene formation in sputtering and electron beam evaporation processes. J Phys Chem 96(17):6866–6869

    Article  Google Scholar 

  • Buseck PR, Tsipursky SJ, Hettich R (1992) Fullerenes from the geological environment. Science 257(5067):215–217

    Article  Google Scholar 

  • Calixto CMF, Mendes RK, deOliveira AC, Ramos LA, Cervini P, Cavalheiro ÉTG (2007) Development of graphite-polymer composites as electrode materials. Mater Res 10(2):109–114

    Google Scholar 

  • Cami J, Bernard-Salas J, Peeters E, Malek SE (2010) Detection of C60 and C70 in a young planetary nebula. Science 329(5996):1180–1182

    Article  Google Scholar 

  • Cataldo F (2000) The role of fullerene-like structures in carbon black and their interaction with dienic rubber. Fuller Sci Technol 8(1–2):105–112

    Article  Google Scholar 

  • Cataldo F (2005) Fullerene-like structures as interaction sites between carbon black and rubber. Macromol Symp 228(1):91–98

    Article  Google Scholar 

  • Cataldo F, Abbati G, Santini A, Padella F (2003) Evidences of rubber grafting on activated carbon surfaces containing fullerene like structures. Fuller Nanotub Carbon Nanostruct 11(4):395–408

    Article  Google Scholar 

  • Chai Y, Guo T, Jin C, Haufler RE, Felipe Chibante LP, Fure J, Lihong Wang J, Alford M, Smalley RE (1991) Fullerenes with metals inside. J Phys Chem 95(20):7564–7568

    Article  Google Scholar 

  • Chen XH, Song H-H (2004) Multi walled carbon nanotubes filled SBR rubber composites. New Carbon Mater 19:214–218

    MathSciNet  Google Scholar 

  • Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98

    Article  Google Scholar 

  • Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou W, Fray DJ, Windle AH (2000) Carbon nanotube and polypyrrole composites: Coating and doping. Adv Mater 12(7):522–526

    Article  Google Scholar 

  • Chen S, Yu H, Ren W, Zhang Y (2009) Thermal degradation behavior of hydrogenated nitrile-butadiene rubber (HNBR)/clay nanocomposite and HNBR/clay/carbon nanotubes nanocomposites. Thermochim Acta 491:103–108

    Article  Google Scholar 

  • Chibante LPF, Andreas Thess JM, Alford MD, Diener RE, Smalle RE (1993) Solar generation of the fullerenes. J Phys Chem 97(34):8696–8700

    Article  Google Scholar 

  • Chow L (1994) CVD method of producing and doping of fullerene. U.S. Patent, 5, 510, 098

    Google Scholar 

  • Coleman JN, Khan U, Gun’ko YK (2006a) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–705

    Article  Google Scholar 

  • Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006b) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652

    Article  Google Scholar 

  • Das A, Stöckelhuber KW, Jurk R, Fritzsche J, Klüppel M, Heinrich G (2009) Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes. Carbon 47:3313–3321

    Article  Google Scholar 

  • De Falco A, Goyanes S, Rubiolo GH, Mondragon I, Marzocca A (2007) Carbon nanotubes as reinforcement of styrene-butadiene rubber. Appl Surf Sci 254(1):262–265

    Article  Google Scholar 

  • Deng J, Ding X, Zhang W, Peng Y, Wang J, Long X, Li P, Chan ASC (2002) Carbon nanotube-polyaniline hybrid materials. Eur Polym J 38:2497–2501

    Article  Google Scholar 

  • Dror Y, Salalha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19(17):7012–7020

    Article  Google Scholar 

  • Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49(12):2154–2157

    Article  Google Scholar 

  • Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS (2003) Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chem Mater 15(16):3198–3201

    Article  Google Scholar 

  • Emery JD, Wang QH, Zarrouati M, Fenter P, Hersam MC, Bedzyk MJ (2011) Structural analysis of PTCDA monolayers on epitaxial graphene with ultra-high vacuum scanning tunneling microscopy and high-resolution X-ray reflectivity. Surf Sci 605:1685–1693

    Article  Google Scholar 

  • Endo M, Noguchi T, Ito M, Takeuchi K, Hayashi T, Kim YA, Wanibuchi T, Jinnai H, Terrones M, Dresselhaus MS (2008) Extreme-performance rubber nanocomposites for probing and excavating deep oil resources using multi-walled carbon nanotubes. Adv Funct Mater 18:3403–3409

    Article  Google Scholar 

  • Eswaraiah V, Jyothirmayee AS, Ramaprabhu SS (2011) Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. J Mater Chem 21:6800–6803

    Article  Google Scholar 

  • Fakhru’l-Razi A, Atieh MA, Girun N, Chuah TG, Sadig E-S, Biak DRA (2006) Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber. Compos Struct 75(1–4):496–500

    Article  Google Scholar 

  • Fan Z-J, Kai W, Yan J, Wei T, Zhi L-J, Feng J, Yue-ming R, Li-Ping S, Wei F (2010) Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5(1):191–198

    Article  Google Scholar 

  • Fanga Q, Song B, Tee T-T, Sin LT, Hui D, Bee S-T (2014) Investigation of dynamic characteristics of nano-size calcium carbonate added in natural rubber vulcanizate. Compos B Eng 60:561–567

    Article  Google Scholar 

  • Fields CL, Pitts JR, Hale MJ, Bingham C, Lewandowski A, King DE (1993) Formation of fullerenes in highly concentrated solar flux. J Phy Chem 97(34):8701–8702

    Article  Google Scholar 

  • Foelske-Schmitz A, Weingarth D, Kötz R (2011) Quasi in situ XPS study of electrochemical oxidation and reduction of highly oriented pyrolytic graphite in [1-ethyl-3-methylimidazolium][BF4] electrolytes. Electrochim Acta 56:10321

    Article  Google Scholar 

  • Fowler PW, Ceulemans A (1995) Electron deficiency of the fullerenes. J Phy Chem 99(2):508–510

    Article  Google Scholar 

  • Fu X, Qutubuddin S (2001) Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42(2):807–813

    Article  Google Scholar 

  • Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46:806–817

    Article  Google Scholar 

  • Gao W, Alemany LB, Ci LJ, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1(5):403–408

    Article  Google Scholar 

  • Gao X, Jang J, Nagase S (2010) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Article  Google Scholar 

  • Girun N, Ahmadun FR, Rashid SA, Atieh MA (2007) Multi-wall carbon nanotubes/styrene butadiene rubber (SBR) nanocomposite. Fuller Nanotub Carbon Nanostruct 15(3):207–214

    Article  Google Scholar 

  • Gong X, Liu J, Baskaran S, Voise RD, Young S (2000) Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater 12:1049–1052

    Article  Google Scholar 

  • Gong L, Kinloch IA, Young RJ, Riaz I, Jalil R, Novoselov KS (2010) Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 22:2694–2697

    Article  Google Scholar 

  • Gorga RE, Cohen RE (2004) Toughness enhancements in poly(methyl methacrylate) by Addition of oriented multiwall carbon nanotube. J Polym Sci Part B Polym Phys 42(14):2690–2702

    Article  Google Scholar 

  • Grunlan JC, Kim YS, Ziaee S, Wei X, Abdel-Magid B, Tao K (2006) Thermal and mechanical behavior of carbon-nanotube-filled latex. Macromol Mater Eng 291:1035–1043

    Article  Google Scholar 

  • Hare JP, Kroto HW, Taylor R (1991) Preparation and UV/visible spectra of fullerenes C60 and C70. Chem Phys Lett 177:394–398

    Article  Google Scholar 

  • Hirsch A (2009) Unzipping carbon nanotubes: A peeling method for the formation of graphene nanoribbons. Ang Chem Int Ed 48:6594–6596

    Article  Google Scholar 

  • Iijima S (1980) Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. J Cryst Growth 50(3):675–683

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphite carbon. Nature 354:56–58

    Article  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  Google Scholar 

  • Iwasa Y (2010) Superconductivity: Revelations of the fullerenes. Nature 466(7303):191–192

    Article  Google Scholar 

  • Jacob M, Thomas S, Varughese KT (2004) Natural rubber composites reinforced with sisal/oil palm hybrid fibers: Tensile and cure characteristics. J Appl Polym Sci 93(5):2305–2312

    Article  Google Scholar 

  • Jacob M, Varughese KT, Thomas S (2006) Dielectric characteristics of sisal–oil palm hybrid biofibre reinforced natural rubber biocomposites. J Mater Sci 41(17):5538–5547

    Article  Google Scholar 

  • Jada A, Ridaoui H, Vidal L, Donnet J-B (2014) Control of carbon black aggregate size by using polystyrene-polyethylene oxide non ionic diblock copolymers. Coll Surf A 458:187–194

    Article  Google Scholar 

  • Jang J, Bae J, Yoon SH (2003) A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide-carbon nanotube composites. J Mater Chem 13(4):676–681

    Article  Google Scholar 

  • Jeong H-K, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH (2009) Thermal stability of graphite oxide. Chem Phys Lett 470(4):255–258

    Google Scholar 

  • Jia Z, Wang Z, Xu C, Liang J, We B, Wu D, Zhu S (1999) Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng 271:395–400

    Article  Google Scholar 

  • Jung H, Yang SJ, Kim T, Kang JH, Park CR (2013) Ultrafast room-temperature reduction of graphene oxide to graphene with excellent dispersibility by lithium naphthalenide. Carbon 63:165–174

    Article  Google Scholar 

  • Jurkowska B, Jurkowski B, Kamrowski P, Pesetskii SS, Koval VN, Pinchuk LS, Olkhov YA (2006) Properties of fullerene-containing natural rubber. J Appl Polym Sci 100(1):390–398

    Article  Google Scholar 

  • Kai W, Hirota Y, Hua L, Inoue Y (2008) Thermal and mechanical properties of a poly(ϵ-caprolactone)/graphite oxide composite. J Appl Polym Sci 107(3):1395–1400

    Article  Google Scholar 

  • Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite polypropylene nanocomposites with enhances flexural properties and lower percolation threshold. Compos Sci Technol 67:2045–2051

    Article  Google Scholar 

  • Kamath G, Baker GA (2012) In silico free energy predictions for ionic liquid-assisted exfoliation of a graphene bilayer into individual graphene nanosheets. Phys Chem Chem Phys 14:7929

    Article  Google Scholar 

  • Kanking S, Niltui P, Wimolmala E, Sombatsompop N (2012) Use of bagasse fiber ash as secondary filler in silica or carbon black filled natural rubber compound. Mater Des 41:74–82

    Article  Google Scholar 

  • Khalid M, Ismail AF, Ratnam CT, Faridah Y, Rashmi W, Al Khatib MF (2010) Effect of radiation dose on the properties of natural rubber nanocomposite. Radiat Phys Chem 79:1279–1285

    Article  Google Scholar 

  • Kim YA, Hayashi T, Endo M, Gotoh Y, Wada N, Seiyama J (2006) Fabrication of aligned carbon nanotube-filled rubber composite. Scr Mater 54:31–35

    Article  Google Scholar 

  • Kim D, Yang SJ, Kim YS, Jung H, Park CR (2012a) Simple and costeffective reduction of graphite oxide by sulfuric acid. Carbon 50(9):3229–3232

    Article  Google Scholar 

  • Kim TA, Kim HS, Lee SS, Park M (2012b) Single-walled carbon nanotube/silicone rubber composites for compliant electrodes. Carbon 50:444–449

    Article  Google Scholar 

  • Kinloch AJ, Mohammed RD et al (2005) The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J Mater Sci 40(18):5083–5086

    Article  Google Scholar 

  • Kohjiya S, Ikeda Y (eds) (2014) Chemistry, manufacture and applications of natural rubber. Elsevier Science, Amsterdam

    Google Scholar 

  • Kolodziej M, Bokobza L, Bruneel JL (2007) Investigations on natural rubber filled with multiwall carbon nanotubes. Compos Interfaces 14(3):215–228

    Article  Google Scholar 

  • Kratschmer W (1990) Solid C60: a new form of carbon. Nature 347(6291):354–358

    Article  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  • Kueseng K, Jacob KI (2006) Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes. Eur Polym J 42(1):220–227

    Article  Google Scholar 

  • Li Y, Shimizu H (2007) High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer. Polymer 48(8):2203–2207

    Article  Google Scholar 

  • Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS (2011) Large-area graphene single crystals grown by lowpressure chemical vapor deposition of methane on copper. J Am Chem Soc 133:2816

    Article  Google Scholar 

  • Lopez-Manchado MA, Biagiotti J, Valentini L, Kenny JM (2004) Dynamic mechanical and raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber. J Appl Polym Sci 92(5):3394–3400

