Skip to main content
Log in

A Comprehensive Review on Multi-objective Optimization Techniques: Past, Present and Future

  • Review Article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Realistic problems typically have many conflicting objectives. Therefore, it is instinctive to look at the engineering problems as multi-objective optimization problems. This paper briefly explains the multi-objective optimization algorithms and their variants with pros and cons. Representative algorithms in each category are discussed in depth. Applications of various multi-objective algorithms in various fields of engineering are discussed. Open challenges and future directions for multi-objective algorithms are suggested. This study covers relevant aspects of multi-objective algorithms that which will help the new researchers to apply these algorithms in their research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abd Elaziz M, Abualigah L, Ibrahim RA, Attiya I, M Zhou (2021) IoT workflow scheduling using intelligent arithmetic optimization algorithm in fog computing. Comput Intell Neurosci. https://doi.org/10.1155/2021/9114113

    Article  Google Scholar 

  2. Abdel-Basset M, Mohamed R, Mirjalili S, Chakrabortty RK, Ryan M (2021) An efficient marine predators algorithm for solving multi-objective optimization problems: analysis and validations. IEEE Access 9:42817–42844

    Article  Google Scholar 

  3. Abeysinghe W, Wong M, Hung C-C, Bechikh S (2019) Multi-objective evolutionary algorithm for image segmentation. In: 2019 SoutheastCon, pp 1–6

  4. Agushaka Jeffrey O, Ezugwu Absalom E (2022) Initialisation approaches for population-based metaheuristic algorithms: a comprehensive review. Appl Sci 12(2):896

    Article  Google Scholar 

  5. Ahmed H, Glasgow J (2012) Swarm intelligence: concepts, models and applications. Technical Report 2012-585. Queen’s University, School of Computing, Kingston

  6. Ahmed MM, Hassanien AE, Tang M (2022) Multi-objective butterfly optimization algorithm for solving constrained optimization problems. In: Shi X, Bohács G, Ma Y, Gong D, Shang X (eds) LISS 2021, Singapore, 2022. Springer, Singapore, pp 389–400

  7. Alexandropoulos S-A, Aridas C, Kotsiantis S, Vrahatis M (2019) Multi-objective evolutionary optimization algorithms for machine learning: a recent survey. In: Approximation and optimization. Springer optimization and its applications, vol 145. Springer, Cham, pp 35–55

  8. Angus D, Woodward C (2009) Multiple objective ant colony optimisation. Swarm Intell 3:69–85

    Article  Google Scholar 

  9. Antonio LM, Berenguer JA, Coello CA (2018) Evolutionary many-objective optimization based on linear assignment problem transformations. Soft Comput 22(16):5491–5512

    Article  Google Scholar 

  10. Arias-Montano A, Coello CAC, Mezura-Montes E (2012) Multiobjective evolutionary algorithms in aeronautical and aerospace engineering. IEEE Trans Evol Comput 16(5):662–694

    Article  Google Scholar 

  11. Assunção WKG, Colanzi TE, Vergilio SR, Pozo A (2014) A multi-objective optimization approach for the integration and test order problem. Inf Sci 267:119–139

    Article  MathSciNet  Google Scholar 

  12. Avder A, Şahin İ, Dörterler M (2019) Multi-objective design optimization of the robot grippers with SPEA2. Int J Intell Syst Appl Eng 7(2):83–87

    Article  Google Scholar 

  13. Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76

    Article  Google Scholar 

  14. Bandyopadhyay S, Saha S (2013) Some single- and multiobjective optimization techniques. In: Unsupervised classification. Springer, Berlin, pp 17–58

  15. Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669

    Article  MATH  Google Scholar 

  16. Bhaskar V, Gupta S, Ray A (2000) Applications of multiobjective optimization in chemical engineering. Rev Chem Eng 16(1):1–54

    Article  Google Scholar 

  17. Brockhoff D, Wagner T, Trautmann H (2015) R2 indicator based multiobjective search. Evol Comput 23(3):369–395

    Article  Google Scholar 

  18. Brockhoff D, Trautmann H, Wagner T (2015) R2 indicator-based multiobjective search. Evol Comput 23(3):369–95

    Article  Google Scholar 

  19. Chan Y-H, Chiang T-C, Fu L-C (2010) A two-phase evolutionary algorithm for multiobjective mining of classification rules. In: Proceedings of the IEEE congress on evolutionary computation, CEC 2010, Barcelona, Spain, 18–23 July 2010, pp 1–7

  20. Chand S, Wagner M (2015) Evolutionary many-objective optimization: a quick-start guide. Surv Oper Res Manag Sci 20(2):35–42

    MathSciNet  Google Scholar 

  21. Chen Z, Zhou Y, Zhao X, Xiang Y, Wang J (2018) A historical solutions based evolution operator for decomposition-based many-objective optimization. Swarm Evol Comput 41:167–189

    Article  Google Scholar 

  22. Cheng S, Liu B, Ting T, Qin Q, Shi Y, Huang K (2016) Survey on data science with population-based algorithms. Big Data Anal 1:1–20, 07

  23. Cho J-H, Wang Y, Chen I-R, Chan KS, Swami A (2017) A survey on modeling and optimizing multi-objective systems. IEEE Commun Surv Tutor 19:1867–1901

    Article  Google Scholar 

  24. Coello CCA (2011) An introduction to multi-objective particle swarm optimizers. In: Gaspar-Cunha A, Takahashi R, Schaefer G, Costa L (eds) Soft computing in industrial applications. Springer, Berlin, pp 3–12

    Chapter  Google Scholar 

  25. Coello CCA (2018) Multi-objective optimization. Springer, Cham, pp 1–28

    MATH  Google Scholar 

  26. Coello CAC, Lechuga MS, Pulido GT (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  27. Corne DW, Jerram NR, Knowles JD, Oates MJ, Martin J (2001) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the genetic and evolutionary computation conference (GECCO’2001. Morgan Kaufmann Publishers, pp 283–290

  28. Dabba A, Tari A, Zouache D (2020) Multiobjective artificial fish swarm algorithm for multiple sequence alignment. Inf Syst Oper Res 58(1):38–59

    MathSciNet  Google Scholar 

  29. Dai C (2020) A decomposition-based evolutionary algorithm with adaptive weight adjustment for vehicle crashworthiness problem. In: Pan J-S, Li J, Tsai P-W, Jain LC (eds) Advances in intelligent information hiding and multimedia signal processing. Springer, Singapore, pp 67–74

    Chapter  Google Scholar 

  30. Deb K, Jain P, Gupta NK, Maji HK (2004) Multiobjective placement of electronic components using evolutionary algorithms. IEEE Trans Compon Packag Technol 27(3):480–492

    Article  Google Scholar 

  31. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  32. Deb K (2001) Multiobjective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  33. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with Box constraints. IEEE Trans Evol Comput 18(4):577–601

    Article  Google Scholar 

  34. Deb K, Sundar J (206) Reference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of the 8th annual conference on genetic and evolutionary computation, GECCO ’06. Association for Computing Machinery, New York, pp 635–642

  35. Dede T, Kripka M, Toǧan V, Yepes V, Venkata Rao R (2019) Usage of optimization techniques in civil engineering during the last two decades. In: Current trends in civil and structural engineering. https://doi.org/10.33552/CTCSE.2019.02.000529

  36. Dhiman G, Chahar V (2018) Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems. Knowl Based Syst 150:03

    Article  Google Scholar 

  37. Dhiman G, Kumar V (2019) KnRVEA: a hybrid evolutionary algorithm based on knee points and reference vector adaptation strategies for many-objective optimization. Appl Intell 49(7):2434–2460

    Article  Google Scholar 

  38. Diaz-Manríquez A, Ríos-Alvarado AB, Barrón-Zambrano JH, Guerrero-Melendez TY, Elizondo-Leal JC (2018) An automatic document classifier system based on genetic algorithm and taxonomy. IEEE Access 6:21552–21559

    Article  Google Scholar 

  39. Eckart Z, Kunzli S (2004) Indicator-based selection in multi-objective search. In: International conference on parallel problem solving from nature, Springer, New York, pp 832–842

  40. Eckart Z, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  41. Emmerich Michael T, Deutz André H (2018) A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat Comput Int J 17(3):585–609

    Article  MathSciNet  Google Scholar 

  42. Falcón-Cardona JG, Coello CAC (2018) A multi-objective evolutionary hyper-heuristic based on multiple indicator-based density estimators. In: Proceedings of the genetic and evolutionary computation conference, GECCO ’18. Association for Computing Machinery, New York, pp 633–640

  43. Falcón-Cardona JG, Coello CAC (2019) Convergence and diversity analysis of indicator-based multi-objective evolutionary algorithms. In: Proceedings of the genetic and evolutionary computation conference, GECCO ’19. Association for Computing Machinery, New York, pp 524–531

  44. Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377

    Article  Google Scholar 

  45. Fei Z, Li B, Yang S, Xing C, Chen H, Hanzo L (2016) A survey of multi-objective optimization in wireless sensor networks: metrics, algorithms and open problems. CoRR, abs/1609.04069

  46. García-Martínez C, Cordon O, Herrera F (2007) A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. Eur J Oper Res 180:116–148

    Article  MATH  Google Scholar 

  47. Gheitasi M, Kaboli HS, Keramat A (2021) Multi-objective optimization of water distribution system: a hybrid evolutionary algorithm. J Appl Water Eng Res 9(3):203–215

    Article  Google Scholar 

  48. Das MK, Ghosh A (2008) Non-dominated rank based sorting genetic algorithms. Fundam inform 83:231–252

    MathSciNet  MATH  Google Scholar 

  49. Grond MOW, Luong NH, Morren J, Slootweg JG (2012) Multi-objective optimization techniques and applications in electric power systems. In: 2012 47th international universities power engineering conference (UPEC), pp 1–6

  50. Gu F, Cheung Y-M (2018) Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm. IEEE Trans Evol Comput 22(2):211–225

    Article  Google Scholar 

  51. Guo X, Wang X, Wei Z (2015) MOEA/D with adaptive weight vector design. In: 2015 11th International conference on computational intelligence and security (CIS), pp 291–294

  52. Handl J, Kell DB, Knowles J (2007) Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Trans Comput Biol Bioinform 4(2):279–292

    Article  Google Scholar 

  53. Hosseini SH, Vahidi J, Kamel TSR, Shojaei AA (2021) Resource allocation optimization in cloud computing using the whale optimization algorithm. Int J Nonlinear Anal Appl 12(Special Issue):343–360

    Google Scholar 

  54. Huang W, Zhang Y, Li L (2019) Survey on multi-objective evolutionary algorithms. J Phys Conf Ser 1288:012057

    Article  Google Scholar 

  55. Huo P, Shiu SCK, Wang H, Niu B (2009) Application and comparison of particle swarm optimization and genetic algorithm in strategy defense game. In: 5th International conference on natural computation, ICNC 2009, 14-08-2009 through 16-08-2009, vol 5, pp 387–392

  56. Ishibuchi H, Sakane Y, Tsukamoto N, Nojima Y (2010) Simultaneous use of different scalarizing functions in MOEA/D. In: GECCO ’10

  57. Ishibuchi H, Tsukamoto N, Sakane Y, Nojima Y (2010) Indicator-based evolutionary algorithm with hypervolume approximation by achievement scalarizing functions. In: Proceedings of the 12th annual conference on genetic and evolutionary computation, GECCO ’10. Association for Computing Machinery, New York, pp 527–534

  58. Jain H, Deb K (2013) An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization. In: Purshouse RC, Fleming PJ, Fonseca CM, Greco S, Shaw J (eds) Evolutionary multi-criterion optimization. Springer, Berlin, pp 307–321

    Chapter  Google Scholar 

  59. Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18(4):602–622

    Article  Google Scholar 

  60. Jain S, Ramesh D, Bhattacharya D (2021) A multi-objective algorithm for crop pattern optimization in agriculture. Appl Soft Comput 112:107772

    Article  Google Scholar 

  61. Janga Reddy M, Nagesh Kumar D (2020) Evolutionary algorithms, swarm intelligence methods, and their applications in water resources engineering: a state-of-the-art review. H2Open J 3:135–188

    Article  Google Scholar 

  62. Janson S, Merkle D, Middendorf M (2008) Molecular docking with multi-objective particle swarm optimization. Appl Soft Comput 8(1):666–675

    Article  Google Scholar 

  63. Jiang S, Yang S, Wang Y, Liu X (2018) Scalarizing functions in decomposition-based multiobjective evolutionary algorithms. IEEE Trans Evol Comput 22(2):296–313

    Article  Google Scholar 

  64. Jin Y, Okabe T, Sendhoff B (2004) Neural network regularization and ensembling using multi-objective evolutionary algorithms. In: Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753), vol 1, pp 1–8

  65. Karagoz GN, Yazici A, Dokeroglu T, Cosar A (2020) Analysis of multiobjective algorithms for the classification of multi-label video datasets. IEEE Access 8:163937–163952

    Article  Google Scholar 

  66. Kumar V, Katoch S, Chauhan S (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80:8091–8126

    Article  Google Scholar 

  67. Mashwani WK, Salhi A (2012) A decomposition-based hybrid multiobjective evolutionary algorithm with dynamic resource allocation. Appl Soft Comput 12(9):2765–2780

    Article  Google Scholar 

  68. Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8:149–172

    Article  Google Scholar 

  69. Kumar D, Kumar V, Kumari R (2019) Automatic clustering using quantum-based multi-objective emperor penguin optimizer and its applications to image segmentation. Mod Phys Lett A 34(24):1950193

    Article  MathSciNet  Google Scholar 

  70. Kumawat IR, Nanda SJ, Maddila RK (2017) Multi-objective whale optimization. In: TENCON 2017—2017 IEEE Region 10 conference, pp 2747–2752

  71. Kvasov DE, Mukhametzhanov MS (2018) Metaheuristic vs. deterministic global optimization algorithms. Appl Math Comput 318(C):245–259

    MathSciNet  MATH  Google Scholar 

  72. Li H, Min D, Deng J, Zhang Q (2015) On the use of random weights in MOEA/D. In: 2015 IEEE congress on evolutionary computation (CEC), pp 978–985

  73. Li K, Deb K, Zhang Q, Kwong S (2015) An evolutionary many-objective optimization algorithm based on dominance and decomposition. Trans Evol Comput 19(5):694–716

    Article  Google Scholar 

  74. Li K, Deb K, Zhang Q, Kwong S (2015) An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans Evol Comput 19(5):694–716

    Article  Google Scholar 

  75. Li R, Etemaadi R, Emmerich MTM, Chaudron MRV (2011) An evolutionary multiobjective optimization approach to component-based software architecture design. In: 2011 IEEE congress of evolutionary computation (CEC), 2011, pp 432–439

  76. Ma X, Zhang Q, Tian G, Yang J, Zhu Z (2018) On Tchebycheff decomposition approaches for multiobjective evolutionary optimization. IEEE Trans Evol Comput 22(2):226–244

    Article  Google Scholar 

  77. Malik P, Nautiyal L, Ram M (2018) Applying multi-objective optimization algorithms to mechanical engineering, pp 287–301. https://doi.org/10.4018/978-1-5225-3035-0.CH014

  78. Maltese J, Ombuki-Berman BM, Engelbrecht AP (2018) A scalability study of many-objective optimization algorithms. IEEE Trans Evol Comput 22(1):79–96

    Article  Google Scholar 

  79. Marghny MH, Zanaty Elnomery A, Dukhan Wathiq H, Reyad O (2022) A hybrid multi-objective optimization algorithm for software requirement problem. Alex Eng J 61(9):6991–7005

    Article  Google Scholar 

  80. Mashwani WK (2011) Hybrid multiobjective evolutionary algorithms: a survey of the state-of-the-art. Int J Comput Sci Issue 8(3):374–392

    Google Scholar 

  81. Meneghini I, Guimarães F (2017) Evolutionary method for weight vector generation in multi-objective evolutionary algorithms based on decomposition and aggregation. In: 2017 IEEE congress on evolutionary computation (CEC)

  82. Mirjalili SM, Merikhi B, Mirjalili SZ, Zoghi M, Mirjalili S (2017) Multi-objective versus single-objective optimization frameworks for designing photonic crystal filters. Appl Opt 56(34):9444–9451

    Article  Google Scholar 

  83. Mishra V, Singh V (2016) Vector evaluated genetic algorithm-based distributed query plan generation in distributed database. In: Afzalpulkar N, Srivastava V, Singh G, Bhatnagar D (eds) Proceedings of the international conference on recent cognizance in wireless communication and image processing. Springer, New Delhi, pp 325–337

    Google Scholar 

  84. Misinem M. Ermatita E, Rini DP, Malik RF, Kurniawan TB (2020) Population-based ant colony optimization with new hierarchical pheromone updating mechanism for DNA sequence design problem. In: Proceedings of the Sriwijaya international conference on information technology and its applications (SICONIAN 2019), 2020. Atlantis Press, pp 443–447

  85. Moshref M, Al-Sayyed R, Al Sharaeh S (2020) Multi-objective optimization algorithms for wireless sensor networks: a comprehensive survey. J Theor Appl Inf Technol 98:07

    Google Scholar 

  86. Mukhopadhyay A, Maulik U, Bandyopadhyay S, Coello CCA (2014) Survey of multiobjective evolutionary algorithms for data mining: Part II. IEEE Trans Evol Comput 18(1):20–35

    Article  Google Scholar 

  87. Mukhopadhyay A, Maulik U, Bandyopadhyay S, Coello CCA (2014) A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Trans Evol Comput 18(1):4–19

    Article  Google Scholar 

  88. Nuhanović A, Hivziefendić J, Hadžimehmedović A (2013) Distribution network reconfiguration considering power losses and outages costs using genetic algorithm. J Electr Eng 64(5):265–271

    Google Scholar 

  89. Ogundoyin SO, Kamil IA (2021) Optimization techniques and applications in fog computing: an exhaustive survey. Swarm Evol Comput 66:100937

    Article  Google Scholar 

  90. Olmo JL, Romero JR, Ventura S (2012) Classification rule mining using ant programming guided by grammar with multiple Pareto fronts. Soft Comput 16(12):2143–2163

    Article  Google Scholar 

  91. Omran Sherin M, El-Behaidy Wessam H, Youssif Aliaa AA (2020) Decomposition based multi-objectives evolutionary algorithms challenges and circumvention. In: Arai K, Kapoor S, Bhatia R (eds) Intelligent computing. Springer, Cham, pp 82–93

    Chapter  Google Scholar 

  92. Panda M, Azar A (2020) Hybrid multi-objective Grey Wolf search optimizer and machine learning approach for software bug prediction: hybrid multi-objective Grey Wolf search optimizer for software bug prediction. In: Handbook of research on modeling, analysis, and control of complex systems. IGI Global, Hershey

  93. Pang LM, Ishibuchi H, Shang K (2020) Decomposition-based multi-objective evolutionary algorithm design under two algorithm frameworks. CoRR, abs/2008.07094

  94. Panichella A (2019) An adaptive evolutionary algorithm based on non-Euclidean geometry for many-objective optimization. In: Proceedings of the genetic and evolutionary computation conference, GECCO ’19. Association for Computing Machinery, New York, pp 595–603

  95. Peitz S, Dellnitz M (2018) A survey of recent trends in multiobjective optimal control—surrogate models, feedback control and objective reduction. Math Comput Appl. https://doi.org/10.20944/preprints201805.0221.v1

    Article  MathSciNet  Google Scholar 

  96. Pereira JL, Oliver G, Francisco M, Cunha S Jr, Gomes G (2021) A review of multi-objective optimization: methods and algorithms in mechanical engineering problems. Arch Comput Methods Eng 29:2285–2308

    Article  Google Scholar 

  97. Pham TX, Siarry P, Oulhadj H (2019) A multi-objective optimization approach for brain MRI segmentation using fuzzy entropy clustering and region-based active contour methods. Magn Reson Imaging 61:41–65

    Article  Google Scholar 

  98. Premkumar M, Jangir P, Sowmya R, Alhelou HH, Heidari AA, Chen H (2021) MOSMA: multi-objective slime mould algorithm based on elitist non-dominated sorting. IEEE Access 9:3229–3248

    Article  Google Scholar 

  99. Qi Y, Ma X, Liu F, Jiao L, Sun J, Wu J (2014) MOEA/D with adaptive weight adjustment. Evol Comput 22(2):231–264

    Article  Google Scholar 

  100. Qiu W, Zhu J, Wu G, Fan M, Suganthan PN (2021) Evolutionary many-objective algorithm based on fractional dominance relation and improved objective space decomposition strategy. Swarm Evol Comput 60:100776

    Article  Google Scholar 

  101. Rahman MM, Szabó G (2021) Multi-objective urban land use optimization using spatial data: a systematic review. Sustain Cities Soc 74:103214

    Article  Google Scholar 

  102. Rajani K, Kumar D, Kumar V (2020) Impact of controlling parameters on the performance of MOPSO algorithm. Procedia Comput Sci 167:2132–2139

    Article  Google Scholar 

  103. Rangaiah GP, Zemin F, Hoadley AF (2020) Multi-objective optimization applications in chemical process engineering: tutorial and review. Processes 8(5):508

    Article  Google Scholar 

  104. Reynolds R, Liu D (2011) Multi-objective cultural algorithms. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1233–1241

  105. Rivas-Davalos F, Moreno-Goytia E, Gutierrez-Alacaraz G, Tovar-Hernandez J (2007) Evolutionary multi-objective optimization in power systems: state-of-the-art. In: 2007 IEEE Lausanne power tech, pp 2093–2098

  106. Saha I, Maulik U, Bandyopadhyay S, Plewczynski D (2011) Unsupervised and supervised learning approaches together for microarray analysis. Fundam Inform 106(1):45–73

    Article  MathSciNet  Google Scholar 

  107. Santana-Quintero L, Arias-Montano A, Coello C (2010) A review of techniques for handling expensive functions in evolutionary multi-objective optimization. In: Tenne Y, Goh CK (eds) Computational intelligence in expensive optimization problems: adaptation learning and optimization, vol 2. Springer, Berlin, pp 29–59

    Chapter  Google Scholar 

  108. Santiago A, Fraire-Huacuja HJ, Dorronsoro B, Pecero JE, Santillan CG, Barbosa JJG, Monterrubio JCS (2014) A survey of decomposition methods for multi-objective optimization. In: Recent advances on hybrid approaches for designing intelligent systems. Springer, Cham, pp 453–465

  109. Saxena N, Mishra KK (2017) Improved multi-objective particle swarm optimization algorithm for optimizing watermark strength in color image watermarking. Appl Intell 47(2):362–381

    Article  Google Scholar 

  110. Schutze O, Esquivel X, Lara A, Coello CCA (2012) Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans Evol Comput 16(4):504–522

    Article  Google Scholar 

  111. Schütze O, Hernández C (2021) Archiving in evolutionary multi-objective optimization: a short overview. In: Archiving strategies for evolutionary multi-objective optimization algorithms. Studies in computational intelligence. Springer, Cham, pp 17–20

  112. Service T (2010) A no free lunch theorem for multi-objective optimization. Inf Process Lett 110:917–923

    Article  MathSciNet  MATH  Google Scholar 

  113. Siwei J, Cai Z, Zhang J, Ong Y-S (2011) Multiobjective optimization by decomposition with Pareto-adaptive weight vectors. In: 2011 Seventh international conference on natural computation, vol 3, pp 1260–1264

  114. Taha K (2020) Methods that optimize multi-objective problems: a survey and experimental evaluation. IEEE Access 8:80855–80878

    Article  Google Scholar 

  115. Tang J et al (2021) A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE/CAA J Autom Sin 8(10):1627–1643

    Article  MathSciNet  Google Scholar 

  116. Trivedi A, Srinivasan D, Sanyal K, Ghosh A (2017) A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans Evol Comput 21(3):440–462

    Google Scholar 

  117. Venkateswarlu C (2021) Chapter 18: a metaheuristic Tabu search optimization algorithm: applications to chemical and environmental processes. In: Tsuzuki MSG, Abdel Rahman ROO (eds) Engineering problems—uncertainties, constraints and optimization techniques. IntechOpen, Rijeka

    Google Scholar 

  118. Vesikar Y, Deb K, Blank J (2018) Reference point based NSGA-III for preferred solutions. In: 2018 IEEE symposium series on computational intelligence (SSCI), pp 1587–1594

  119. Wali Khan M, Jan AM, Sulaiman M, Khanum RA, Salhi A, Algarni AM (2016) Evolutionary algorithms based on decomposition and indicator functions: state-of-the-art survey. Int J Adv Comput Sci Appl 7(2):583–593

    Google Scholar 

  120. Wang J, Huang L (2014) Evolving Gomoku solver by genetic algorithm. In: 2014 IEEE workshop on advanced research and technology in industry applications (WARTIA), pp 1064–1067

  121. Wang Z, Zhang X, Zhang Z, Sheng D (2021) Credit portfolio optimization: a multi-objective genetic algorithm approach. Borsa Istanb Rev 22:01

    Article  Google Scholar 

  122. Xu Q, Xu Z, Ma T (2019) A short survey and challenges for multiobjective evolutionary algorithms based on decomposition. In: 2019 International conference on computer, information and telecommunication systems (CITS), pp 1–5

  123. Xu Q, Xu Z, Ma T (2020) A survey of multiobjective evolutionary algorithms based on decomposition: variants, challenges and future directions. IEEE Access 8:41588–41614

    Article  Google Scholar 

  124. Yan X, Li W, Zhang Y, Zhang H, Wu J (2011) Electronic circuit automatic design based on genetic algorithms. Procedia Eng 15:2948–2954

    Article  Google Scholar 

  125. Yang W, Chen L, Wang Y, Zhang M, Bibbo D (2020) Multi/many-objective particle swarm optimization algorithm based on competition mechanism. Intell Neurosci. https://doi.org/10.1155/2020/5132803

    Article  Google Scholar 

  126. Yannibelli V, Pacini E, Monge DA, Mateos C, Rodríguez G (2020) A comparative analysis of NSGA-II and NSGA-III for autoscaling parameter sweep experiments in the cloud. Sci Program 2020:4653204:1-4653204:17

    Google Scholar 

  127. Yevseyeva I, Guerreiro A, Emmerich M, Fonseca C (2014) A portfolio optimization approach to selection in multiobjective evolutionary algorithms. In: Bartz-Beielstein T. Branke J, Filipiaa B, Smith J (eds) Parallel problem solving from nature—PPSN XIII. PPSN 2014. Lecture notes in computer science, vol 8672. Springer, Cham, pp 672–681

  128. Yue C, Liang J, Qu B, Han Y, Zhu Y, Crisalle OD (2020) A novel multiobjective optimization algorithm for sparse signal reconstruction. Signal Process 167(C):107292

    Article  Google Scholar 

  129. Zhang C, Tan KC, Lee LH, Gao L (2018) Adjust weight vectors in MOEA/D for bi-objective optimization problems with discontinuous Pareto fronts. Soft Comput 22(12):3997–4012

    Article  Google Scholar 

  130. Zhang J, Xing L (2017) A survey of multiobjective evolutionary algorithms. In: 2017 IEEE international conference on computational science and engineering (CSE) and IEEE international conference on embedded and ubiquitous computing (EUC), vol 1, pp 93–100

  131. Zhang Q, Maringer D, Tsang E (2010) MOEA/D with NBI-style Tchebycheff approach for portfolio management. In: IEEE congress on evolutionary computation, pp 1–8

  132. Li H, Zhang Q (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  133. Zhou Y, Xiang Y, Chen Z, He J, Wang J (2019) A scalar projection and angle-based evolutionary algorithm for many-objective optimization problems. IEEE Trans Cybern 49(6):2073–2084

    Article  Google Scholar 

  134. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. In: Evolutionary methods for design, optimization and control with applications to industrial problems. Proceedings of the EUROGEN’2001, Athens, Greece, 19–21 September 2001

  135. Zolpakar NA, Lodhi SS, Pathak S, Sharma MA (2020) Application of multi-objective genetic algorithm (MOGA) optimization in machining processes. In: Optimization of manufacturing processes. Springer series in advanced manufacturing. Springer, Cham, pp 185–199

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Kumar, V. A Comprehensive Review on Multi-objective Optimization Techniques: Past, Present and Future. Arch Computat Methods Eng 29, 5605–5633 (2022). https://doi.org/10.1007/s11831-022-09778-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09778-9

Navigation