Skip to main content

Autotaxin in Stem Cell Biology and Neurodevelopment

  • Chapter
  • First Online:
Lipidomics of Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 592 Accesses

Abstract

Autotaxin has emerged as a prominent and critical element in biological processes involving the lipid signaling molecule lysophosphatidic acid (LPA). Such processes are mediated largely by LPA’s cognate G protein-coupled receptors, and they are related to a widespread array of physiological and pathophysiological actions. Autotaxin itself was originally identified as a tumor cell motility-stimulating factor and then found to be highly expressed by a large variety of tumor cells. Thus, it has received much attention in cancer biology prompting extensive research toward a better understanding of its enzymatic LPA generating activity shown to drive tumorigenesis and tumor cell invasion. More recently, however, diverse roles of autotaxin have become apparent including regulatory functions in stem cell biology and neurodevelopment. In addition, there is increasing evidence for non-catalytic functions of autotaxin. This chapter will introduce, from a historical perspective, the major characteristics of autotaxin, and it will define autotaxin’s main structure–function relationships. Importantly, it will review autotaxin’s evolving roles in stem cell biology and neurodevelopment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATX:

Autotaxin

CNS:

Central nervous system

ENPP2:

Ecto-nucleotide pyrophosphatase/phosphodiesterase 2

LPA:

Lysophosphatidic acid

LPC:

Lysophosphatidylcholine

LysoLPD:

Lysophospholipase D

MORFO:

Modulator of oligodendrocyte differentiation and focal adhesion organization

PD-Iα:

Phosphodiesterase Iα

References

  1. Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioce V, Schiffmann E, Liotta LA (1992) Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem 267(4):2524–2529

    CAS  PubMed  Google Scholar 

  2. Moolenaar WH (2002) Lysophospholipids in the limelight: autotaxin takes center stage. J Cell Biol 158(2):197–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tokumura A, Majima E, Kariya Y, Tominaga K, Kogure K, Yasuda K, Fukuzawa K (2002) Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem 277(42):39436–39442

    Article  CAS  PubMed  Google Scholar 

  4. Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, Yamori T, Mills GB, Inoue K, Aoki J, Arai H (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158(2):227–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferry G, Tellier E, Try A, Gres S, Naime I, Simon MF, Rodriguez M, Boucher J, Tack I, Gesta S, Chomarat P, Dieu M, Raes M, Galizzi JP, Valet P, Boutin JA, Saulnier-Blache JS (2003) Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity. J Biol Chem 278(20):18162–18169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giganti A, Rodriguez M, Fould B, Moulharat N, Coge F, Chomarat P, Galizzi JP, Valet P, Saulnier-Blache JS, Boutin JA, Ferry G (2008) Murine and human autotaxin alpha, beta, and gamma isoforms: gene organization, tissue distribution, and biochemical characterization. J Biol Chem 283(12):7776–7789

    Article  CAS  PubMed  Google Scholar 

  7. Hashimoto T, Okudaira S, Igarashi K, Hama K, Yatomi Y, Aoki J (2012) Identification and biochemical characterization of a novel autotaxin isoform, ATXdelta, with a four-amino acid deletion. J Biochem 151(1):89–97

    Article  CAS  PubMed  Google Scholar 

  8. Federico L, Jeong KJ, Vellano CP, Mills GB (2016) Autotaxin, a lysophospholipase D with pleomorphic effects in oncogenesis and cancer progression. J Lipid Res 57(1):25–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Narita M, Goji J, Nakamura H, Sano K (1994) Molecular cloning, expression, and localization of a brain-specific phosphodiesterase I/nucleotide pyrophosphatase (PD-I alpha) from rat brain. J Biol Chem 269(45):28235–28242

    CAS  PubMed  Google Scholar 

  10. Fuss B, Baba H, Phan T, Tuohy VK, Macklin WB (1997) Phosphodiesterase I, a novel adhesion molecule and/or cytokine involved in oligodendrocyte function. J Neurosci 17(23):9095–9103

    CAS  PubMed  Google Scholar 

  11. Houben AJ, van Wijk XM, van Meeteren LA, van Zeijl L, van de Westerlo EM, Hausmann J, Fish A, Perrakis A, van Kuppevelt TH, Moolenaar WH (2013) The polybasic insertion in autotaxin alpha confers specific binding to heparin and cell surface heparan sulfate proteoglycans. J Biol Chem 288(1):510–519

    Article  CAS  PubMed  Google Scholar 

  12. Kawagoe H, Soma O, Goji J, Nishimura N, Narita M, Inazawa J, Nakamura H, Sano K (1995) Molecular cloning and chromosomal assignment of the human brain-type phosphodiesterase I/nucleotide pyrophosphatase gene (PDNP2). Genomics 30(2):380–384

    Article  CAS  PubMed  Google Scholar 

  13. Lee HY, Clair T, Mulvaney PT, Woodhouse EC, Aznavoorian S, Liotta LA, Stracke ML (1996) Stimulation of tumor cell motility linked to phosphodiesterase catalytic site of autotaxin. J Biol Chem 271(40):24408–24412

    Article  CAS  PubMed  Google Scholar 

  14. Bachner D, Ahrens M, Betat N, Schroder D, Gross G (1999) Developmental expression analysis of murine autotaxin (ATX). Mech Dev 84(1–2):121–125

    Article  CAS  PubMed  Google Scholar 

  15. Ohuchi H, Hayashibara Y, Matsuda H, Onoi M, Mitsumori M, Tanaka M, Aoki J, Arai H, Noji S (2007) Diversified expression patterns of autotaxin, a gene for phospholipid-generating enzyme during mouse and chicken development. Dev Dyn 236(4):114–1143

    Article  CAS  Google Scholar 

  16. Savaskan NE, Rocha L, Kotter MR, Baer A, Lubec G, van Meeteren LA, Kishi Y, Aoki J, Moolenaar WH, Nitsch R, Brauer AU (2006) Autotaxin (NPP-2) in the brain: cell type-specific expression and regulation during development and after neurotrauma. Cell Mol Life Sci 64(2):230–243

    Article  CAS  Google Scholar 

  17. Sato K, Malchinkhuu E, Muraki T, Ishikawa K, Hayashi K, Tosaka M, Mochiduki A, Inoue K, Tomura H, Mogi C, Nochi H, Tamoto K, Okajima F (2005) Identification of autotaxin as a neurite retraction-inducing factor of PC12 cells in cerebrospinal fluid and its possible sources. J Neurochem 92(4):904–914

    Article  CAS  PubMed  Google Scholar 

  18. Murata J, Lee HY, Clair T, Krutzsch HC, Arestad AA, Sobel ME, Liotta LA, Stracke ML (1994) cDNA cloning of the human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. J Biol Chem 269(48):30479–30484

    CAS  PubMed  Google Scholar 

  19. Stracke ML, Clair T, Liotta LA (1997) Autotaxin, tumor motility-stimulating exophosphodiesterase. Adv Enzyme Regul 37:135–144

    Article  CAS  PubMed  Google Scholar 

  20. Clair T, Lee HY, Liotta LA, Stracke ML (1997) Autotaxin is an exoenzyme possessing 5’-nucleotide phosphodiesterase/ATP pyrophosphatase and ATPase activities. J Biol Chem 272(2):996–1001

    Article  CAS  PubMed  Google Scholar 

  21. Deissler H, Lottspeich F, Rajewsky MF (1995) Affinity purification and cDNA cloning of rat neural differentiation and tumor cell surface antigen gp130RB13-6 reveals relationship to human and murine PC-1. J Biol Chem 270(17):9849–9855

    Article  CAS  PubMed  Google Scholar 

  22. Jin-Hua P, Goding JW, Nakamura H, Sano K (1997) Molecular cloning and chromosomal localization of PD-Ibeta (PDNP3), a new member of the human phosphodiesterase I genes. Genomics 45(2):412–415

    Article  CAS  PubMed  Google Scholar 

  23. Bollen M, Gijsbers R, Ceulemans H, Stalmans W, Stefan C (2000) Nucleotide pyrophosphatases/phosphodiesterases on the move. Crit Rev Biochem Mol Biol 35(6):393–432

    Article  CAS  PubMed  Google Scholar 

  24. Zimmermann H, Beaudoin AR, Bollen M, Goding JW, Guidotti G, Kirley TL, Robson SC, Sano K (2000) Proposed nomenclature for two novel nucleotide hydrolyzing enzyme families expressed on the cell surface. In: Vanduffel L, Lemmens R (eds) Ecto-ATPases and related ectonucleotidases. Shaker Publishing B.V, Maastrich, pp 1–8

    Google Scholar 

  25. Stefan C, Jansen S, Bollen M (2005) NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci 30(10):542–550

    Article  CAS  PubMed  Google Scholar 

  26. Gijsbers R, Aoki J, Arai H, Bollen M (2003) The hydrolysis of lysophospholipids and nucleotides by autotaxin (NPP2) involves a single catalytic site. FEBS Lett 538(1–3):60–64

    Article  CAS  PubMed  Google Scholar 

  27. van Meeteren LA, Ruurs P, Stortelers C, Bouwman P, van Rooijen MA, Pradere JP, Pettit TR, Wakelam MJ, Saulnier-Blache JS, Mummery CL, Moolenaar WH, Jonkers J (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26(13):5015–5022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kishi Y, Okudaira S, Tanaka M, Hama K, Shida D, Kitayama J, Yamori T, Aoki J, Fujimaki T, Arai H (2006) Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine to lysophosphatidic acid. J Biol Chem 281(25):17492–17500

    Article  CAS  PubMed  Google Scholar 

  29. Hama K, Aoki J, Fukaya M, Kishi Y, Sakai T, Suzuki R, Ohta H, Yamori T, Watanabe M, Chun J, Arai H (2004) Lysophosphatidic acid and autotaxin stimulate cell motility of neoplastic and non-neoplastic cells through LPA1. J Biol Chem 279(17):17634–17639

    Article  CAS  PubMed  Google Scholar 

  30. Gaetano CG, Samadi N, Tomsig JL, Macdonald TL, Lynch KR, Brindley DN (2009) Inhibition of autotaxin production or activity blocks lysophosphatidylcholine-induced migration of human breast cancer and melanoma cells. Mol Carcinog 48(9):801–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tanaka M, Okudaira S, Kishi Y, Ohkawa R, Iseki S, Ota M, Noji S, Yatomi Y, Aoki J, Arai H (2006) Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem 281(35):25822–25830

    Article  CAS  PubMed  Google Scholar 

  32. Yukiura H, Kano K, Kise R, Inoue A, Aoki J (2015) Autotaxin overexpression causes embryonic lethality and vascular defects. PLoS One 10(5):e0126734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Clair T, Aoki J, Koh E, Bandle RW, Nam SW, Ptaszynska MM, Mills GB, Schiffmann E, Liotta LA, Stracke ML (2003) Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res 63(17):5446–5453

    CAS  PubMed  Google Scholar 

  34. Tsuda S, Okudaira S, Moriya-Ito K, Shimamoto C, Tanaka M, Aoki J, Arai H, Murakami-Murofushi K, Kobayashi T (2006) Cyclic phosphatidic acid is produced by autotaxin in blood. J Biol Chem 281(36):26081–26088

    Article  CAS  PubMed  Google Scholar 

  35. Parrill AL, Baker DL (2008) Autotaxin inhibition: challenges and progress toward novel anti-cancer agents. Anticancer Agents Med Chem 8(8):917–923

    Article  CAS  PubMed  Google Scholar 

  36. Xu X, Yang G, Zhang H, Prestwich GD (2009) Evaluating dual activity LPA receptor pan-antagonist/autotaxin inhibitors as anti-cancer agents in vivo using engineered human tumors. Prostaglandins Other Lipid Mediat 89(3–4):140–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gotoh M, Fujiwara Y, Yue J, Liu J, Lee S, Fells J, Uchiyama A, Murakami-Murofushi K, Kennel S, Wall J, Patil R, Gupte R, Balazs L, Miller DD, Tigyi GJ (2012) Controlling cancer through the autotaxin-lysophosphatidic acid receptor axis. Biochem Soc Trans 40(1):31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Houben AJ, Moolenaar WH (2011) Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev 30(3–4):557–565

    Article  CAS  PubMed  Google Scholar 

  39. Teo K, Brunton VG (2014) The role and therapeutic potential of the autotaxin-lysophosphatidate signalling axis in breast cancer. Biochem J 463(1):157–165

    Article  CAS  PubMed  Google Scholar 

  40. Barbayianni E, Kaffe E, Aidinis V, Kokotos G (2015) Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 58:76–96

    Article  CAS  PubMed  Google Scholar 

  41. Benesch MG, Tang X, Venkatraman G, Bekele RT, Brindley DN (2015) Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo. J Biomed Res 30. [Epub ahead of print]

    Google Scholar 

  42. Leblanc R, Peyruchaud O (2015) New insights into the autotaxin/LPA axis in cancer development and metastasis. Exp Cell Res 333(2):183–189

    Article  CAS  PubMed  Google Scholar 

  43. Tabuchi S (2015) The autotaxin-lysophosphatidic acid-lysophosphatidic acid receptor cascade: proposal of a novel potential therapeutic target for treating glioblastoma multiforme. Lipids Health Dis 14:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Fotopoulou S, Oikonomou N, Grigorieva E, Nikitopoulou I, Paparountas T, Thanassopoulou A, Zhao Z, Xu Y, Kontoyiannis DL, Remboutsika E, Aidinis V (2010) ATX expression and LPA signalling are vital for the development of the nervous system. Dev Biol 339(2):451–464

    Article  CAS  PubMed  Google Scholar 

  45. Offermanns S, Mancino V, Revel JP, Simon MI (1997) Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency. Science 275(5299):533–536

    Article  CAS  PubMed  Google Scholar 

  46. Ferry G, Giganti A, Coge F, Bertaux F, Thiam K, Boutin JA (2007) Functional invalidation of the autotaxin gene by a single amino acid mutation in mouse is lethal. FEBS Lett 581(18):3572–3578

    Article  CAS  PubMed  Google Scholar 

  47. Yukiura H, Hama K, Nakanaga K, Tanaka M, Asaoka Y, Okudaira S, Arima N, Inoue A, Hashimoto T, Arai H, Kawahara A, Nishina H, Aoki J (2011) Autotaxin regulates vascular development via multiple lysophosphatidic acid (LPA) receptors in zebrafish. J Biol Chem 286(51):43972–43983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nam SW, Clair T, Kim YS, McMarlin A, Schiffmann E, Liotta LA, Stracke ML (2001) Autotaxin (NPP-2), a metastasis-enhancing motogen, is an angiogenic factor. Cancer Res 61(18):6938–6944

    CAS  PubMed  Google Scholar 

  49. Xu X, Prestwich GD (2010) Inhibition of tumor growth and angiogenesis by a lysophosphatidic acid antagonist in an engineered three-dimensional lung cancer xenograft model. Cancer 116(7):1739–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Okudaira S, Yukiura H, Aoki J (2010) Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie 92(6):698–706

    Article  CAS  PubMed  Google Scholar 

  51. Moolenaar WH, Houben AJ, Lee SJ, van Meeteren LA (2013) Autotaxin in embryonic development. Biochim Biophys Acta 1831(1):13–19

    Article  CAS  PubMed  Google Scholar 

  52. Yuelling LM, Fuss B (2008) Autotaxin (ATX): a multi-functional and multi-modular protein possessing enzymatic lysoPLD activity and matricellular properties. Biochim Biophys Acta 1781(9):525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nakanaga K, Hama K, Aoki J (2010) Autotaxin--an LPA producing enzyme with diverse functions. J Biochem 148(1):13–24

    Article  CAS  PubMed  Google Scholar 

  54. Perrakis A, Moolenaar WH (2014) Autotaxin: structure-function and signaling. J Lipid Res 55(6):1010–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nishimasu H, Okudaira S, Hama K, Mihara E, Dohmae N, Inoue A, Ishitani R, Takagi J, Aoki J, Nureki O (2011) Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nat Struct Mol Biol 18(2):205–212

    Article  CAS  PubMed  Google Scholar 

  56. Hausmann J, Kamtekar S, Christodoulou E, Day JE, Wu T, Fulkerson Z, Albers HM, van Meeteren LA, Houben AJ, van Zeijl L, Jansen S, Andries M, Hall T, Pegg LE, Benson TE, Kasiem M, Harlos K, Kooi CW, Smyth SS, Ovaa H, Bollen M, Morris AJ, Moolenaar WH, Perrakis A (2011) Structural basis of substrate discrimination and integrin binding by autotaxin. Nat Struct Mol Biol 18(2):198–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Koh E, Clair T, Woodhouse EC, Schiffmann E, Liotta L, Stracke M (2003) Site-directed mutations in the tumor-associated cytokine, autotaxin, eliminate nucleotide phosphodiesterase, lysophospholipase D, and motogenic activities. Cancer Res 63(9):2042–2045

    CAS  PubMed  Google Scholar 

  58. Tabchy A, Tigyi G, Mills GB (2011) Location, location, location: a crystal-clear view of autotaxin saturating LPA receptors. Nat Struct Mol Biol 18(2):117–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nishimasu H, Ishitani R, Aoki J, Nureki O (2012) A 3D view of autotaxin. Trends Pharmacol Sci 33(3):138–145

    Article  CAS  PubMed  Google Scholar 

  60. Hausmann J, Perrakis A, Moolenaar WH (2013) Structure-function relationships of autotaxin, a secreted lysophospholipase D. Adv Biol Regul 53(1):112–117

    Article  CAS  PubMed  Google Scholar 

  61. Jansen S, Callewaert N, Dewerte I, Andries M, Ceulemans H, Bollen M (2007) An essential oligomannosidic glycan chain in the catalytic domain of autotaxin, a secreted lysophospholipase-D. J Biol Chem 282(15):11084–11091

    Article  CAS  PubMed  Google Scholar 

  62. Jansen S, Andries M, Derua R, Waelkens E, Bollen M (2009) Domain interplay mediated by an essential disulfide linkage is critical for the activity and secretion of the metastasis-promoting enzyme autotaxin. J Biol Chem 284(21):14296–14302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Koyama M, Nishimasu H, Ishitani R, Nureki O (2012) Molecular dynamics simulation of autotaxin: roles of the nuclease-like domain and the glycan modification. J Phys Chem B 116(39):11798–11808

    Article  CAS  PubMed  Google Scholar 

  64. Cimpean A, Stefan C, Gijsbers R, Stalmans W, Bollen M (2004) Substrate-specifying determinants of the nucleotide pyrophosphatases/phosphodiesterases NPP1 and NPP2. Biochem J 381(Pt 1):71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Albers HM, Hendrickx LJ, van Tol RJ, Hausmann J, Perrakis A, Ovaa H (2011) Structure-based design of novel boronic acid-based inhibitors of autotaxin. J Med Chem 54(13):4619–4626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mize CD, Abbott AM, Gacasan SB, Parrill AL, Baker DL (2011) Ligand-based autotaxin pharmacophore models reflect structure-based docking results. J Mol Graph Model 31:76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kawaguchi M, Okabe T, Okudaira S, Nishimasu H, Ishitani R, Kojima H, Nureki O, Aoki J, Nagano T (2013) Screening and X-ray crystal structure-based optimization of autotaxin (ENPP2) inhibitors, using a newly developed fluorescence probe. ASC Chem Biol 8(8):1713–1721

    CAS  Google Scholar 

  68. Norman DD, Ibezim A, Scott WE, White S, Parrill AL, Baker DL (2013) Autotaxin inhibition: development and application of computational tools to identify site-selective lead compounds. Bioorg Med Chem 21(17):5548–5560

    Article  CAS  PubMed  Google Scholar 

  69. Fells JI, Lee SC, Fujiwara Y, Norman DD, Lim KG, Tsukahara R, Liu J, Patil R, Miller DD, Kirby RJ, Nelson S, Seibel W, Papoian R, Parrill AL, Baker DL, Bittman R, Tigyi G (2013) Hits of a high-throughput screen identify the hydrophobic pocket of autotaxin/lysophospholipase D as an inhibitory surface. Mol Pharmacol 84(3):415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fells JI, Lee SC, Norman DD, Tsukahara R, Kirby JR, Nelson S, Seibel W, Papoian R, Patil R, Miller DD, Parrill AL, Pham TC, Baker DL, Bittman R, Tigyi G (2014) Targeting the hydrophobic pocket of autotaxin with virtual screening of inhibitors identifies a common aromatic sulfonamide structural motif. FEBS J 281(4):1017–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stein AJ, Bain G, Prodanovich P, Santini AM, Darlington J, Stelzer NM, Sidhu RS, Schaub J, Goulet L, Lonergan D, Calderon I, Evans JF, Hutchinson JH (2015) Structural basis for inhibition of human autotaxin by four potent compounds with distinct modes of binding. Mol Pharmacol 88(6):982–992

    Article  CAS  PubMed  Google Scholar 

  72. Kato K, Ikeda H, Miyakawa S, Futakawa S, Nonaka Y, Fujiwara M, Okudaira S, Kano K, Aoki J, Morita J, Ishitani R, Nishimasu H, Nakamura Y, Nureki O (2016) Structural basis for specific inhibition of Autotaxin by a DNA aptamer. Nat Struct Mol Biol 23(5):395–401

    Article  CAS  PubMed  Google Scholar 

  73. Kanda H, Newton R, Klein R, Morita Y, Gunn MD, Rosen SD (2008) Autotaxin, an ectoenzyme that produces lysophosphatidic acid, promotes the entry of lymphocytes into secondary lymphoid organs. Nat Immunol 9(4):415–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pamuklar Z, Federico L, Liu S, Umezu-Goto M, Dong A, Panchatcharam M, Fulkerson Z, Berdyshev E, Natarajan V, Fang X, van Meeteren LA, Moolenaar WH, Mills GB, Morris AJ, Smyth SS (2009) Autotaxin/lysopholipase D and lysophosphatidic acid regulate murine hemostasis and thrombosis. J Biol Chem 284(11):7385–7394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao J, He D, Berdyshev E, Zhong M, Salgia R, Morris AJ, Smyth SS, Natarajan V, Zhao Y (2011) Autotaxin induces lung epithelial cell migration through lysoPLD activity-dependent and -independent pathways. Biochem J 439(1):45–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fulkerson Z, Wu T, Sunkara M, Kooi CV, Morris AJ, Smyth SS (2011) Binding of autotaxin to integrins localizes lysophosphatidic acid production to platelets and mammalian cells. J Biol Chem 286(40):34654–34663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu T, Kooi CV, Shah P, Charnigo R, Huang C, Smyth SS, Morris AJ (2014) Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration. FASEB J 28(2):861–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jansen S, Stefan C, Creemers JW, Waelkens E, Van Eynde A, Stalmans W, Bollen M (2005) Proteolytic maturation and activation of autotaxin (NPP2), a secreted metastasis-enhancing lysophospholipase D. J Cell Sci 118(Pt 14):3081–3089

    Article  CAS  PubMed  Google Scholar 

  79. Koike S, Keino-Masu K, Ohto T, Masu M (2006) The N-terminal hydrophobic sequence of autotaxin (ENPP2) functions as a signal peptide. Genes Cells 11(2):133–142

    Article  CAS  PubMed  Google Scholar 

  80. Pradere JP, Tarnus E, Gres S, Valet P, Saulnier-Blache JS (2007) Secretion and lysophospholipase D activity of autotaxin by adipocytes are controlled by N-glycosylation and signal peptidase. Biochim Biophys Acta 1771(1):93–102

    Article  CAS  PubMed  Google Scholar 

  81. Santos AN, Riemann D, Santos AN, Kehlen A, Thiele K, Langner J (1996) Treatment of fibroblast-like synoviocytes with IFN-gamma results in the down-regulation of autotaxin mRNA. Biochem Biophys Res Commun 229(2):419–424

    Article  CAS  PubMed  Google Scholar 

  82. Kawagoe H, Stracke ML, Nakamura H, Sano K (1997) Expression and transcriptional regulation of the PD-Ialpha/autotaxin gene in neuroblastoma. Cancer Res 57(12):2516–2521

    CAS  PubMed  Google Scholar 

  83. Kehlen A, Lauterbach R, Santos AN, Thiele K, Kabisch U, Weber E, Riemann D, Langner J (2001) IL-1 beta- and IL-4-induced down-regulation of autotaxin mRNA and PC-1 in fibroblast-like synoviocytes of patients with rheumatoid arthritis (RA). Clin Exp Immunol 123(1):147–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen M, O’Connor KL (2005) Integrin alpha6beta4 promotes expression of autotaxin/ENPP2 autocrine motility factor in breast carcinoma cells. Oncogene 24(32):5125–5130

    Article  CAS  PubMed  Google Scholar 

  85. Farina AR, Cappabianca L, Ruggeri P, Di Ianni N, Ragone M, Merolle S, Sano K, Stracke ML, Horowitz JM, Gulino A, Mackay AR (2012) Constitutive autotaxin transcription by Nmyc-amplified and non-amplified neuroblastoma cells is regulated by a novel AP-1 and SP-mediated mechanism and abrogated by curcumin. FEBS Lett 586(20):3681–3691

    Article  CAS  PubMed  Google Scholar 

  86. Sioletic S, Czaplinski J, Hu L, Fletcher JA, Fletcher CD, Wagner AJ, Loda M, Demetri GD, Sicinska ET, Snyder EL (2014) c-Jun promotes cell migration and drives expression of the motility factor ENPP2 in soft tissue sarcomas. J Pathol 234(2):190–202

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Benesch MG, Zhao YY, Curtis JM, McMullen TP, Brindley DN (2015) Regulation of autotaxin expression and secretion by lysophosphatidate and sphingosine 1-phosphate. J Lipid Res 56(6):1134–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Song J, Guan M, Zhao Z, Zhang J (2015) Type I Interferons Function as Autocrine and Paracrine Factors to Induce Autotaxin in Response to TLR Activation. PLoS One 10(8):e0136629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Greenman R, Gorelik A, Sapir T, Baumgart J, Zamor V, Segal-Salto M, Levin-Zaidman S, Aidinis V, Aoki J, Nitsch R, Vogt J, Reiner O (2015) Non-cell autonomous and non-catalytic activities of ATX in the developing brain. Front Neurosci 9:53

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fox MA, Colello RJ, Macklin WB, Fuss B (2003) Phosphodiesterase-Ialpha/autotaxin: a counteradhesive protein expressed by oligodendrocytes during onset of myelination. Mol Cell Neurosci 23(3):507–519

    Article  CAS  PubMed  Google Scholar 

  91. Fox MA, Alexander JK, Afshari FS, Colello RJ, Fuss B (2004) Phosphodiesterase-I alpha/autotaxin controls cytoskeletal organization and FAK phosphorylation during myelination. Mol Cell Neurosci 27(2):140–150

    Article  CAS  PubMed  Google Scholar 

  92. Dennis J, White MA, Forrest AD, Yuelling LM, Nogaroli L, Afshari FS, Fox MA, Fuss B (2008) Phosphodiesterase-Ialpha/autotaxin’s MORFO domain regulates oligodendroglial process network formation and focal adhesion organization. Mol Cell Neurosci 37(2):412–424

    Article  CAS  PubMed  Google Scholar 

  93. Dennis J, Morgan MK, Graf MR, Fuss B (2012) P2Y(12) receptor expression is a critical determinant of functional responsiveness to ATX’s MORFO domain. Purinergic Signal 8:181–190

    Article  CAS  PubMed  Google Scholar 

  94. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441(7097):1068–1074

    Article  CAS  PubMed  Google Scholar 

  95. Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132(4):583–597

    Article  CAS  PubMed  Google Scholar 

  96. Januschke J, Nathke I (2014) Stem cell decisions: a twist of fate or a niche market? Semin Cell Dev Biol 34:116–123

    Article  PubMed  PubMed Central  Google Scholar 

  97. Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287(5457):1427–1430

    Article  CAS  PubMed  Google Scholar 

  98. Pebay A, Bonder CS, Pitson SM (2007) Stem cell regulation by lysophospholipids. Prostaglandins Other Lipid Mediat 84(3–4):83–97

    Article  CAS  PubMed  Google Scholar 

  99. Pitson SM, Pebay A (2009) Regulation of stem cell pluripotency and neural differentiation by lysophospholipids. Neurosignals 17(4):242–254

    Article  CAS  PubMed  Google Scholar 

  100. Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309(5965):255–256

    Article  CAS  PubMed  Google Scholar 

  101. Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M, Rossant J (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110(3):815–821

    CAS  PubMed  Google Scholar 

  102. Ilic D, Ogilvie C (2016) Human embryonic stem cells-what have we done? What are we doing? Where are we going? Stem Cells. [Epub ahead of print]

    Google Scholar 

  103. Avior Y, Sagi I, Benvenisty N (2016) Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17(3):170–182

    Article  CAS  PubMed  Google Scholar 

  104. Verfaillie CM, Pera MF, Lansdorp PM (2002) Stem cells: hype and reality. Hematol Am Soc Hematol Educ Program 2002:369–391

    Google Scholar 

  105. Cauffman G, De Rycke M, Sermon K, Liebaers I, Van de Velde H (2009) Markers that define stemness in ESC are unable to identify the totipotent cells in human preimplantation embryos. Hum Reprod 24(1):63–70

    Article  CAS  PubMed  Google Scholar 

  106. Galan A, Diaz-Gimeno P, Poo ME, Valbuena D, Sanchez E, Ruiz V, Dopazo J, Montaner D, Conesa A, Simon C (2013) Defining the genomic signature of totipotency and pluripotency during early human development. PLoS One 8(4):e62135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Condic ML (2014) Totipotency: what it is and what it is not. Stem Cells Dev 23(8):796–812

    Article  PubMed  Google Scholar 

  108. Pebay A, Wong RC, Pitson SM, Wolvetang EJ, Peh GS, Filipczyk A, Koh KL, Tellis I, Nguyen LT, Pera MF (2005) Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells 23(10):1541–1548

    Article  CAS  PubMed  Google Scholar 

  109. Dottori M, Leung J, Turnley AM, Pebay A (2008) Lysophosphatidic acid inhibits neuronal differentiation of neural stem/progenitor cells derived from human embryonic stem cells. Stem Cells 26(5):1146–1154

    Article  CAS  PubMed  Google Scholar 

  110. Todorova MG, Fuentes E, Soria B, Nadal A, Quesada I (2009) Lysophosphatidic acid induces Ca2+ mobilization and c-Myc expression in mouse embryonic stem cells via the phospholipase C pathway. Cell Signal 21(4):523–528

    Article  CAS  PubMed  Google Scholar 

  111. Schuck S, Soloaga A, Schratt G, Arthur JS, Nordheim A (2003) The kinase MSK1 is required for induction of c-fos by lysophosphatidic acid in mouse embryonic stem cells. BMC Mol Biol 4:6

    Article  PubMed  PubMed Central  Google Scholar 

  112. Apati A, Paszty K, Hegedus L, Kolacsek O, Orban TI, Erdei Z, Szebenyi K, Pentek A, Enyedi A, Sarkadi B (2013) Characterization of calcium signals in human embryonic stem cells and in their differentiated offspring by a stably integrated calcium indicator protein. Cell Signal 25(4):752–759

    Article  CAS  PubMed  Google Scholar 

  113. Kobayashi T, Yamano S, Murayama S, Ishikawa H, Tokumura A, Aono T (1994) Effect of lysophosphatidic acid on the preimplantation development of mouse embryos. FEBS Lett 351(1):38–40

    Article  CAS  PubMed  Google Scholar 

  114. Ahn JI, Lee KH, Shin DM, Shim JW, Kim CM, Kim H, Lee SH, Lee YS (2004) Temporal expression changes during differentiation of neural stem cells derived from mouse embryonic stem cell. J Cell Biochem 93(3):563–578

    Article  CAS  PubMed  Google Scholar 

  115. Liszewska E, Reinaud P, Billon-Denis E, Dubois O, Robin P, Charpigny G (2009) Lysophosphatidic acid signaling during embryo development in sheep: involvement in prostaglandin synthesis. Endocrinology 150(1):422–434

    Article  CAS  PubMed  Google Scholar 

  116. Boruszewska D, Kowalczyk-Zieba I, Piotrowska-Tomala K, Saulnier-Blache JS, Acosta T, Skarzynski DJ, Woclawek-Potocka I (2013) Which bovine endometrial cells are the source of and target for lysophosphatidic acid? Reprod Biol 13(1):100–103

    Article  PubMed  Google Scholar 

  117. Brunnert D, Sztachelska M, Bornkessel F, Treder N, Wolczynski S, Goyal P, Zygmunt M (2014) Lysophosphatidic acid and sphingosine 1-phosphate metabolic pathways and their receptors are differentially regulated during decidualization of human endometrial stromal cells. Mol Hum Reprod 20(10):1016–1025

    Article  CAS  PubMed  Google Scholar 

  118. Aoki J, Inoue A, Okudaira S (2008) Two pathways for lysophosphatidic acid production. Biochim Biophys Acta 1781(9):513–518

    Article  CAS  PubMed  Google Scholar 

  119. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    CAS  PubMed  Google Scholar 

  120. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lander AD, Kimble J, Clevers H, Fuchs E, Montarras D, Buckingham M, Calof AL, Trumpp A, Oskarsson T (2012) What does the concept of the stem cell niche really mean today? BMC Biol 10:19

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sanchez-Aguilera A, Mendez-Ferrer S (2016) The hematopoietic stem-cell niche in health and leukemia. Cell Mol Life Sci. [Epub ahead of print]

    Google Scholar 

  123. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lio P, Macdonald HR, Trumpp A (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129

    Article  CAS  PubMed  Google Scholar 

  124. Brenet F, Scandura JM (2015) Cutting the brakes on hematopoietic regeneration by blocking TGFbeta to limit chemotherapy-induced myelosuppression. Mol Cell Oncol 2(3):e978703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Ortlepp C, Steudel C, Heiderich C, Koch S, Jacobi A, Ryser M, Brenner S, Bornhauser M, Brors B, Hofmann WK, Ehninger G, Thiede C (2013) Autotaxin is expressed in FLT3-ITD positive acute myeloid leukemia and hematopoietic stem cells and promotes cell migration and proliferation. Exp Hematol 41(5):444–461

    Article  CAS  PubMed  Google Scholar 

  126. Lansdorp PM, Sutherland HJ, Eaves CJ (1990) Selective expression of CD45 isoforms on functional subpopulations of CD34+ hemopoietic cells from human bone marrow. J Exp Med 172(1):363–366

    Article  CAS  PubMed  Google Scholar 

  127. Lansdorp PM, Dragowska W (1992) Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J Exp Med 175(6):1501–1509

    Article  CAS  PubMed  Google Scholar 

  128. Mayani H, Dragowska W, Lansdorp PM (1993) Cytokine-induced selective expansion and maturation of erythroid versus myeloid progenitors from purified cord blood precursor cells. Blood 81(12):3252–3258

    CAS  PubMed  Google Scholar 

  129. Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A (2014) Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 32(6):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lindner U, Kramer J, Rohwedel J, Schlenke P (2010) Mesenchymal stem or stromal cells: toward a better understanding of their biology? Transfus Med Hemother 37(2):75–83

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mendez-Ferrer S, Scadden DT, Sanchez-Aguilera A (2015) Bone marrow stem cells: current and emerging concepts. Ann N Y Acad Sci 1335:32–44

    Article  CAS  PubMed  Google Scholar 

  132. Evseenko D, Latour B, Richardson W, Corselli M, Sahaghian A, Cardinal S, Zhu Y, Chan R, Dunn B, Crooks GM (2013) Lysophosphatidic acid mediates myeloid differentiation within the human bone marrow microenvironment. PLoS One 8(5):e63718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ryu JM, Han HJ (2015) Autotaxin-LPA axis regulates hMSC migration by adherent junction disruption and cytoskeletal rearrangement via LPAR1/3-dependent PKC/GSK3beta/beta-catenin and PKC/Rho GTPase pathways. Stem Cells 33(3):819–832

    Article  CAS  PubMed  Google Scholar 

  134. Annabi B, Thibeault S, Lee YT, Bousquet-Gagnon N, Eliopoulos N, Barrette S, Galipeau J, Beliveau R (2003) Matrix metalloproteinase regulation of sphingosine-1-phosphate-induced angiogenic properties of bone marrow stromal cells. Exp Hematol 31(7):640–649

    Article  CAS  PubMed  Google Scholar 

  135. Jaganathan BG, Ruester B, Dressel L, Stein S, Grez M, Seifried E, Henschler R (2007) Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells 25(8):1966–1974

    Article  CAS  PubMed  Google Scholar 

  136. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105(3):369–377

    Article  CAS  PubMed  Google Scholar 

  137. Rostovskaya M, Anastassiadis K (2012) Differential expression of surface markers in mouse bone marrow mesenchymal stromal cell subpopulations with distinct lineage commitment. PLoS One 7(12):e51221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yanai N, Matsui N, Furusawa T, Okubo T, Obinata M (2000) Sphingosine-1-phosphate and lysophosphatidic acid trigger invasion of primitive hematopoietic cells into stromal cell layers. Blood 96(1):139–144

    CAS  PubMed  Google Scholar 

  139. Whetton AD, Lu Y, Pierce A, Carney L, Spooncer E (2003) Lysophospholipids synergistically promote primitive hematopoietic cell chemotaxis via a mechanism involving Vav 1. Blood 102(8):2798–2802

    Article  CAS  PubMed  Google Scholar 

  140. Fuchs E (2009) The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137(5):811–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hsu YC, Li L, Fuchs E (2014) Emerging interactions between skin stem cells and their niches. Nat Med 20(8):847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hsu YC, Li L, Fuchs E (2014) Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157(4):935–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rendl M, Lewis L, Fuchs E (2005) Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol 3(11):e331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Grisanti L, Rezza A, Clavel C, Sennett R, Rendl M (2013) Enpp2/Autotaxin in dermal papilla precursors is dispensable for hair follicle morphogenesis. J Invest Dermatol 133(10):2332–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yanagida K, Masago K, Nakanishi H, Kihara Y, Hamano F, Tajima Y, Taguchi R, Shimizu T, Ishii S (2009) Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6. J Biol Chem 284(26):17731–17741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Inoue A, Arima N, Ishiguro J, Prestwich GD, Arai H, Aoki J (2011) LPA-producing enzyme PA-PLA(1)alpha regulates hair follicle development by modulating EGFR signalling. EMBO J 30(20):4248–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science (New York, NY) 324(5935):1670–1673. doi:10.1126/science.1171837

    Article  CAS  Google Scholar 

  148. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Carnero A, Garcia-Mayea Y, Mir C, Lorente J, Rubio IT, Me LL (2016) The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev 49:25–36

    Article  CAS  PubMed  Google Scholar 

  150. Chen W, Dong J, Haiech J, Kilhoffer MC, Zeniou M (2016) Cancer Stem Cell Quiescence and Plasticity as Major Challenges in Cancer Therapy. Stem Cells Int 2016:1740936

    PubMed  PubMed Central  Google Scholar 

  151. Woodward WA, Hill RP (2016) Cancer Stem Cells. Recent Results Cancer Res 198:25–44

    Article  PubMed  Google Scholar 

  152. Gkountela S, Aceto N (2016) Stem-like features of cancer cells on their way to metastasis. Biol Direct 11:33

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68(11):4311–4320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jazaeri AA, Awtrey CS, Chandramouli GV, Chuang YE, Khan J, Sotiriou C, Aprelikova O, Yee CJ, Zorn KK, Birrer MJ, Barrett JC, Boyd J (2005) Gene expression profiles associated with response to chemotherapy in epithelial ovarian cancers. Clin Cancer Res 11(17):6300–6310

    Article  CAS  PubMed  Google Scholar 

  155. Vidot S, Witham J, Agarwal R, Greenhough S, Bamrah HS, Tigyi GJ, Kaye SB, Richardson A (2010) Autotaxin delays apoptosis induced by carboplatin in ovarian cancer cells. Cell Signal 22(6):926–935

    Article  CAS  PubMed  Google Scholar 

  156. Seo EJ, Kwon YW, Jang IH, Kim DK, Lee SI, Choi EJ, Kim KH, Suh DS, Lee JH, Choi KU, Lee JW, Mok HJ, Kim KP, Matsumoto H, Aoki J, Kim JH (2016) Autotaxin regulates maintenance of ovarian cancer stem cells through lysophosphatidic acid-mediated autocrine mechanism. Stem Cells 34(3):551–564

    Article  CAS  PubMed  Google Scholar 

  157. Ng W, Pebay A, Drummond K, Burgess A, Kaye AH, Morokoff A (2014) Complexities of lysophospholipid signalling in glioblastoma. J Clin Neurosci 21(6):893–898

    Article  PubMed  Google Scholar 

  158. Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS, Sloan A, Coons SW, Berens ME (2005) Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 7(1):7–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bhave SR, Dadey DY, Karvas RM, Ferraro DJ, Kotipatruni RP, Jaboin JJ, Hallahan AN, Dewees TA, Linkous AG, Hallahan DE, Thotala D (2013) Autotaxin inhibition with PF-8380 enhances the radiosensitivity of human and murine glioblastoma cell lines. Front Oncol 3:236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Annabi B, Lachambre MP, Plouffe K, Sartelet H, Beliveau R (2009) Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Mol Carcinog 48(10):910–919

    Article  CAS  PubMed  Google Scholar 

  161. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN (2015) Cancer stem cells in glioblastoma. Genes Dev 29(12):1203–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bradshaw A, Wickremsekera A, Tan ST, Peng L, Davis PF, Itinteang T (2016) Cancer Stem Cell Hierarchy in Glioblastoma Multiforme. Front Surg 3:21

    PubMed  PubMed Central  Google Scholar 

  163. Sanes DH, Reh TA, Harris WA (2011) Development of the nervous system, 3rd edn. Academic Press, Cambridge, MA

    Google Scholar 

  164. Koike S, Yutoh Y, Keino-Masu K, Noji S, Masu M, Ohuchi H (2011) Autotaxin is required for the cranial neural tube closure and establishment of the midbrain-hindbrain boundary during mouse development. Dev Dyn 240(2):413–421

    Article  PubMed  Google Scholar 

  165. Koike S, Keino-Masu K, Masu M (2010) Deficiency of autotaxin/lysophospholipase D results in head cavity formation in mouse embryos through the LPA receptor-Rho-ROCK pathway. Biochem Biophys Res Commun 400(1):66–71

    Article  CAS  PubMed  Google Scholar 

  166. Campbell K, Gotz M (2002) Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci 25(5):235–238

    Article  CAS  PubMed  Google Scholar 

  167. Fishell G, Kriegstein AR (2003) Neurons from radial glia: the consequences of asymmetric inheritance. Curr Opin Neurobiol 13(1):34–41

    Article  CAS  PubMed  Google Scholar 

  168. Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41(6):881–890

    Article  CAS  PubMed  Google Scholar 

  169. Wilsch-Brauninger M, Florio M, Huttner WB (2016) Neocortex expansion in development and evolution—from cell biology to single genes. Curr Opin Neurobiol 39:122–132

    Article  PubMed  CAS  Google Scholar 

  170. Frisca F, Crombie DE, Dottori M, Goldshmit Y, Pebay A (2013) Rho/ROCK pathway is essential to the expansion, differentiation, and morphological rearrangements of human neural stem/progenitor cells induced by lysophosphatidic acid. J Lipid Res 54(5):1192–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Cui HL, Qiao JT (2006) Promotive action of lysophosphatidic acid on proliferation of rat embryonic neural stem cells and their differentiation to cholinergic neurons in vitro. Sheng Li Xue Bao 58(6):547–555

    CAS  PubMed  Google Scholar 

  172. Fukushima N, Shano S, Moriyama R, Chun J (2007) Lysophosphatidic acid stimulates neuronal differentiation of cortical neuroblasts through the LPA1-G(i/o) pathway. Neurochem Int 50(2):302–307

    Article  CAS  PubMed  Google Scholar 

  173. Miller RH (2005) Dorsally derived oligodendrocytes come of age. Neuron 45(1):1–3

    Article  CAS  PubMed  Google Scholar 

  174. Richardson WD, Kessaris N, Pringle N (2006) Oligodendrocyte wars. Nat Rev Neurosci 7(1):11–18

    Article  CAS  PubMed  Google Scholar 

  175. Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67(6):451–467

    Article  CAS  PubMed  Google Scholar 

  176. Yuelling LW, Waggener CT, Afshari FS, Lister JA, Fuss B (2012) Autotaxin/ENPP2 regulates oligodendrocyte differentiation in vivo in the developing zebrafish hindbrain. Glia 60(10):1605–1618

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wheeler NA, Lister JA, Fuss B (2015) The Autotaxin-Lysophosphatidic Acid Axis Modulates Histone Acetylation and Gene Expression during Oligodendrocyte Differentiation. J Neurosci 35(32):11399–11414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Liu J, Moyon S, Hernandez M, Casaccia P (2016) Epigenetic control of oligodendrocyte development: adding new players to old keepers. Curr Opin Neurobiol 39:133–138

    Article  PubMed  CAS  Google Scholar 

  179. Weiner JA, Hecht JH, Chun J (1998) Lysophosphatidic acid receptor gene vzg-1/lpA1/edg-2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain. J Comp Neurol 398(4):587–598

    Article  CAS  PubMed  Google Scholar 

  180. Stankoff B, Barron S, Allard J, Barbin G, Noel F, Aigrot MS, Premont J, Sokoloff P, Zalc B, Lubetzki C (2002) Oligodendroglial expression of Edg-2 receptor: developmental analysis and pharmacological responses to lysophosphatidic acid. Mol Cell Neurosci 20(3):415–428

    Article  CAS  PubMed  Google Scholar 

  181. Dawson J, Hotchin N, Lax S, Rumsby M (2003) Lysophosphatidic acid induces process retraction in CG-4 line oligodendrocytes and oligodendrocyte precursor cells but not in differentiated oligodendrocytes. J Neurochem 87(4):947–957

    Article  CAS  PubMed  Google Scholar 

  182. Nogaroli L, Yuelling LM, Dennis J, Gorse K, Payne SG, Fuss B (2009) Lysophosphatidic acid can support the formation of membranous structures and an increase in MBP mRNA levels in differentiating oligodendrocytes. Neurochem Res 34(1):182–193

    Article  CAS  PubMed  Google Scholar 

  183. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Pfeiffer SE, Warrington AE, Bansal R (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–197

    Article  CAS  PubMed  Google Scholar 

  185. Dugas JC, Tai YC, Speed TP, Ngai J, Barres BA (2006) Functional genomic analysis of oligodendrocyte differentiation. J Neurosci 26(43):10967–10983

    Article  CAS  PubMed  Google Scholar 

  186. Dennis J, Nogaroli L, Fuss B (2005) Phosphodiesterase-Ialpha/autotaxin (PD-Ialpha/ATX): a multifunctional protein involved in central nervous system development and disease. J Neurosci Res 82(6):737–742

    Article  CAS  PubMed  Google Scholar 

  187. Murphy-Ullrich JE (2001) The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? J Clin Invest 107(7):785–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Nagai J, Uchida H, Matsushita Y, Yano R, Ueda M, Niwa M, Aoki J, Chun J, Ueda H (2010) Autotaxin and lysophosphatidic acid1 receptor-mediated demyelination of dorsal root fibers by sciatic nerve injury and intrathecal lysophosphatidylcholine. Mol Pain 6:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Inoue M, Xie W, Matsushita Y, Chun J, Aoki J, Ueda H (2008) Lysophosphatidylcholine induces neuropathic pain through an action of autotaxin to generate lysophosphatidic acid. Neuroscience 152(2):296–298

    Article  CAS  PubMed  Google Scholar 

  190. Ma L, Uchida H, Nagai J, Inoue M, Aoki J, Ueda H (2010) Evidence for de novo synthesis of lysophosphatidic acid in the spinal cord through phospholipase A2 and autotaxin in nerve injury-induced neuropathic pain. J Pharmacol Exp Ther 333(2):540–546

    Article  CAS  PubMed  Google Scholar 

  191. Katsifa A, Kaffe E, Nikolaidou-Katsaridou N, Economides AN, Newbigging S, McKerlie C, Aidinis V (2015) The Bulk of Autotaxin Activity Is Dispensable for Adult Mouse Life. PLoS One 10(11):e0143083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute of Health (B.F) and the National Multiple Sclerosis Society (B.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babette Fuss Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fuss, B. (2017). Autotaxin in Stem Cell Biology and Neurodevelopment. In: Pébay, A., Wong, R. (eds) Lipidomics of Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49343-5_3

Download citation

Publish with us

Policies and ethics