Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 662))

Abstract

Multi-objective optimization problems (MOPs) arise in many fields in engineering. In this chapter we argue that adaptation of cell mapping techniques, originally designed for the global analysis of dynamical systems, are well-suited for the thorough analysis of low-dimensional MOPs. Algorithms of this kind deliver an approximation of the set of global solutions, the Pareto set, as well as the set of locally optimal and nearly optimal solutions in one run of the algorithm which may significantly improve the underlying decision making process. We underline the statements on some illustrative examples and present comparisons to other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coverstone-Caroll, V., Hartmann, J.W., Mason, W.M.: Optimal multi-objective low-thrust spacecraft trajectories. Comput. Methods Appl. Mech. Eng. 186(2–4), 387–402 (2000)

    Article  MATH  Google Scholar 

  2. Schütze, O., Vasile, M., Coello Coello, C.A.: Computing the set of epsilon-efficient solutions in multiobjective space mission design. J. Aerosp. Comput. Inf. Commun. 8, 53–70 (2011)

    Article  Google Scholar 

  3. Das, I., Dennis, J.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin Heidelberg (2008). ISBN 978-3-540-79157-7

    Book  MATH  Google Scholar 

  5. Fliege, J.: Gap-free computation of Pareto-points by quadratic scalarizations. Math. Methods Op. Res. 59, 69–89 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hillermeier, C.: Nonlinear Multiobjective Optimization - A Generalized Homotopy Approach. Birkhäuser, Boston (2001)

    Google Scholar 

  7. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston, Massachusetts (1999)

    MATH  Google Scholar 

  8. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Op. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  9. Coello Coello, C., Lamont, G., Van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  10. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  11. Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto sets by multilevel subdivision techniques. J. Optim. Theory Appl. 124, 113–155 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jahn, J.: Multiobjective search algorithm with subdivision technique. Computational Optimization and Applications 35(2), 161–175 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schütze, O., Vasile, M., Junge, O., Dellnitz, M., Izzo, D.: Designing optimal low thrust gravity assist trajectories using space pruning and a multi-objective approach. Eng. Optim. 41(2), 155–181 (2009)

    Article  MathSciNet  Google Scholar 

  14. Gomez, M.., Martinez-Marie, T., Sanchez, S., Meziat, D.: Optimal control for wheeled mobile vehicles based on cell mapping techniques. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 1009–1014 (2008)

    Google Scholar 

  15. Hernández, C., Naranjani, Y., Sardahi, Y., Liang, W., Schütze, O., Sun, J.Q.: Simple cell mapping method for multi-objective optimal feedback control design. Int. J. Dyn. Control 1(3), 231–238 (2013)

    Article  Google Scholar 

  16. Xiong, F.R., Qin, Z.C., Xue, Y., Schütze, O., Sun, J.Q., Ding, Q.: Multi-objective optimal design of feedback controls for dynamical systems with hybrid simple cell mapping algorithm. Commun. Nonlinear Sci. Numer. Simul. 19(5), 1465–1473 (2014)

    Article  MathSciNet  Google Scholar 

  17. Zufiria, P.J., Martínez-Marín, T.: Improved optimal control methods based upon the adjoining cell mapping technique. J. Optim. Theory Appl. 118(3), 657–680 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hsu, C.S.: A theory of cell-to-cell mapping dynamical systems. Journal of Applied Mechanics 47, 931–939 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: GECCO, pp. 829–836 (2011)

    Google Scholar 

  20. Loridan, P.: \(\epsilon \)-solutions in vector minimization problems. Journal of Optimization, Theory and Application 42, 265–276 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hernández, C., Sun, J.Q., Schütze, O.: Computing the set of approximate solutions of a multi-objective optimization problem by means of cell mapping techniques. In: Emmerich M. et al. (ed.) EVOLVE – A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation IV, pp. 171–188. Springer (2013)

    Google Scholar 

  22. Pareto, V.: Cours d’Économie Politique”. Lausanne, Rouge (1896)

    Google Scholar 

  23. Schütze, O., Coello Coello, C.A., Talbi, E.-G.: Approximating the \(\epsilon \)-efficient set of an MOP with stochastic search algorithms. In: Gelbukh, A., Kuri Morales, A.F. (eds.), In: Mexican International Conference on Artificial Intelligence (MICAI-2007), pp. 128–138. Springer, Berlin Heidelberg (2007)

    Google Scholar 

  24. Schütze, O., Coello Coello, C.A., Tantar, E., Talbi, E.-G.: Computing finite size representations of the set of approximate solutions of an MOP with stochastic search algorithms. In: GECCO 2008: Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 713–720. ACM, New York, NY, USA (2008)

    Google Scholar 

  25. Hsu, C.S.: Cell-to-cell mapping: a method of global analysis for nonlinear systems. Springer-Verlag, Applied mathematical sciences (1987)

    Book  MATH  Google Scholar 

  26. Gu, K., Tongue, B.H.: Interpolated cell mapping of dynamical systems. J. Appl. Mech. 55(2), 461–466 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guttalu, R.S., Zufiria, P.J.: The adjoining cell mapping and its recursive unraveling, part ii: application to selected problems. Nonlinear Dyn. 4(4), 309–336 (1993)

    Article  Google Scholar 

  28. Zufiria, P.J., Guttalu, R.S.: The adjoining cell mapping and its recursive unraveling, part i: description of adaptive and recursive algorithms. Nonlinear Dyn. 4(3), 207–226 (1993)

    Google Scholar 

  29. Martínez-Marín, T., Zufiria, P.J.: Optimal control of non-linear systems through hybrid cell-mapping/artificial-neural-networks techniques. Int. J. Adap. Control Signal Process. 13(4):307–319 (1999)

    Google Scholar 

  30. Bursal, F.H., Hsu, C.S.: Application of a cell-mapping method to optimal control problems. Int. J. Control 49(5), 1505–1522 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hsu, C.S.: A discrete method of optimal control based upon the cell state space concept. Journal of Optimization Theory and Applications 46(4), 547–569 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Crespo, L.G., Sun, J.Q.: Stochastic Optimal Control of Nonlinear Dynamic Systems via Bellman’s Principle and Cell Mapping. Automatica 39(12), 2109–2114 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Flashner, H., Burns, T.F.: Spacecraft momentum unloading: the cell mapping approach. J. Guidance, Control Dyn. 13, 89–98 (1990)

    Article  Google Scholar 

  34. Zhu, W.H., Leu, M.C.: In: Planning Optimal Robot Trajectories by Cell Mapping, pp. 1730–1735 (1990)

    Google Scholar 

  35. Wang, F.Y., Lever, P.J.A.: A cell mapping method for general optimum trajectory planning of multiple robotic arms. Robot. Auton. Syst. 12, 15–27 (1994)

    Article  Google Scholar 

  36. Yen, J.Y.: Computer disk file track accessing controller design based upon cell to cell mapping (1994)

    Google Scholar 

  37. Bosman, P.A.N.: On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization. IEEE Trans. Evolut. Comput. 16(1), 51–69 (2012)

    Article  Google Scholar 

  38. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Op. Res. 51(3), 479–494 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lara, A.: Using Gradient Based Information to build Hybrid Multi-objective Evolutionary Algorithms. Ph.D thesis, CINVESTAV-IPN (2012)

    Google Scholar 

  40. Lara, A., Alvarado, S., Salomon, S., AviGAd, G., Coello Coello, C.A., Schütze, O.: The gradient free directed search method as local search within multi-objective evolutionary algorithms. In: EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation (EVOLVE II), pp. 153–168 (2013)

    Google Scholar 

  41. Coello Coello, C.A., Cruz Cortés, N.: Solving multiobjec tive optimization problems using an artificial immune system. Genet. Prog. Evol. Mach. 6(2), 163–190 (2005)

    Article  Google Scholar 

  42. Deb, K., Pratap, A., AGArwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  43. Zhang, Q., Li, H.: MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evolut. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  44. Schütze, O., Esquivel, X., Lara, A., Coello, C.A.: Using the averaged Hausdorff distance as a performance measure in evolutionary multi-objective optimization. IEEE Trans. Evolut. Comput. 16(4), 504–522 (2012)

    Article  Google Scholar 

  45. Witting, K.: Numerical Algorithms for the Treatment of Parametric Multiobjective Optimization Problems and Applications. Ph. D. thesis, University Paderborn (2012)

    Google Scholar 

  46. Schütze, O.: Set Oriented Methods for Global Optimization. PhD thesis, University of Paderborn (2004). http://ubdata.uni-paderborn.de/ediss/17/2004/schuetze/

  47. Rudolph, G., Naujoks, B., Preuss, M.: Capabilities of EMOA to detect and preserve equivalent Pareto subsets. In: EMO’03: Proceedings of the Evolutionary Multi-Criterion Optimization Conference, pp. 36–50 (2006)

    Google Scholar 

  48. Schäffler, S., Schultz, R., Weinzierl, K.: A stochastic method for the solution of unconstrained vector opimization problems. Journal of Optimization, Theory and Application 114(1), 209–222 (2002)

    Article  MATH  Google Scholar 

  49. Tanaka, M.: Ga-based decision support system for multi-criteria, optimization. In: International Conference on Systems, Man and Cybernetics-2, pp. 1556–1561 (1995)

    Google Scholar 

  50. Krmicek, V., Sebag, M.: Functional brain imaging with multi-objective multi-modal evolutionary optimization. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) Parallel Problem Solving from Nature - PPSN IX, volume 4193 of Lecture Notes in Computer Science, pp. 382–391. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  51. Sebag, M., Tarrisson, N., Teytaud, O., Lefevre, J., Baillet, S., Salpétriè re, L.P., Paris, F.: Multiobjective multi-modal optimization approach for mining stable spatio-temporal patterns. In: IJCAI (2005)

    Google Scholar 

  52. Tarrisson, N., Sebag, M., Teytaud, O., Lefevre, J., Baillet, S.: Multi-objective multi-modal optimization for mining spatio-temporal patterns. In: Denis, F. (ed.) CAP, pp. 217–230. PUG (2005)

    Google Scholar 

  53. Deb, K., Mohan, M., Mishra, S.: Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolut. Comput. 13(4), 501–525 (2005)

    Article  Google Scholar 

  54. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary Computation 10(3), 263–282 (2002)

    Article  Google Scholar 

  55. Schütze, O., Laumanns, M., Coello Coello, C.A., Dellnitz, M., Talbi, E.: Convergence of stochastic search algorithms to finite size Pareto set approximations. Global Optim. 41(4), 559–577 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  56. Schütze, O., Laumanns, M., Tantar, E., Coello Coello, C.A., Talbi, E.-G.: Computing gap free Pareto front approximations with stochastic search algorithms. Evolut. Comput. 18(1), 65–96 (2010)

    Article  Google Scholar 

  57. Sierra, M., Coello Coello, C.A.: Improving PSO-based multi-objective optimization using crowding, mutation and \(\epsilon \)-dominance. In: Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, pp. 505–519 (2005)

    Google Scholar 

  58. Tanaka, T.: A new approach to approximation of solutions in vector optimization problems. In: Fushini, M., Tone, K. (eds.) Proceedings of APORS 1994, pp. 497–504 (1995)

    Google Scholar 

  59. Bolintineanu, S.: (H.Bonnel). Vector variational principles; \(\epsilon \)-efficiency and scalar stationarity. J. Convex Anal. 8, 71–85 (2001)

    MathSciNet  MATH  Google Scholar 

  60. Castillo, A., Zufiria, P.J.: Cell mapping techniques for tuning dynamical systems. In: Sun, J.Q., Luo, A.C.J. (eds.), Global Analysis of Nonlinear Dynamics, pp. 31–50. Springer (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hernández, C., Schütze, O., Sun, JQ. (2017). Global Multi-objective Optimization by Means of Cell Mapping Techniques. In: Emmerich, M., Deutz, A., Schütze, O., Legrand, P., Tantar, E., Tantar, AA. (eds) EVOLVE – A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation VII. Studies in Computational Intelligence, vol 662. Springer, Cham. https://doi.org/10.1007/978-3-319-49325-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49325-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49324-4

  • Online ISBN: 978-3-319-49325-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics