Skip to main content
  • 29 Accesses

Abstract

The ω phase is an important metastable phase in metastable ß titanium alloys due to its significant influence on the phase transition sequence, microstructure evolution and mechanical properties of the alloys. In the present work, a quantitative phase-field model has been developed to describe the microstructural evolution during the athermal β to ω phase transition based on exact solution of coherent elastic energy and couplings to Ti-Mo metastable thermodynamical database. While reflecting the essential physics of {111}β collapse mechanism that leads to displacive transition, the modeling appropriately described the morphology, orientation and growth process of the athermal ω phase upon different quenching temperatures and Mo contents, which agree remarkably well with available experimental data. Present approach also nicely predicts a selective variant growth which observed in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Tang, Y.H. Wang, Z.S. Zhu, F.S. Zhang, and J.S. Li, “Kinetics of orthorhombic martensite decomposition in TC21 alloy under isothermal conditions,” Journal of Materials Science, 47 (2011), 521–529.

    Article  Google Scholar 

  2. R. Filip, K. Kubiak, W. Ziaja, and J. Sieniawski, “The effect of microstructure on the mechanical properties of two-phase titanium alloys,” Journal of Materials Processing Technology, 133 (2003), 84–89.

    Article  Google Scholar 

  3. T. Gloriant, G Texier, F. Sun, I. Thibon, F Prima, and J.I. Soubeyroux. “Characterization of nanophase precipitation in a metastable β titanium-based alloy by electrical resistivity, dilatometry and neutron diffraction,” Scripta Mater, 58 (2008), 271–274.

    Article  Google Scholar 

  4. F Sun, F. Prima, and T. Gloriant, “High-strength nanostructured Ti-12Mo alloy from ductile metastable beta state precursor,” Materials Science and Engineering: A, 527 (2010), 4262–4269.

    Article  Google Scholar 

  5. G Aurelio, A.F Guillermet, G.J. Cuello, and J. Campo, “Structural properties and stability of metastable phases in the Zr-Nb system: part II. Aging of Bcc (β) alloys and assessment of β-Zr,” Metall. Mater. Trans. A, 34A (2003), 2771–2779.

    Article  Google Scholar 

  6. E. Sukedai, D. Yoshimitsu, H. Matsumoto, H. Hashimoto, and M. Kiritani, “β to ω phase transformation due to aging in a Ti-Mo alloy deformed in impact compression,” Materials Science and Engineering: A, 350 (2003), 133–138.

    Article  Google Scholar 

  7. S. Banerjee, and P. Mukhopadhyay, Phase Transformations: Examples from Titanium and Zirconium Alloys (Oxford, Elsevier Science Ltd, 2007).

    Google Scholar 

  8. X.H. Min, S. Emura, L. Zhang, and K. Tsuzaki, “Effect of Fe and Zr additions on ω phase formation in β-type Ti-Mo alloys,” Materials Science and Engineering: A, 497 (2008), 74–78.

    Article  Google Scholar 

  9. GK. Dey R. Tewari, S. Banerjee, G Jyoti, S.C. Gupta, K.D. Joshi, and S.K. Sikka, “Formation of a shock deformation induced ω phase in Zr 20 Nb alloy,” Acta Mater, 52 (2004), 5243–5254.

    Article  Google Scholar 

  10. H. Matsumoto, E. Sukedai, and H. Hashimoto, “Annihilation behaviors of athermal ω-phase crystals due to electron irradiation,” Microsc. Microanal. 6 (2000), 362–367.

    Article  Google Scholar 

  11. B. Tang, Y.-W. Cui, H. Chang, H.C. Kou, J.S. Li, and L. Zhou, “A phase-field approach to athermal β → ω transformation,” Computational Materials Science, 53 (2012), 187–193.

    Article  Google Scholar 

  12. H.M. Singer, I. Singer, and A. Jacot, “Phase-field simulations of α → γ precipitations and transition to massive transformation in the Ti-Al alloy”, Acta Mater., 57 (2009), 116–124.

    Article  Google Scholar 

  13. A.G Khachaturyan, Theory of structural transformation in solids (New York, John Wiley & Sons, 1983)

    Google Scholar 

  14. B. Tang, H.C. Kou, H. Chang, J.S. Li, and L. Zhou, “Coherent elastic energy calculation of ω particles in β matrix for Zr-Nb alloys,” Journal of Materials Science, 46 (2011), 675–680.

    Article  Google Scholar 

  15. H.E. Cook, “On first-order structural phase transitions-II. The ω transformation in Zr-Nb alloys,” Acta Metallurgica, 23 (1975), 1041–1054.

    Article  Google Scholar 

  16. S. Farjami, and H. Kubo, “Heterophase fluctuations of incommensurate ω phase in Cu-Zn system”, Acta Mater., 53 (2005), 1693–1709.

    Article  Google Scholar 

  17. H. Kubo, and S. Farjami, “Nucleation of athermal ω phase in Cu-Zn system,” Materials Science and Engineering: A, 438 (2006), 181–185.

    Article  Google Scholar 

  18. M. Sanati, and A. Saxena, “Landau theory of domain walls for one-dimensional asymmetric potentials,” American Journal of Physics, 71 (2003), 1005–1012.

    Article  Google Scholar 

  19. M. Sanati, and A. Saxena, “Domain walls in ω-phase transformations,” Physica D, 123 (1998), 368–379.

    Article  Google Scholar 

  20. O.K. Andersen, O. Jepsen and G. Krier, “Exact Muffin-Tin Orbital Theory” (Lectures on Methods of Electronic Structure Calculations, World Scientific, Singapore, 1994), 63–124.

    Google Scholar 

  21. L. Vitos, I. A. Abrikosov and B. Johansson, “Anisotropic lattice distortions in random alloys from first-principles theory,” Phys. Rev. Lett. 87 (2001), 156401.

    Article  Google Scholar 

  22. L. Vitos, Computational Quantum Mechanics for Materials Engineers (Springer-Verlag, London, 2007).

    Google Scholar 

  23. P. Soven, “coherent-potential model of substitutional disordered alloys,” Phys. Rev. 156 (1967), 809–813.

    Article  Google Scholar 

  24. B.L. Gyorffy, “coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys,” Phys. Rev. B, 5 (1972), 2382–2384.

    Article  Google Scholar 

  25. J. Howe, Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid-Vapor, Solid-Liquid and Solid-Solid Interfaces (Wiley-Interscience, New York, 1997).

    Google Scholar 

  26. S. Banerjee, R. Tewari, and G. K. Dey, “ω phase transformation-morphologies and mechanisms banerjee,” Int. J. Mat. Res. 97 (2006), 963–977.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Tang, B., Cui, YW., Kou, H., Lai, M., Li, J. (2013). Quantitative phase field simulation of athermal ω transition in Ti-Mo alloys. In: Marquis, F. (eds) Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-48764-9_341

Download citation

Publish with us

Policies and ethics