    Article  Google Scholar 

  • Lv R, Cui T, Jun MS, Zhang Q, Cao A, Su DS, Zhang Z, Yoon SH, Miyawaki J, Mochida I, Kang F (2011) Open-ended N-doped carbon nanotube–graphene hybrid nanostructures as high-performance catalyst support. Adv Funct Mater 21:999

    Article  Google Scholar 

  • Masenelli-Varlot K, Chazeau L, Gauthier C, Bogner A, Cavaillé JY (2009) The relationship between the electrical and mechanical properties of polymer-nanotube composites and their microstructure. Compos Sci Technol 69:1533–1539

    Article  Google Scholar 

  • Matos CF, Galembeck F, Zarbin Aldo JG (2012) Multifunctional materials based on iron/iron oxide-filled carbon nanotubes/natural rubber composites. Carbon 50:4685–4695

    Article  Google Scholar 

  • Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35:8825–8830

    Article  Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  Google Scholar 

  • Muszynski R, Seger B, Kamat P (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 2008(112):5263–5266

    Article  Google Scholar 

  • Nair KP, Thomas P, Joseph R (2012) Latex stage blending of multiwalled carbon nanotube in carboxylated acrylonitrile butadiene rubber: Mechanical and electrical properties. Mater Des 41:23–30

    Article  Google Scholar 

  • Nazlia G, Fakhru’l-Razi A, Suraya AR, Muataz AA (2007) Multi-wall carbon nanotubes/styrene butadiene rubber (SBR) nanocomposite. Fuller Nannotub Carbon Nanostruct 15:207–214

    Article  Google Scholar 

  • Nomani MWK, Shishir R, Qazi M, Diwan D, Shields VB, Spencer MG, Tompa GS, Sbrockey NM, Koley G (2010) Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC. Sens Actuators B Chem 150:301–307

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197

    Article  Google Scholar 

  • Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597

    Article  Google Scholar 

  • Park JH, Mitchel WC, Grazulis L, Eyink K, Smith HE, Hoelscher JE (2011a) Role of extended defected SiC interface layer on the growth of epitaxial graphene on SiC. Carbon 49:631–635

    Article  Google Scholar 

  • Park S, An J, Potts JR, Velamakann A, Murali S, Ruoff RS (2011b) Hydrazine-reduction of graphite and graphene oxide. Carbon 49:3019–3023

    Article  Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  Google Scholar 

  • Pei S, Zhao J, Du J, Ren W, Cheng H-M (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15):4466–4474

    Article  Google Scholar 

  • Peng Z, Feng C, Luo Y, Li Y, Kong LX (2010) Self-assembled natural rubber/multi-walled carbon nanotube composites using latex compounding techniques. Carbon 48:4497–4503

    Article  Google Scholar 

  • Petcu S, Cauchetier M, Armand X, Voicu I, Alexandrescu R (2000) Formation of fullerenes in the laser-pyrolysis of benzene. Combust Flame 122(4):500–507

    Article  Google Scholar 

  • Peters G, Jansen M (1992) A new fullerene synthesis. Angew Chem Int Ed Engl 31(2):223–224

    Article  Google Scholar 

  • Potschke P, Fornes TD, Paul DR (2002) Rheological behaviors of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255

    Article  Google Scholar 

  • Potts JR, Shankar O, Du L, Ruoff RS (2012) Processing–morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45:6045–6055

    Article  Google Scholar 

  • Potts JR, Shankar O, Murali S, Du L, Ruoff RS (2013) Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Compos Sci Technol 74:166–172

    Article  Google Scholar 

  • Praveen S, Chattopadhyay PK, Albert P, Dalvi VG, Chakraborty BC, Chattopadhyay S (2009) Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: Development of dual structure. Compos A Appl Sci Manuf 40(3):309–316

    Article  Google Scholar 

  • Prud’Homme RK, Ozbas B, Aksay IA, Register RA, Adamson DH (2010) Functional graphene-rubber nanocomposites. WO 2008045778 A1

    Google Scholar 

  • Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870

    Article  Google Scholar 

  • Rafiee MA, Rafiee J, Wang Z, Song HH, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890

    Article  Google Scholar 

  • Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Testing 26(3):369–377

    Article  Google Scholar 

  • Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35

    Google Scholar 

  • Reznikova LL, Smorygo LN, Tikhomirov AF, Ol’shevskij OI (1992) Electric conducting rubber for computer hardware. Elektrotekhnika 6(7):65–66

    Google Scholar 

  • Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of fullerene (C60) in a variety of solvents. J Phys Chem 97(13):3379–3383

    Article  Google Scholar 

  • Safadi B, Andrews R, Grulke EA (2002) Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci 84(14):2660–2669

    Article  Google Scholar 

  • Scott LT (2004) Methods for the chemical synthesis of fullerenes. Angew Chem Int Ed 43(38):4994–5007

    Article  Google Scholar 

  • Scotti R, Conzatti L, D’Arienzo M, Di Credico B, Giannini L, Hanel T, Stagnaro P, Susanna A, Tadiello L, Morazzoni F (2014) Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: Role of the particle morphology on the filler reinforcing effect. Polymer 55(6):1497–1506

    Article  Google Scholar 

  • Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11:937–941

    Article  Google Scholar 

  • Shaffer MSP, Fan X, Windle AH (1998) Load transfer in carbon nanotube epoxy composites. Carbon 36:1603–1612

    Article  Google Scholar 

  • Shang NG, Papakonstantinou P, Sharma S, Lubarsky G, Li M, McNeill DW, Quinn AJ, Zhou W, Blackley R (2012) Controllable selective exfoliation of highquality graphene nanosheets and nanodots by ionic liquid assisted grinding. Chem Commun 48:1877

    Article  Google Scholar 

  • Shanmugharaj AM, Bae JH, Lee KY, Noh WH, Lee SH, Ryu SH (2007) Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos Sci Technol 67(9):1813–1822

    Article  Google Scholar 

  • Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    Article  Google Scholar 

  • Siochi EJ, Working DC, Park C, Lillehei PT, Rouse JH, Topping CC, Bhattacharyya AR, Kumar S (2004) Melt processing of SWCNT-polyimide nanocomposite fibers. Compos Part B Eng 35(5):439–446

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Dommett Geoffrey H B, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  Google Scholar 

  • Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, Yang X, Chung S-W, Choi H, Heath JR (2001) Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed 40:1721–1725

    Article  Google Scholar 

  • Staudenmaier L (1898) Verfahren zur darstellung der graphitsaure. Ber Dtsch Chem Ges 31:1481–1487

    Article  Google Scholar 

  • Steurer P, Wissert R, Thomann R, Mulhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30(4–5):316–327

    Article  Google Scholar 

  • Subramaniam K, Das A, Heinrich G (2011) Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multiwalled carbon nanotubes. Compos Sci Technol 71:1441–1449

    Article  Google Scholar 

  • Sui G, Zhong W, Yang X, Zhao S (2007) Processing and material characteristics of a carbon-nanotube-reinforced natural rubber. Macromol Mater Eng 292(9):1020–1026

    Article  Google Scholar 

  • Sui G, Zhong W, Yang X, Zhao SH (2008a) Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes. Mater Sci Eng A 485:524–531

    Article  Google Scholar 

  • Sui G, Zhong W, Yang X, Yu H, Zhao SH (2008b) Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes. Polym Adv Technol 19:1543–1549

    Google Scholar 

  • Taguet A, Cassagnau P (2014) Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog Polym Sci 39(8):1526–1563

    Article  Google Scholar 

  • Tang WZ, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/ HDPE) composite films. Carbon 41(14):2779–2785

    Article  Google Scholar 

  • Taylor R, Langley GJ, Kroto HW, Walton DRM (1993) Formation of C60 by pyrolysis of naphthalene. Nature 366(6457):728–731

    Article  Google Scholar 

  • Terrill ER, Centea M, Evans LR, MacIsaac JD Jr (2010). Dynamic mechanical properties of passenger and light truck tire treads. Akron Rubber Development Laboratory, Inc., Transportation Research Center Inc., National Highway Traffic Safety Administration. Report No. DOT HS 811 270

    Google Scholar 

  • Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Muñoz-Sandoval E, Cano-Márquez AG, Charlier J-C, Terrones H (2010) Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 5:351–372

    Article  Google Scholar 

  • Thomas S, Stephen R (2010) Rubber Nanocomposites: Preparation, Properties and Applications. Wiley, New York

    Book  Google Scholar 

  • Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65:491–516

    Article  Google Scholar 

  • Thrower AP (1999) Editorial. Carbon 37(11):1677–1678

    Article  Google Scholar 

  • Tian M, Cheng L, Liang W, Liqun Z (2006) Overall properties of fibrillar silicate/styrene–butadiene rubber nanocomposites. J Appl Polym Sci 101(5):2725–2731

    Article  Google Scholar 

  • Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4(1):25–29

    Article  Google Scholar 

  • van der Merwe EM, Prinsloo LC, Mathebula CL, Swart HC, Coetsee E, Doucet FJ (2014) Surface and bulk characterization of an ultrafine South African coal fly ash with reference to polymer applications. Appl Surf Sci 317:73–83

    Article  Google Scholar 

  • Vandervorst P, Lei CH, Lin Y, Dupont O, Dalton AB, Sun YP, Keddie JL (2006) The fine dispersion of functionalized carbon nanotubes in acrylic latex coatings. Prog Org Coat 57:91–97

    Article  Google Scholar 

  • Wang JD, Zhu YF, Zhou XW, Sui G, Liang J (2006) Preparation and mechanical properties of natural rubber powder modified by carbon nanotubes. J Appl Polym Sci 100(6):4697–4702

    Article  Google Scholar 

  • Wang G, Yang J, Park J, Gou X, Wang B, Liu H (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195

    Article  Google Scholar 

  • Wang P, Geng S, Ding T (2010a) Effects of carboxyl radical on electrical resistance of multi-walled carbon nanotube filled silicone rubber composite under pressure. Compos Sci Technol 70:1571–1573

    Article  Google Scholar 

  • Wang D, Fujinami S, Nakajima K, Niihara K, Inukai S, Ueki H, Magario A, Noguchi T, Endo M, Nishi T (2010b) Production of a cellular structure in carbon nanotube/natural rubber composites revealed by nanomechanical mapping. Carbon 48:3708–3714

    Article  Google Scholar 

  • Wang D, Fujinami S, Nakajima K, Niihara K, Inukai S, Ueki H, Magario A, Noguchi T, Endo M, Nishi T (2010c) Visualization of nanomechanical mapping on polymer nanocomposites by AFM force measurement. Polymer 51:2455–2459

    Article  Google Scholar 

  • Wang X, Fulvio PF, Baker GA, Veith GM, Unocic RR, Mahurin SM, Chi M, Dai S (2010d) Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chem Commun 46:4487

    Article  Google Scholar 

  • Wu J, Huang G, Li H, Wu S, Liu Y, Zheng J (2013) Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content. Polymer 54:1930–1937

    Article  Google Scholar 

  • Xiao Q, He S, Liu L, Guo X, Shi K, Du Z, Zhang B (2008) Coating of multiwalled carbon nanotubes with crosslinked silicon-containing polymer. Compos Sci Technol 68:321–328

    Article  Google Scholar 

  • Yadav BC, Kumar R (2008) Structure, properties and applications of fullerene. Int J Nanotechnol Appl 2:15–24

    Google Scholar 

  • Yoshie K-i, Kasuya S, Eguchi K, Yoshida T (1992) Novel method for C60 synthesis: A thermal plasma at atmospheric pressure. Appl Phys Lett 61(23):2782–2783

    Article  Google Scholar 

  • Zhan Y, Wu J, Xia H, Yan N, Fei G, Yuan G (2011) Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol Mater Eng 296(7):590–602

    Article  Google Scholar 

  • Zhang W, Cui J, Tao C-A, Wu Y, Li Z, Ma L, Wen Y, Li G (2009) A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angew Chem Int Ed 48:5864–5868

    Article  Google Scholar 

  • Zhang HB, Zheng WG, Yan Q, Yang Y, Wang JW, Lu ZH, Ji GY, Yu ZZ (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196

    Article  Google Scholar 

  • Zhao Q, Tannenbaum R, Jacob KJ (2006) Carbon nanotubes as Raman sensors of vulcanization in natural rubber. Carbon 44(9):1740–1745

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enamul Hoque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khalid, M., Ratnam, C.T., Walvekar, R., Ketabchi, M.R., Hoque, M.E. (2017). Reinforced Natural Rubber Nanocomposites: Next Generation Advanced Material. In: Jawaid, M., Salit, M., Alothman, O. (eds) Green Biocomposites. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-49382-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49382-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49381-7

  • Online ISBN: 978-3-319-49382-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics