Skip to main content

Homogeneous Ensemble Selection - Experimental Studies

  • Conference paper
  • First Online:
Hard and Soft Computing for Artificial Intelligence, Multimedia and Security (ACS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 534))

Included in the following conference series:

Abstract

The paper presents the dynamic ensemble selection method. Proposed method uses information from so-called decision profiles which are formed from the outputs of the base classifiers. In order to verify these algorithms, a number of experiments have been carried out on several public available data sets. The proposed dynamic ensemble selection is experimentally compared against all base classifiers and the ensemble classifiers based on the sum and decision profile methods. As a base classifiers we used the pool of homogeneous classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple Valued Logic Soft Comput. 17(255–287), 11 (2010)

    Google Scholar 

  2. Baczyńska, P., Burduk, R.: Ensemble selection based on discriminant functions in binary classification task. In: Jackowski, K., Burduk, R., Walkowiak, K., Woźniak, M., Yin, H. (eds.) IDEAL 2015. LNCS, vol. 9375, pp. 61–68. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24834-9_8

    Chapter  Google Scholar 

  3. Breiman, L.: Randomizing outputs to increase prediction accuracy. Mach. Learn. 40(3), 229–242 (2000)

    Article  MATH  Google Scholar 

  4. Britto, A.S., Sabourin, R., Oliveira, L.E.: Dynamic selection of classifiers-a comprehensive review. Pattern Recogn. 47(11), 3665–3680 (2014)

    Article  Google Scholar 

  5. Burduk, R.: Classifier fusion with interval-valued weights. Pattern Recogn. Lett. 34(14), 1623–1629 (2013)

    Article  Google Scholar 

  6. Canuto, A.M., Abreu, M.C., de Melo Oliveira, L., Xavier, J.C., Santos, A.D.M.: Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles. Pattern Recogn. Lett. 28(4), 472–486 (2007)

    Article  Google Scholar 

  7. Duin, R.P.: The combining classifier: to train or not to train? In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 2, pp. 765–770. IEEE (2002)

    Google Scholar 

  8. Forczmański, P., Łabędź, P.: Recognition of occluded faces based on multi-subspace classification. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp. 148–157. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40925-7_15

    Chapter  Google Scholar 

  9. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  10. Frejlichowski, D.: An algorithm for the automatic analysis of characters located on car license plates. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 774–781. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39094-4_89

    Chapter  Google Scholar 

  11. Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm. In: ICML, vol. 96, pp. 148–156 (1996)

    Google Scholar 

  12. Giacinto, G., Roli, F.: An approach to the automatic design of multiple classifier systems. Pattern Recogn. Lett. 22, 25–33 (2001)

    Article  MATH  Google Scholar 

  13. Inbarani, H.H., Azar, A.T., Jothi, G.: Supervised hybrid feature selection based on pso and rough sets for medical diagnosis. Comput. Methods Programs Biomed. 113(1), 175–185 (2014)

    Article  Google Scholar 

  14. Jackowski, K., Krawczyk, B., Woźniak, M.: Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning. Int. J. Neural Syst. 24(3), 1430007 (2014)

    Article  Google Scholar 

  15. Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69731-2_26

    Chapter  Google Scholar 

  16. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Hoboken (2004)

    Book  MATH  Google Scholar 

  17. Kuncheva, L.I., Bezdek, J.C., Duin, R.P.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recogn. 34(2), 299–314 (2001)

    Article  MATH  Google Scholar 

  18. Rejer, I.: Genetic algorithm with aggressive mutation for feature selection in bci feature space. Pattern Anal. Appl. 18(3), 485–492 (2015)

    Article  MathSciNet  Google Scholar 

  19. Ruta, D., Gabrys, B.: Classifier selection for majority voting. Inf. Fusion 6(1), 63–81 (2005)

    Article  MATH  Google Scholar 

  20. Trawiński, B., Smȩtek, M., Telec, Z., Lasota, T.: Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms. Int. J. Appl. Math. Comput. Sci. 22(4), 867–881 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Xu, L., Krzyżak, A., Suen, C.Y.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Syst. Man Cybern. 22(3), 418–435 (1992)

    Article  Google Scholar 

  22. Zdunek, R., Nowak, M., Pliński, E.: Statistical classification of soft solder alloys by laser-induced breakdown spectroscopy: review of methods. J. Eur. Opt. Soc. Rapid Publ. 11(16006), 1–20 (2016)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish National Science Center under the grant no. DEC-2013/09/B/ST6/02264 and by the statutory funds of the Department of Systems and Computer Networks, Wroclaw University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Burduk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Burduk, R., Heda, P. (2017). Homogeneous Ensemble Selection - Experimental Studies. In: Kobayashi, Sy., Piegat, A., Pejaś, J., El Fray, I., Kacprzyk, J. (eds) Hard and Soft Computing for Artificial Intelligence, Multimedia and Security. ACS 2016. Advances in Intelligent Systems and Computing, vol 534. Springer, Cham. https://doi.org/10.1007/978-3-319-48429-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48429-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48428-0

  • Online ISBN: 978-3-319-48429-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics