Skip to main content
Log in

Ternary luminescent lanthanide-centered hybrids with organically modified titania and polymer units

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nicotinic acid (NA) is grafted to titanium alkoxide to achieve functional precursor Ti-NA, which then is coordinated to lanthanide ions (Tb3+/Eu3+) to prepare the binary titania hybrid materials Ti-NA-Eu/Ti-NA-Tb via a sol–gel process in the presence of water. Furthermore, two types of ternary titania hybrid materials, Ti-NA-Ln-PMAA/Ti-NA-Ln-PVP, are assembled by the introduction of the organic polymers polymethacrylic acid (PMAA)/polyvinylpyrrolidone (PVP) into the above system. The FTIR spectra of these titania hybrid materials confirm their basic composition, and the X-ray diffraction patterns reveal that they are amorphous. Luminescence spectra and lifetimes of these titania hybrids are recorded, revealing that these hybrid materials with organic polymers exhibit longer luminescence lifetimes and higher quantum efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weissman SI (1942) Intramolecular energy transfer the fluorescence of complexes of europium. J Chem Phys 10:214–217

    Article  CAS  Google Scholar 

  2. Sabbatini N, Guardigli M, Lehn JM (1993) Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev 123:201–228

    Article  CAS  Google Scholar 

  3. Matthews LR, Knobbe ET (1993) Luminescence behavior of europium complexes in sol–gel derived host materials. Chem Mater 5:1697–1700

    Article  CAS  Google Scholar 

  4. Lehn JM (1990) Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed 29:1304–1319

    Article  Google Scholar 

  5. Hu WP, Matsumura M, Wang MZ, Jin LP (2000) Efficient red electroluminescence from devices having multilayers of a europium complex. Appl Phys Lett 77:4271–4273

    Article  CAS  Google Scholar 

  6. Zheng YX, Fu LS, Zhou YH, Yu JB, Yu YN, Wang SB, Zhang HJ (2002) Electroluminescence based on a beta-diketonate ternary samarium complex. J Mater Chem 12:919–923

    Article  CAS  Google Scholar 

  7. Qiao XF, Yan B (2009) Hybrid materials of lanthanide centers/functionalized 2-thenoyltrifluoroacetone/silicon–oxygen network/polymeric chain: coordination bonded assembly, physical characterization, and photoluminescence. Inorg Chem 48:4714–4723

    Article  CAS  Google Scholar 

  8. Li HR, Lin J, Zhang HJ, Fu LS (2001) Novel, covalently bonded hybrid materials of europium (terbium) complexes with silica. Chem Commun 13:1212–1213

    Article  Google Scholar 

  9. Carlos LD, Ferreira RAS, Pereira RN, Assuncao M, Bermudez VD (2004) White-light emission of amine-functionalized organic/inorganic hybrids: emitting centers and recombination mechanisms. J Phys Chem B 108:14924–14932

    Article  CAS  Google Scholar 

  10. Binnemans K, Lenaerts P, Driesen K, Gorller-Walrand C (2004) A luminescent tris(2-thenoyltrifluoroacetonato) europium(III) complex covalently linked to a 1,10-phenanthroline-functionalised sol–gel glass. J Mater Chem 14:191–195

    Article  CAS  Google Scholar 

  11. Liu JL, Yan B (2008) Lanthanide (Eu3+, Tb3+) centered hybrid materials using modified functional bridge chemical bonded with silica: molecular design, physical characterization, and photophysical properties. J Phys Chem B 112:10898–10907

    Article  CAS  Google Scholar 

  12. Guo L, Yan B (2010) Chemical-bonding assembly, physical characterization, and photophysical properties of lanthanide hybrids from a functional thiazole bridge. Eur J Inorg Chem 8:1267–1274

    Article  Google Scholar 

  13. Yan B, Wang XL, Qian K, Lu HF (2010) Coordination bonding assembly, characterization and photophysical properties of lanthanide (Eu, Tb)/zinc centered hybrid materials through sulfide bridge. J Photochem Photobiol A Chem 212:75–80

    Article  CAS  Google Scholar 

  14. Wang XL, Yan B, Liu JL (2010) Photoactive lanthanide (Eu3+, Tb3+) hybrids with organically modified silica covalently bonded polymeric chain. Coll Polym Sci 288:1139–1150

    Article  CAS  Google Scholar 

  15. Gomez-Romero P, Sanchez C (2004) Functional hybrid materials. Wiley-VCH, Weinheim

    Google Scholar 

  16. Schubert U (2005) Chemical modification of titanium alkoxides for sol–gel processing. J Mater Chem 15:3701–3715

    Article  CAS  Google Scholar 

  17. Wang QM, Yan B (2004) Novel luminescent terbium molecular-based hybrids with modified meta-aminobenzoic acid covalently bonded with silica. J Mater Chem 14:2450–2454

    Article  CAS  Google Scholar 

  18. Yan B, Qian K, Lu HF (2007) Molecular assembly and photophysical properties of quaternary molecular hybrid materials with chemical bond. Photochem Photobiol 83:1481–1490

    Article  CAS  Google Scholar 

  19. Qiao XF, Yan B (2008) Molecular construction and photophysics of luminescent covalently bonded hybrids by grafting the lanthanide ions into the silicon–oxygen networks and carbon chains. J Photochem Photobiol A Chem 199:188–196

    Article  CAS  Google Scholar 

  20. Yan B, Wang QM (2008) First two luminescent molecular hybrids composed of bridged Eu(III)-b-diketone chelates covalently trapped in silica and titanate gels. Cryst Growth Des 8:4184–4189

    Google Scholar 

  21. Lu HF, Yan B (2006) Attractive sulfonamide bridging bonds constructing lanthanide centered photoactive covalent hybrids. J Non-Cryst Solids 352:5331–5336

    Article  CAS  Google Scholar 

  22. Yan B, Lu HF (2008) Lanthanide-centered covalently bonded hybrids through sulfide linkage: molecular assembly, physical characterization and photoluminescence. Inorg Chem 47:5601–5611

    Article  CAS  Google Scholar 

  23. Wang P, Klein C, Humphry-Baker R, Zakeeruddin SM, Gratzel M (2005) A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. J Am Chem Soc 127:808–809

    Article  CAS  Google Scholar 

  24. Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  CAS  Google Scholar 

  25. Frindell KL, Bartl MH, Popitsch A, Stucky GD (2002) Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. Angew Chem Int Ed 41:959–962

    Article  CAS  Google Scholar 

  26. Liu P, Li HR, Wang YG, Liu BY, Zhang WJ, Wang YJ, Yan WD, Zhang HJ, Schubert U (2008) Europium complexes immobilization on titania via chemical modification of titanium alkoxide. J Mater Chem 18:735–737

    Article  CAS  Google Scholar 

  27. Li HR, Liu P, Wang YG, Zhang L, Yu JB, Zhang HJ, Liu BY, Schubert U (2009) Preparation and luminescence properties of hybrid titania immobilized with lanthanide complexes. J Phys Chem C 113:3945–3949

    Article  CAS  Google Scholar 

  28. Yan B, Qiao XF (2007) Rare-earth/inorganic/organic polymeric hybrid materials: molecular assembly, regular microstructure and photoluminescence. J Phys Chem B 111:12362–12374

    Article  CAS  Google Scholar 

  29. Qiao XF, Yan BB (2009) Binary and ternary lanthanide centered hybrid polymeric materials: coordination bonding construction, characterization, microstructure and photoluminescence. Dalton Trans 38:8509–8518

    Article  Google Scholar 

  30. Kay J, Moore JW, Glick MD (1972) Structural studies of bridged lanthanide(III) complexes. diaquotri(nicotinic acid)holmium(III) hexa(isothiocyanato)chromate(III) dihydrate and diaquotris(isonicotinato)lanthanum(III). Inorg Chem 11:2825–2827

    Article  Google Scholar 

  31. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  CAS  Google Scholar 

  32. DeShazer LG, Dieke GH (1963) Spectra and energy levels of Eu3+ in LaCl3. J Chem Phys 38:2190–2199

    Article  CAS  Google Scholar 

  33. Thomas KS, Singh S, Dieke GH (1963) Energy levels of Tb3+ in LaCl3 and other chlorides. J Chem Phys 38:2180–2189

    Article  CAS  Google Scholar 

  34. Surble S, Serre C, Millange F, Pelle F, Ferey G (2007) Comparative study of two layered lanthanide dicarboxylates based on europium(III) dimmers. Solid State Sci 9:131–136

    Article  CAS  Google Scholar 

  35. Malta OL, dosSantos MAC, Thompson LC, Ito NK (1996) Intensity parameters of 4f–4f transitions in the Eu(dipivaloylmethanate)31,10-phenanthroline complex. J Lumin 69:77–84

    Article  CAS  Google Scholar 

  36. Ribeiro SJL, Dahmouche K, Ribeiro CA, Santilli CV, Pulcinelli SHJ (1998) Study of hybrid silica–polyethyleneglycol xerogels by Eu3+ luminescence spectroscopy. J Sol–Gel Sci Technol 13:427–432

    Article  CAS  Google Scholar 

  37. de Sa GF, Malta OL, Donega CD, Simas AM, Longo RL, Santa-Cruz PA, da Silva EF (2000) Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord Chem Rev 196:165–195

    Article  Google Scholar 

  38. Teotonio EES, Espinola JGP, Brito HF, Malta OL, Oliveria SF, de Faria DLA, Izumi CMS (2002) Influence of the N-[methylpyridyl]acetamide ligands on the photoluminescent properties of Eu(III)–perchlorate complexes. Polyhedron 21:1837–1844

    Article  CAS  Google Scholar 

  39. Soares-Santos PCR, Nogueira HIS, Felix V, Drew MGB, Ferreira RAS, Carlos LD, Trindade T (2003) Novel lanthanide luminescent materials based on complexes of 3-hydroxypicolinic acid and silica nanoparticles. Chem Mater 15:100–108

    Article  CAS  Google Scholar 

  40. Lima PP, Nobre SS, Freire RO, Junior SA, Mafra L, Ferreira RAS, Pischel U, Malta OL, Carlos LD (2007) Energy transfer mechanisms in organic-inorganic hybrids incorporating europium(III): a quantitative assessment by light emission spectroscopy. J Phys Chem C 111:17627–17634

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20971100) and Program for New Century Excellent Talents in University (NCET 2008-08-0398).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XL., Yan, B. Ternary luminescent lanthanide-centered hybrids with organically modified titania and polymer units. Colloid Polym Sci 289, 423–431 (2011). https://doi.org/10.1007/s00396-010-2372-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2372-x

Keywords

Navigation