Skip to main content

Mechanisms of Glomerular Disease

  • Reference work entry
  • First Online:
Glomerulonephritis

Abstract

Glomerular diseases, clinically manifesting with proteinuria, hematuria, or azotemia, result from complex disease processes. This complexity is driven by an individual’s genome, unique environmental exposures, and, importantly, through their interaction mediated by innate and adaptive immune responses. The astonishing complexity of each of these aspects is emerging through the lens of new technologies that provide the ability to interrogate human biosamples, including kidney biopsies, in exquisite molecular detail. An individual’s genetic background, their immune responses, and environmental exposures interactively contribute to disease pathogenesis to shape complex disease phenotypes such as glomerulonephritis. In this chapter we review the general pathogenic mechanisms that drive multiple glomerular disease diagnoses and have selected a few specific examples to illustrate how these pathogenic mechanisms influence disease initiation or progression. We have divided the disease mechanisms into the general domains of genetics and innate and adaptive immunity and highlight how genetic background modifies the immune response to cause glomerular diseases in susceptible individuals.

The authors have no conflicts to declare related to this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bumgardner GL, Amend WC, Ascher NL, Vincenti FG (1998) Single-center long-term results of renal transplantation for IgA nephropathy. Transplantation 65:1053–1060

    Article  CAS  Google Scholar 

  • Caster DJ, Powell DW, Miralda I, Ward RA, McLeish KR (2017) Re-examining neutrophil participation in GN. J Am Soc Nephrol JASN 28:2275–2289

    Article  CAS  Google Scholar 

  • Cornaby C, Gibbons L, Mayhew V, Sloan CS, Welling A, Poole BD (2015) B cell epitope spreading: mechanisms and contribution to autoimmune diseases. Immunol Lett 163:56–68

    Article  CAS  Google Scholar 

  • Couser WG, Johnson RJ (2014) The etiology of glomerulonephritis: roles of infection and autoimmunity. Kidney Int 86:905–914

    Article  CAS  Google Scholar 

  • Dammacco F, Battaglia S, Gesualdo L, Racanelli V (2013) Goodpasture’s disease: a report of ten cases and a review of the literature. Autoimmun Rev 12:1101–1108

    Article  CAS  Google Scholar 

  • Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, Bowden DW, Langefeld CD, Oleksyk TK, Uscinski Knob AL, Bernhardy AJ, Hicks PJ, Nelson GW, Vanhollebeke B, Winkler CA, Kopp JB, Pays E, Pollak MR (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–845

    Article  CAS  Google Scholar 

  • Gubler MC (2008) Inherited diseases of the glomerular basement membrane. Nat Clin Pract Nephrol 4:24–37

    Article  CAS  Google Scholar 

  • Gupta S, Kaplan MJ (2016) The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 12:402–413

    Article  CAS  Google Scholar 

  • Hildebrandt F (2016) Genetics of kidney diseases. Semin Nephrol 36:472–474

    Article  Google Scholar 

  • Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, Hangan D, Ozaltin F, Zenker M, Hildebrandt F, Arbeitsgemeinschaft fur Paediatrische Nephrologie Study Group (2007) Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119:e907–e919

    Article  Google Scholar 

  • Hodgin JB, Bitzer M, Wickman L, Afshinnia F, Wang SQ, O’Connor C, Yang Y, Meadowbrooke C, Chowdhury M, Kikuchi M, Wiggins JE, Wiggins RC (2015) Glomerular aging and focal global glomerulosclerosis: a podometric perspective. J Am Soc Nephrol JASN 26:3162

    Article  CAS  Google Scholar 

  • Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318

    Article  CAS  Google Scholar 

  • Huber TB, Kottgen M, Schilling B, Walz G, Benzing T (2001) Interaction with podocin facilitates nephrin signaling. J Biol Chem 276:41543–41546

    Article  CAS  Google Scholar 

  • Huber TB, Simons M, Hartleben B, Sernetz L, Schmidts M, Gundlach E, Saleem MA, Walz G, Benzing T (2003) Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum Mol Genet 12:3397–3405

    Article  CAS  Google Scholar 

  • Jennette JC, Falk RJ (2014) Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nat Rev Rheumatol 10:463–473

    Article  CAS  Google Scholar 

  • Kiryluk K, Novak J (2014) The genetics and immunobiology of IgA nephropathy. J Clin Invest 124:2325–2332

    Article  CAS  Google Scholar 

  • Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G, An P, Friedman D, Briggs W, Dart R, Korbet S, Mokrzycki MH, Kimmel PL, Limou S, Ahuja TS, Berns JS, Fryc J, Simon EE, Smith MC, Trachtman H, Michel DM, Schelling JR, Vlahov D, Pollak M, Winkler CA (2011) APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol JASN 22:2129–2137

    Article  CAS  Google Scholar 

  • Li JN, Jia X, Wang Y, Xie C, Jiang T, Cui Z, Zhao MH (2017) Plasma from patients with anti-glomerular basement membrane disease could recognize microbial peptides. PLoS One 12:e0174553

    Article  Google Scholar 

  • Magistroni R, D’Agati VD, Appel GB, Kiryluk K (2015) New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int 88:974–989

    Article  CAS  Google Scholar 

  • Malone AF, Phelan PJ, Hall G, Cetincelik U, Homstad A, Alonso AS, Jiang R, Lindsey TB, Wu G, Sparks MA, Smith SR, Webb NJ, Kalra PA, Adeyemo AA, Shaw AS, Conlon PJ, Jennette JC, Howell DN, Winn MP, Gbadegesin RA (2014) Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int 86:1253–1259

    Article  CAS  Google Scholar 

  • Mariani LH, Pendergraft WF 3rd, Kretzler M (2016) Defining glomerular disease in mechanistic terms: implementing an integrative biology approach in nephrology. Clin J Am Soc Nephrol CJASN 11:2054–2060

    Article  CAS  Google Scholar 

  • Mathern DR, Heeger PS (2015) Molecules great and small: the complement system. Clin J Am Soc Nephrol CJASN 10:1636–1650

    Article  CAS  Google Scholar 

  • Moldoveanu Z, Wyatt RJ, Lee JY, Tomana M, Julian BA, Mestecky J, Huang WQ, Anreddy SR, Hall S, Hastings MC, Lau KK, Cook WJ, Novak J (2007) Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 71:1148–1154

    Article  CAS  Google Scholar 

  • Niaudet P, Gubler MC (2006) WT1 and glomerular diseases. Pediatr Nephrol 21:1653–1660

    Article  Google Scholar 

  • O’Toole JF, Bruggeman LA, Madhavan S, Sedor JR (2017) The cell biology of APOL1. Semin Nephrol 37:538–545

    Article  Google Scholar 

  • Pendergraft WF 3rd, Preston GA, Shah RR, Tropsha A, Carter CW Jr, Jennette JC, Falk RJ (2004) Autoimmunity is triggered by cPR-3(105-201), a protein complementary to human autoantigen proteinase-3. Nat Med 10:72–79

    Article  CAS  Google Scholar 

  • Pleasant, LDK, SG (2014) Kidney and urinary tract diseases in the newborn. Springer, Berlin

    Google Scholar 

  • Plotz PH (1983) Autoantibodies are anti-idiotype antibodies to antiviral antibodies. Lancet 2:824–826

    Article  CAS  Google Scholar 

  • Rodrigues JC, Haas M, Reich HN (2017) IgA nephropathy. Clin J Am Soc Nephrol CJASN 12:677–686

    Article  CAS  Google Scholar 

  • Root-Bernstein R, Fairweather D (2014) Complexities in the relationship between infection and autoimmunity. Curr Allergy Asthma Rep 14:407

    Article  Google Scholar 

  • Roselli S, Gribouval O, Boute N, Sich M, Benessy F, Attie T, Gubler MC, Antignac C (2002) Podocin localizes in the kidney to the slit diaphragm area. Am J Pathol 160:131–139

    Article  CAS  Google Scholar 

  • Salant DJ (2013) Genetic variants in membranous nephropathy: perhaps a perfect storm rather than a straightforward conformeropathy. J Am Soc Nephrol JASN 24:525–528

    Article  CAS  Google Scholar 

  • Savige J (2014) Alport syndrome: its effects on the glomerular filtration barrier and implications for future treatment. J Physiol 592:4013–4023

    Article  CAS  Google Scholar 

  • Schwarz K, Simons M, Reiser J, Saleem MA, Faul C, Kriz W, Shaw AS, Holzman LB, Mundel P (2001) Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Investig 108:1621–1629

    Article  CAS  Google Scholar 

  • Seitz-Polski B, Debiec H, Rousseau A, Dahan K, Zaghrini C, Payre C, Esnault VLM, Lambeau G, Ronco P (2017) Phospholipase A2 receptor 1 epitope spreading at baseline predicts reduced likelihood of remission of membranous nephropathy. J Am Soc Nephrol 29:401

    Article  Google Scholar 

  • Silva FG, Chander P, Pirani CL, Hardy MA (1982) Disappearance of glomerular mesangial IgA deposits after renal allograft transplantation. Transplantation 33:241–246

    CAS  PubMed  Google Scholar 

  • Suarez-Fueyo A, Bradley SJ, Klatzmann D, Tsokos GC (2017) T cells and autoimmune kidney disease. Nat Rev Nephrol 13:329–343

    Article  CAS  Google Scholar 

  • Thurman JM, Nester CM (2016) All things complement. Clin J Am Soc Nephrol CJASN 11:1856–1866

    Article  CAS  Google Scholar 

  • Vivante A, Hildebrandt F (2016) Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol 12:133–146

    Article  CAS  Google Scholar 

  • Vukmanovic S, Neubert TA, Santori FR (2003) Could TCR antagonism explain associations between MHC genes and disease? Trends Mol Med 9:139–146

    Article  CAS  Google Scholar 

  • Weisheit CK, Engel DR, Kurts C (2015) Dendritic cells and macrophages: sentinels in the kidney. Clin J Am Soc Nephrol CJASN 10:1841–1851

    Article  CAS  Google Scholar 

  • Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71:1205–1214

    Article  CAS  Google Scholar 

  • Wyatt RJ, Julian BA (2013) IgA nephropathy. N Engl J Med 368:2402–2414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. O’Toole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

O’Toole, J.F., Chen, D.P., Sedor, J.R. (2019). Mechanisms of Glomerular Disease. In: Trachtman, H., Herlitz, L., Lerma, E., Hogan, J. (eds) Glomerulonephritis. Springer, Cham. https://doi.org/10.1007/978-3-319-49379-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49379-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49378-7

  • Online ISBN: 978-3-319-49379-4

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics