Skip to main content

Current Trends and Emerging Challenges in Sustainable Management of Salt-Affected Soils: A Critical Appraisal

  • Chapter
  • First Online:
Bioremediation of Salt Affected Soils: An Indian Perspective

Abstract

Food and nutritional security of the ever-growing world population in an era of climate change, widespread environmental degradation, water scarcity and the loss of productive lands has heightened the need for harnessing the potential of degraded lands and marginal quality water resources in agricultural production. Consistent with the fact that even marginal gains in the productivity of deteriorated, salt-affected lands could significantly improve the farmers’ livelihoods and environmental quality, a suit of agronomic and biological measures have been suggested to augment their agricultural efficiency. However, an analysis of the literature reveals drawbacks in the potential applications of many such conventional techniques rendering them somewhat ineffective in addressing these challenges. As fresh water is an indispensable input in the reclamation of saline and sodic lands, severe freshwater shortages have necessitated a refurbishing of the existing approaches to ensure the sustained use of marginal quality water in soil restoration. Climate change has emerged as a grave threat to the land and water resources, and agriculture in salt-affected environments is likely to be worst affected by the projected alterations in crop growth conditions. In this backdrop, this paper presents an analysis of the loopholes in currently pursued salinity management practices and delineates the future research priorities to augment and sustain the agricultural productivity in salt-affected soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe, M., Mamo, T., Duffera, M., & Kidanu, S. Y. (1994). Crop response to improved drainage of vertisols in the Ethiopian Highlands. Journal of Agronomy and Crop Science, 172, 217–222.

    Article  Google Scholar 

  • Abdel‐Dayem, S., Abdel‐Gawad, S., & Fahmy, H. (2007). Drainage in Egypt: A story of determination, continuity, and success. Irrigation and Drainage, 56, 101–111.

    Article  Google Scholar 

  • Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. (1988). Salt-affected soils and their management, FAO Soils Bulletin 39. Rome: Food & Agriculture Organization of the United Nations.

    Google Scholar 

  • Ahmed, B. O., Inoue, M., & Moritani, S. (2010). Effect of saline water irrigation and manure application on the available water content, soil salinity, and growth of wheat. Agricultural Water Management, 97(1), 165–170.

    Article  Google Scholar 

  • Ali-Dinar, H. M., Ebert, G., & Ludders, P. (1999). Growth, chlorophyll content, photo-synthesis and water relations in guava (Psidium guajava L) under salinity and different nitrogen supply. Gartenbauwissenschaft, 64(2), 54–59.

    Google Scholar 

  • Al-Lahham, O., El Assi, N. M., & Fayyad, M. (2007). Translocation of heavy metals to tomato (Solanum lycopersicum L.) fruit irrigated with treated wastewater. Scientia Horticulturae, 113, 250–254.

    Article  CAS  Google Scholar 

  • Allbed, A., & Kumar, L. (2013). Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: A review. Advances in Remote Sensing, 2, 373–385.

    Article  Google Scholar 

  • Ambast, S. K., Gupta, S. K., & Singh, G. (2007). Agricultural land drainage: Reclamation of waterlogged saline lands (p. 231). Karnal, India: Central Soil Salinity Research Institute.

    Google Scholar 

  • Ambast, S. K., Tyagi, N. K., & Raul, S. K. (2006). Management of declining groundwater in the Trans Indo-Gangetic Plain (India): Some options. Agriculture Water Management, 82, 279–296.

    Article  Google Scholar 

  • Ambast, S. K., Sen, H. S., & Tyagi, N. K. (1998). Rainwater management for multiple cropping in Sundarbans Delta (West Bengal), Bulletin No. 2/98 (p. 69). West Bengal, India: Regional Research Station, Central Soil Salinity Research Institute.

    Google Scholar 

  • Amin, A. A. (2004). The extent of desertification on Saudi Arabia. Environmental Geology, 46, 22–31.

    Google Scholar 

  • Angelakis, A. N., Do Monte, M. M., Bontoux, L., & Asano, T. (1999). The status of wastewater reuse practice in the Mediterranean basin: Need for guidelines. Water Research, 33, 2201–2217.

    Article  CAS  Google Scholar 

  • Arbona, V., Flors, V., Jacas, J., García-Agustín, P., & Gómez-Cadenas, A. (2003). Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiology, 44, 388–394.

    Article  CAS  Google Scholar 

  • Arora, S., Vanza, M. J., Mehta, R., Bhuva, C., & Patel, P. N. (2014). Halophilic microbes for bio-remediation of salt affected soils. African Journal of Microbiology Research, 8, 3070–3078.

    Article  CAS  Google Scholar 

  • Awang, Y. B., & Atherton, J. G. (1995). Growth and fruiting responses of strawberry plants grown on rockwool to shading and salinity. Scientia Horticulturae, 62, 25–31.

    Article  Google Scholar 

  • Babel, M. S., & Wahid, S. M. (2008). Fresh water under threat- South Asia vulnerability assessment of freshwater resources to environmental change. United Nations Environment Programme.

    Google Scholar 

  • Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Global assessment of land degradation and improvement. 1. Identification by remote sensing (Report 2008/01). Wageningen: ISRIC-World Soil Information.

    Google Scholar 

  • Ball, M. C., & Munns, R. (1992). Plant responses to salinity under elevated atmospheric concentrations of CO2. Australian Journal of Botany, 40(5), 515–525.

    Article  CAS  Google Scholar 

  • Bartels, D. (2001). Targeting detoxification pathways: An efficient approach to obtain plants with multiple stress tolerance? Trends in Plant Science, 6, 284–286.

    Article  CAS  Google Scholar 

  • Bernstein, L. (1980). Salt tolerance of fruit crops (USDA Agricultural Information Bulletin 292, p. 8). United States Department of Agriculture.

    Google Scholar 

  • Blumwald, E. (2000). Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 12, 431–434.

    Article  CAS  Google Scholar 

  • Brar, M. S., Malhi, S. S., Singh, A. P., Arora, C. L., & Gill, K. S. (2000). Sewage water irrigation effects on some potentially toxic trace elements in soil and potato plants in northwestern India. Canadian Journal of Soil Science, 80, 465–471.

    Article  CAS  Google Scholar 

  • Bray, S., & Reid, D. M. (2002). The effect of salinity and CO2 enrichment on the growth and anatomy of the second trifoliate leaf of Phaseolus vulgaris. Canadian Journal of Botany, 80(4), 349–359.

    Article  Google Scholar 

  • Buckland, G. D., et al. (1986). The influence of drain depth on the rate of soil reclamation in irrigated areas of southern Alberta. Canadian Journal of Soil Science, 66, 531–535.

    Article  Google Scholar 

  • Burnell, G., & Allan, G. (Eds.), (2009). New technologies in aquaculture: Improving production efficiency, quality and environmental management. Elsevier.

    Google Scholar 

  • Burrage, D. M., Heron, M. L., Hacker, J. M., Miller, J. L., Stieglitz, T. C., Steinberg, C.R., et al. (2003). Structure and influence of tropical river plumes in the Great Barrier Reef: application and performance of an airborne sea surface salinity mapping system. Remote Sensing of Environment, 85(2), 204-220

    Google Scholar 

  • Camp, C. R. (1998). Subsurface drip irrigation: A review. Transactions of the ASAE, 41, 1353–1367.

    Article  Google Scholar 

  • Chartzoulakis, K. S. (2005). Salinity and olive: Growth, salt tolerance, photosynthesis and yield. Agricultural Water Management, 78, 108–121.

    Article  Google Scholar 

  • Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560.

    Article  CAS  Google Scholar 

  • Chhabra, R., & Thakur, N. P. (1998). Lysimeter study on the use of biodrainage to control waterlogging and secondary salinization in (canal) irrigated arid/semi-arid environment. Irrigation and Drainage Systems, 12, 265–288.

    Article  Google Scholar 

  • Chowdhury, T. R., Basu, G. K., Mandal, B. K., Biswas, B. K., Chowdhury, U. K., Chanda, C.R., et al. (1999) Arsenic poisoning in the Ganges delta. Nature, 401, 545–546.

    Google Scholar 

  • Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46, 11–43.

    Article  Google Scholar 

  • CSSRI. (2013). Annual report, 2013–2014. Karnal, India: Central Soil Salinity Research Institute.

    Google Scholar 

  • Dagar, J. C., Tomar, O. S., Minhas, P. S., Singh, G., & Ram, J. (2008). Dry land bio-saline agriculture- hisar experience (Technical Bulletin No. 6/2008, p. 28). Karnal: Central Soil Salinity Research Institute.

    Google Scholar 

  • Dalton, F. N. (1992). Development of time-domain reflectometry for measuring soil water content and bulk soil electrical conductivity. In G. C. Topp, W. D. Reynolds & R. E. Green (Eds.), Advances in measurement of soil physical properties: Bringing theory into practice (pp. 143–167). Soil Science Society of America.

    Google Scholar 

  • Dalton, F. N., & Van Genuchten, M. T. (1986). The time-domain reflectometry method for measuring soil water content and salinity. Geoderma, 38(1), 237–250.

    Article  CAS  Google Scholar 

  • Damodaran, T., Rai, R. B., Jha, S. K., Sharma, D. K., Mishra, V. K., Dhama, K., et al. (2013). Impact of social factors in adoption of CSR BIO‐A cost effective, eco‐friendly bio‐growth enhancer for sustainable crop production. South Asian Journal of Experimental Biology, 3, 158–165.

    Google Scholar 

  • Datta, K. K., & De Jong, C. (2002). Adverse effect of waterlogging and soil salinity on crop and land productivity in northwest region of Haryana, India. Agricultural Water Management, 57(3), 223–238.

    Article  Google Scholar 

  • Datta, K. K., & Joshi, P. K. (1993). Problems and prospects of co-operatives in managing degraded lands: Case of saline and water-logged soils. Economic and Political Weekly, 28, 16–24.

    Google Scholar 

  • Datta, K. K., Sharma, V. P., & Sharma, D. P. (1998). Estimation of a production function for wheat under saline conditions. Agricultural Water Management, 36, 85–94.

    Article  Google Scholar 

  • Datta, K. K., Tewari, L., & Joshi, P. K. (2004). Impact of subsurface drainage on improvement of crop production and farm income in north-west India. Irrigation and Drainage Systems, 18, 43–55.

    Article  Google Scholar 

  • El-Morsy, E. A., Malik, M., & Letey, J. (1991). Polymer effects on the hydraulic conductivity of saline and sodic soil conditions. Soil Science, 151, 430–435.

    Article  CAS  Google Scholar 

  • Enfors, E. I., & Gordon, L. J. (2007). Analysing resilience in dryland agro‐ecosystems: A case study of the Makanya catchment in Tanzania over the past 50 years. Land Degradation & Development, 18, 680–696.

    Article  Google Scholar 

  • Erkossa, T., Gizaw, A., & Stahr, K. (2004). Land preparation methods efficiency on the highland Vertisols of Ethiopia. Irrigation and Drainage, 53, 69–75.

    Article  Google Scholar 

  • Erkossa, T., Stahr, K., & Gaiser, T. (2006). Soil tillage and crop productivity on a Vertisol in Ethiopian highlands. Soil and Tillage Research, 85, 200–211.

    Article  Google Scholar 

  • Escobar, J. C., et al. (2009). Biofuels: Environment, technology and food security. Renewable and Sustainable Energy Reviews, 13(6), 1275–1287.

    Article  CAS  Google Scholar 

  • Esechie, H. A. (1994). Interaction of salinity and temperature on the germination of sorghum. Journal of Agronomy and Crop Science, 172, 194–199.

    Article  Google Scholar 

  • Essah, P. A., Davenport, R., & Tester, M. (2003). Sodium influx and accumulation in Arabidopsis. Plant Physiology, 133, 307–318.

    Article  CAS  Google Scholar 

  • FAO. (2011). State of the World’s Land and Water Resources for Food and Agriculture (SOLAW). Rome, Italy: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Farifteh, J., Farshad, A., & George, R. J. (2006). Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma, 130, 191–206.

    Article  CAS  Google Scholar 

  • Fayrap, A., & Koc, C. (2012). Comparison of drainage water quality and soil salinity in irrigated areas with surface and subsurface drainage systems. Agricultural Research, 1, 280–284.

    Article  Google Scholar 

  • Fekete, J., et al. (2002). The results of amelioration of sodic and alkaline soils. In Man and soil at the third millennium. Proceedings International Congress of the European Society for Soil Conservation (pp. 1525–1533). Valencia, Spain, 28 March-1 April, 2000.

    Google Scholar 

  • Fitzpatrick, R. W. (2002). Land degradation processes. In T. R. McVicar et al. (Eds.), Regional water and soil assessment for managing sustainable agriculture in China and Australia (ACIAR Monograph No. 84, pp. 119–129).

    Google Scholar 

  • Foley, J. A., et al. (2005). Global consequences of land use. Science, 309, 570–574.

    Article  CAS  Google Scholar 

  • Fowler, J. L. (1991). Interaction of salinity and temperature on the germination of Crambe. Agronomy Journal, 83, 169–172.

    Article  CAS  Google Scholar 

  • Francois, L. E., & Maas, E. V. (1994). Crop response and management on salt-affected soils. In Handbook of plant and crop stress (pp. 149–181).

    Google Scholar 

  • Fritsch, E., & Fitzpatrick, R. W. (1994). Interpretation of soil features produced by ancient and modern processes in degraded landscapes. 1. A new method for constructing conceptual soil-water-landscape models. Soil Research, 32, 889–907.

    Article  Google Scholar 

  • Fujisaka, S., Harrington, L., & Hobbs, P. (1994). Rice-wheat in South Asia: Systems and long-term priorities established through diagnostic research. Agricultural Systems, 46(2), 169–187.

    Article  Google Scholar 

  • Gadallah, M. A. A. (1996). Abscisic acid, temperature and salinity interactions on growth and some mineral elements in Carthamus plants. Plant Growth Regulation, 20(3), 225–236.

    Article  CAS  Google Scholar 

  • Gale, J. (1975). The combined effect of environmental factors and salinity on plant growth. In Plants in saline environments (pp. 186–192). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., et al. (2013). Sustainable intensification in agriculture: Premises and policies. Science, 341, 33–34.

    Google Scholar 

  • Geissler, N., Hussin, S., & Koyro, H. W. (2009). Interactive effects of NaCl salinity and elevated atmospheric CO 2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environmental and Experimental Botany, 65, 220–231.

    Article  CAS  Google Scholar 

  • George, R. J., Nulsen, R. A., Ferdowsian, R., & Raper, G. P. (1999). Interactions between trees and groundwaters in recharge and discharge areas–A survey of Western Australian sites. Agricultural Water Management, 39(2), 91–113.

    Article  Google Scholar 

  • Gharaibeh, M. A., et al. (2014). Reclamation of highly calcareous saline-sodic soil using low quality water and phosphogypsum. Applied Water Science, 4, 223–230.

    Article  CAS  Google Scholar 

  • Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47, 39–50.

    Article  CAS  Google Scholar 

  • Giri, B., Kapoor, R., & Mukerji, K. G. (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biology and Fertility of Soils, 38(3), 170–175.

    Article  Google Scholar 

  • Godfray, H. C. J., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327, 812–818.

    Article  CAS  Google Scholar 

  • Grattan, S. R., Grieve, C. M., Poss, J. A., Robinson, P. H., Suarez, D. L., & Benes, S. E. (2004). Evaluation of salt-tolerant forages for sequential water reuse systems: III. Potential implications for ruminant mineral nutrition. Agricultural Water Management, 70, 137–150.

    Google Scholar 

  • Gupta, S. K. (2002). A century of subsurface drainage research in India. Irrigation and Drainage Systems, 16, 69–84.

    Article  Google Scholar 

  • Gupta, S. K. (2015). Reclamation and management of water-logged saline soils. Agricultural Research Journal, 52, 104–115.

    Article  Google Scholar 

  • Hanjra, M. A., & Qureshi, M. E. (2010). Global water crisis and future food security in an era of climate change. Food Policy, 35, 365–377.

    Article  Google Scholar 

  • Hare, P. D., & Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21, 79–102.

    Article  CAS  Google Scholar 

  • Harvey, C. A., Komar, O., Chazdon, R., Ferguson, B. G., Finegan, B., Griffith, D. M. (2008). Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conservation Biology, 22, 8–15.

    Google Scholar 

  • Heuperman, A. F., Kapoor, A. S., & Denecke, H. W. (2002). Biodrainage: principles, experiences and applications (No. 6). Rome: Food & Agriculture Organization of the United Nations.

    Google Scholar 

  • Hoffman, G. J., & Jobes, J. A. (1978). Growth and water relations of cereal crops as influenced by salinity and relative humidity. Agronomy Journal, 70, 765–769.

    Article  Google Scholar 

  • Hoffman, G. J., Maas, E. V., & Rawlins, S. L. (1973). Salinity-ozone interactive effects on yield and water relations of pinto bean. Journal of Environmental Quality, 2(1), 148–152.

    Article  CAS  Google Scholar 

  • Hoffman, G. J., Maas, E. V., & Rawlins, S. L. (1975). Salinity-ozone interactive effects on alfalfa yield and water relations. Journal of Environmental Quality, 4(3), 326–331.

    Article  CAS  Google Scholar 

  • Hoffman, G. J., & Rawlins, S. L. (1971). Growth and water potential of root crops as influenced by salinity and relative humidity. Agronomy Journal, 63(6), 877–880.

    Article  Google Scholar 

  • Horney, R. D., Taylor, B., Munk, D. S., Roberts, B. A., Lesch, S. M., & Plant, R. E. (2005). Development of practical site-specific management methods for reclaiming salt-affected soil. Computers and Electronics in Agriculture, 46, 379–397.

    Article  Google Scholar 

  • Houk, E., Frasier, M., & Schuck, E. (2006). The agricultural impacts of irrigation induced waterlogging and soil salinity in the Arkansas Basin. Agricultural Water Management, 85(1), 175–183.

    Article  Google Scholar 

  • ICAR-CSSRI. (2015). ICAR-Central Soil Salinity Research Institute Vision 2050. New Delhi: Indian Council of Agricultural Research.

    Google Scholar 

  • Islam, M. S., et al. (2007). A grid-based assessment of global water scarcity including virtual water trading. Water Resources Management, 21, 19–33.

    Article  Google Scholar 

  • Jacks, G., Bhattacharya, P., Chaudhary, V., & Singh, K. P. (2005). Controls on the genesis of some high-fluoride groundwaters in India. Applied Geochemistry, 20, 221–228.

    Article  CAS  Google Scholar 

  • Janmaat, J. (2004). Calculating the cost of irrigation induced soil salinization in the Tungabhadra project. Agricultural Economics, 31, 81–96.

    Article  Google Scholar 

  • Jha, S. K., Damodaran, T., Verma, C. L., Mishra, V. K., Sharma, D. K., Sah, V., et al. (2013) Fluoride partitioning in rice (Oryza sativa) and wheat (Triticum aestivum) upon irrigation with fluoride-contaminated water and its risk assessment. South Asian Journal of Experimental Biology, 3, 137–144.

    Google Scholar 

  • Kaledhonkar, M. J., Sharma, D. R., Tyagi, N. K., Kumar, A., & Van Der Zee, S. E. A. T. M. (2012). Modeling for conjunctive use irrigation planning in sodic groundwater areas. Agricultural Water Management, 107, 14–22.

    Article  Google Scholar 

  • Kannan, R., Damodaran, T., & Umamaheswari, S. (2015). Sodicity tolerant polyembryonic mango root stock plants: A putative role of endophytic bacteria. African Journal of Biotechnology, 14, 350–359.

    Article  CAS  Google Scholar 

  • Kaushal, M. P. (2009). Groundwater recharge technologies. Journal of Crop Improvement, 23, 83–93.

    Article  Google Scholar 

  • Kaushik, A., Nisha, R., Jagjeeta, K., & Kaushik, C. P. (2005). Impact of long and short-term irrigation of a sodic soil with distillery effluent in combination with bio-amendments. Bioresource Technology, 96, 1860–1866.

    Article  CAS  Google Scholar 

  • Kearney, J. (2010). Food consumption trends and drivers. Philosophical Transactions of the Royal Society B Biological, 365, 2793–2807.

    Article  Google Scholar 

  • Khan, M. A., & Rizvi, Y. (1994). Effect of salinity, temperature, and growth regulators on the germination and early seedling growth of Atriplex griffithii var. stocksii. Canadian Journal of Botany, 72, 475–479.

    Article  Google Scholar 

  • Khan, S., Hanjra, M. A., & Mu, J. (2009). Water management and crop production for food security in China: A review. Agricultural Water Management, 96(3), 349–360.

    Article  Google Scholar 

  • Kiziloglu, F. M., Turan, M., Sahin, U., Kuslu, Y., & Dursun, A. (2008). Effects of untreated and treated wastewater irrigation on some chemical properties of cauliflower (Brassica oleracea L. var. botrytis) and red cabbage (Brassica oleracea L. var. rubra) grown on calcareous soil in Turkey. Agricultural Water Management, 95, 716–724.

    Article  Google Scholar 

  • Kochhar, S., Watkins, C. B., Conklin, P. L., & Brown, S. K. (2003). A quantitative and qualitative analysis of antioxidant enzymes in relation to susceptibility of apples to superficial scald. Journal of the American Society for Horticultural Science, 128(6), 910–916.

    CAS  Google Scholar 

  • Kumar, A., Sharma, S., & Mishra, S. (2010). Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. Journal of Plant Growth Regulation, 29(3), 297–306.

    Article  CAS  Google Scholar 

  • Kumar, S., Kamra, S. K., Yadav, R. K., & Narjary, B. (2014). Effectiveness of horizontal filter for artificial groundwater recharge structure. Journal of Agriculture Engineering, 51, 24–33.

    Google Scholar 

  • Lakhdar, A., Rabhi, M., Ghnaya, T., Montemurro, F., Jedidi, N., & Abdelly, C. (2009). Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials, 171(1), 29–37.

    Article  CAS  Google Scholar 

  • Lambers, H. (2003). Dryland salinity: A key environmental issue in southern Australia. Plant and Soil, 257, v–vii.

    Google Scholar 

  • Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences, 108(9), 3465–3472.

    Article  CAS  Google Scholar 

  • Latef, A. A. H. A., & Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 127(3), 228–233.

    Article  CAS  Google Scholar 

  • Lazarova, V., Levine, B., Sack, J., Cirelli, G., Jeffrey, P., Muntau, H., et al. (2001) Role of water reuse for enhancing integrated water management in Europe and Mediterranean countries. Water Science & Technology, 43, 25–33.

    Google Scholar 

  • Lenka, N. K., & Lal, R. (2012). Soil-related constraints to the carbon dioxide fertilization effect. Critical Reviews in Plant Sciences, 31, 342–357.

    Article  CAS  Google Scholar 

  • Li, Y., Shi, Z., Li, F., & Li, H. Y. (2007). Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Computers and Electronics in Agriculture, 56, 174–186.

    Article  Google Scholar 

  • Liang, Y., Si, J., Nikolic, M., Peng, Y., Chen, W., & Jiang, Y. (2005). Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biology and Biochemistry, 37(6), 1185–1195.

    Article  CAS  Google Scholar 

  • Lindén, L., Palonen, P., & Lindén, M. (2000). Relating freeze-induced electrolyte leakage measurements to lethal temperature in red raspberry. Journal of American Society for Horticultural Science, 125, 429–435.

    Google Scholar 

  • Liu, R., & Lal, R. (2012). Nano-enhanced materials for reclamation of mine lands and other degraded soils: A review. Journal of Nanotechnology. doi:10.1155/2012/461468.

    Google Scholar 

  • Lopez‐Gunn, E., & Ramón Llamas, M. (2008). Re‐thinking water scarcity: Can science and technology solve the global water crisis? Natural Resources Forum, 32, 228–238.

    Article  Google Scholar 

  • Lorenzo, P., Sánchez-Guerrero, M. C., Medrano, E., García, M. L., Caparrós, I., & Giménez, M. (2003). External greenhouse mobile shading: effect on microclimate, water use efficiency and yield of a tomato crop grown under different salinity levels of the nutrient solution. Acta Horticulturae, 609, 181–186.

    Article  Google Scholar 

  • Lotze‐Campen, H., et al. (2008). Global food demand, productivity growth, and the scarcity of land and water resources: A spatially explicit mathematical programming approach. Agricultural Economics, 39, 325–338.

    Google Scholar 

  • Mandal, S., Sarangi, S. K., Burman, D., Bandyopadhyay, B. K., Maji, B., Mandal, U. K., et al. (2013). Land shaping models for enhancing agricultural productivity in salt affected coastal areas of West Bengal–an economic analysis. Indian Journal of Agricultural Economics, 68, 389–401.

    Google Scholar 

  • Mansour, M. M. F. (2013). Plasma membrane permeability as an indicator of salt tolerance in plants. Biologia Plantarum, 57, 1–10.

    Article  CAS  Google Scholar 

  • Mara, D. D., & Cairncross, S. (1989). Guidelines for the safe use of wastewater and excreta in agriculture and aquaculture: Measures for public health protection. Geneva: World Health Organization.

    Google Scholar 

  • McNeill, J. D. (1992). Rapid, accurate mapping of soil salinity by electromagnetic ground conductivity meters. In G. C. Topp, W. D. Reynolds & R. E. Green (Eds.), Advances in measurement of soil physical properties: Bringing theory into practice (pp. 209–229). Soil Science Society of America.

    Google Scholar 

  • Melloul, A. A., Hassani, L., & Rafouk, L. (2001). Salmonella contamination of vegetables irrigated with untreated wastewater. World Journal of Microbiology and Biotechnology, 17, 207–209.

    Article  Google Scholar 

  • Mendelsohn, R., & Dinar, A. (1999). Climate change, agriculture, and developing countries: Does adaptation matter? The World Bank Research Observer, 14(2), 277–293.

    Article  Google Scholar 

  • Metternicht, G. I., & Zinck, J. A. (2003). Remote sensing of soil salinity: Potentials and constraints. Remote Sensing of Environment, 85(1), 1–20.

    Article  Google Scholar 

  • Minhas, P. S. (1996). Saline water management for irrigation in India. Agricultural Water Management, 30(1), 1–24.

    Article  Google Scholar 

  • Mirza, M. M. Q. (1998). Diversion of the Ganges water at Farakka and its effects on salinity in Bangladesh. Environmental Management, 22(5), 711–722.

    Article  CAS  Google Scholar 

  • Mishra, A., Sharma, S. D., & Khan, G. H. (2003). Improvement in physical and chemical properties of sodic soil by 3, 6 and 9 years old plantation of Eucalyptus tereticornis: Bio-rejuvenation of sodic soil. Forest Ecology & Management, 184, 115–124.

    Article  Google Scholar 

  • Misra, N., & Gupta, A. K. (2006). Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. Journal of Plant Physiology, 163, 11–18.

    Article  CAS  Google Scholar 

  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11, 15–19.

    Article  CAS  Google Scholar 

  • Mmolawa, K., & Or, D. (2000). Root zone solute dynamics under drip irrigation: A review. Plant and Soil, 222, 163–190.

    Article  CAS  Google Scholar 

  • Morgan, K. T., Wheaton, T. A., Parsons, L. R., & Castle, W. S. (2008). Effects of reclaimed municipal waste water on horticultural characteristics, fruit quality, and soil and leaf mineral concentration of citrus. Hort Science, 43, 459–464.

    Google Scholar 

  • Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645–663.

    Article  CAS  Google Scholar 

  • Munns, R., Cramer, G. R., & Ball, M. C. (1999). Interactions between rising CO 2 , soil salinity and plant growth. Carbon dioxide and environmental stress (pp. 139–167). London: Academic.

    Google Scholar 

  • Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025–1043.

    Article  CAS  Google Scholar 

  • Murillo, J. M., Lopez, R., Fernandez, J. E., & Cabrera, F. (2000). Olive tree response to irrigation with wastewater from the table olive industry. Irrigation Science, 19, 175–180.

    Article  Google Scholar 

  • Maurer, M. A., & Davies, F. S. (1993). Reclaimed wastewater for irrigation of citrus in Florida. HortTechnology, 3, 163–167.

    Google Scholar 

  • NAAS. (2003). Seaweed cultivation and utilization. National Academy of Agricultural Sciences Policy Paper, 22, 1–5.

    Google Scholar 

  • Najafian, S., Rahemi, M., & Tavallali, V. (2008). Effect of salinity on tolerance of two bitter almond rootstocks. American-Eurasian Journal of Agricultural & Environmental Sciences, 3, 264–268.

    Google Scholar 

  • Neoria, A., Chopinb, T., & Troell, M. (2004). Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231, 361–391.

    Article  Google Scholar 

  • Nicolas, M. E., Munns, R., Samarakoon, A. B., & Gifford, R. M. (1993). Elevated CO2 improves the growth of wheat under salinity. Functional Plant Biology, 20(3), 349–360.

    CAS  Google Scholar 

  • Nieman, R. H., & Poulson, L. L. (1967). Interactive effects of salinity and atmospheric humidity on the growth of bean and cotton plants. Botanical Gazette, 128, 69–73.

    Article  Google Scholar 

  • Nosetto, M. D., Jobbágy, E. G., Tóth, T., & Di Bella, C. M. (2007). The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands. Oecologia, 152, 695–705.

    Article  Google Scholar 

  • Ogata, G., & Maas, E. V. (1973). Interactive effects of salinity and ozone on growth and yield of garden beet. Journal of Environmental Quality, 2(4), 518–520.

    Article  CAS  Google Scholar 

  • Oron, G., DeMalach, Y., Gillerman, L., David, I., & Rao, V. P. (1999). Improved saline-water use under subsurface drip irrigation. Agricultural Water Management, 39, 19–33.

    Article  Google Scholar 

  • Oster, J. D. (1994). Irrigation with poor quality water. Agricultural Water Management, 25, 271–297.

    Article  Google Scholar 

  • Oster, J. D., & Grattan, S. R. (2002). Drainage water reuse. Irrigation and Drainage Systems, 16, 297–310.

    Article  Google Scholar 

  • Palese, A. M., Pasquale, V., Celano, G., Figliuolo, G., Masi, S., & Xiloyannis, C. (2009). Irrigation of olive groves in Southern Italy with treated municipal wastewater: Effects on microbiological quality of soil and fruits. Agriculture Ecosystems & Environment, 129, 43–51.

    Article  Google Scholar 

  • Pannell, D. J., & Ewing, M. A. (2004). Managing secondary dryland salinity: Options and challenges. In Proceedings of the 4th International Crop Science Congress, 26 Sep-1 Oct 2004, Brisbane, Australia.

    Google Scholar 

  • Pitman, M. G., & Läuchli, A. (2002). Global impact of salinity and agricultural ecosystems. In Salinity: Environment-plants-molecules (pp. 3–20). Springer Netherlands.

    Google Scholar 

  • Prisco, J. T., & O’Leary, J. W. (1973). The effects of humidity and cytokinin on growth and water relations of salt-stressed bean plants. Plant and Soil, 39, 263–276.

    Article  CAS  Google Scholar 

  • Purushothaman, C. S., Raizada, S., Sharma, V. K., Harikrishna, V., Venugopal, G., Agrahari, R. K., et al. (2014). Production of tiger shrimp (Penaeus monodon) in potassium supplemented inland saline sub-surface water. Journal of Applied Aquaculture, 26, 84–93.

    Google Scholar 

  • Qadir, M., & Oster, J. D. (2004). Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Science of the Total Environment, 323(1), 1–19.

    Article  CAS  Google Scholar 

  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., et al. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38, 282–295.

    Google Scholar 

  • Qadir, M., Wichelns, D., Raschid-Sally, L., Minhas, P. S., Drechsel, P., Bahri, A., et al. (2007). Agricultural use of marginal-quality water: Opportunities and challenges. Colombo, Sri Lanka: International Water Management Institute.

    Google Scholar 

  • Qureshi, A. S., McCornick, P. G., Qadir, M., & Aslam, Z. (2008). Managing salinity and waterlogging in the Indus Basin of Pakistan. Agricultural Water Management, 95(1), 1–10.

    Article  Google Scholar 

  • Ram, J., Dagar, J. C., Lal, K., Singh, G., Toky, O. P., Tanwar, V. S., et al. (2011). Biodrainage to combat waterlogging, increase farm productivity and sequence carbon in canal command areas of northwest India. Current Science, 100, 1676–1680.

    Google Scholar 

  • Ranjan, S. P., Kazama, S., & Sawamoto, M. (2006). Effects of climate and land use changes on groundwater resources in coastal aquifers. Journal of Environmental Management, 80, 25–35.

    Article  Google Scholar 

  • Rao, D. L. N., & Pathak, H. (1996). Ameliorative influence of organic matter on biological activity of salt‐affected soils. Arid Land Research and Management, 10(4), 311–319.

    CAS  Google Scholar 

  • Rausch, T., Kirsch, M., Löw, R., Lehr, A., Viereck, R., & Zhigang, A. N. (1996). Salt stress responses of higher plants: The role of proton pumps and Na+/H+-antiporters. Journal of Plant Physiology, 148, 425–433.

    Article  CAS  Google Scholar 

  • Raut, S., Maji, B., & Sarangi, S. K. (2014). Effect of water regimes on sorptivity, nature of organic matter and water management implications in different soils of coastal West Bengal. Journal of Agricultural Physics, 14, 80–86.

    Google Scholar 

  • Rijsberman, F. R. (2006). Water scarcity: Fact or fiction? Agricultural Water Management, 80, 5–22.

    Article  Google Scholar 

  • Ritzema, H. P., Satyanarayana, T. V., Raman, S., & Boonstra, J. (2008). Subsurface drainage to combat water logging and salinity in irrigated lands in India: Lessons learned in farmers’ fields. Agricultural Water Management, 95, 179–189.

    Article  Google Scholar 

  • Roberts, T., Lazarovitch, N., Warrick, A. W., & Thompson, T. L. (2009). Modeling salt accumulation with subsurface drip irrigation using HYDRUS-2D. Soil Science Society of America Journal, 73, 233–240.

    Article  CAS  Google Scholar 

  • Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460, 999–1002.

    Article  CAS  Google Scholar 

  • Rounsevell, M. D. A., Annetts, J. E., Audsley, E., Mayr, T., & Reginster, I. (2003). Modelling the spatial distribution of agricultural land use at the regional scale. Agriculture Ecosystems and Environment, 95, 465–479.

    Article  Google Scholar 

  • Ruiz-Lozano, J. M., Porcel, R., Azcón, C., & Aroca, R. (2012). Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. Journal of Experimental Botany, 63, 4033–4044.

    Article  CAS  Google Scholar 

  • Ruzzi, M., & Aroca, R. (2015) Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae. doi:10.1016/j.scienta.2015.08.042.

  • Saleem, M. M., & Astatke, A. (1996). Options to intensify cropland use for alleviating smallholder energy and protein deficiencies in the East African highlands. Field Crops Research, 48, 177–184.

    Article  Google Scholar 

  • Samsudin, A. R., Haryono, A., Hamzah, U., & Rafek, A. G. (2008). Salinity mapping of coastal groundwater aquifers using hydrogeochemical and geophysical methods: A case study from north Kelantan, Malaysia. Environmental Geology, 55, 1737–1743.

    Article  CAS  Google Scholar 

  • Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. PNAS, 104, 19703–19708.

    Article  CAS  Google Scholar 

  • Schofield, N. J. (1992). Tree planting for dryland salinity control in Australia. Agroforestry Systems, 20(1-2), 1–23.

    Article  Google Scholar 

  • Schwarz, M., & Gale, J. (1984). Growth response to salinity at high levels of carbon dioxide. Journal of Experimental Botany, 35(2), 193–196.

    Article  CAS  Google Scholar 

  • Shakya, S. K., & Singh, J. P. (2010). New drainage technologies for salt-affected waterlogged areas of southwest Punjab, India. Current Science, 99, 204–212.

    Google Scholar 

  • Shannon, M. C., & Grieve, C. M. (2000). Options for using low-quality water for vegetable crops. Hort Science, 35, 1058–1062.

    Google Scholar 

  • Shennan, C., Grattan, S. R., May, D. M., Hillhouse, C. J., Schachtman, D. P., Wander, M., et al. (1995). Feasibility of cyclic reuse of saline drainage in a tomato-cotton rotation. Journal of Environmental Quality, 24, 476–486.

    Article  CAS  Google Scholar 

  • Sharma, D. K., & Chaudhari, S. K. (2012). Agronomic research in salt affected soils of India: An overview. Indian Journal of Agronomy, 57, 175–185.

    Google Scholar 

  • Sharma, D. K., & Singh, A. (2015). Salinity research in India: Achievements, challenges and future prospects. Water and Energy International, 58, 35–45.

    Google Scholar 

  • Sharma, D. P., & Rao, K. V. G. K. (1998). Strategy for long term use of saline drainage water for irrigation in semi-arid regions. Soil and Tillage Research, 48, 287–295.

    Article  Google Scholar 

  • Sharma, D. P., & Tyagi, N. K. (2004). On‐farm management of saline drainage water in arid and semi‐arid regions. Irrigation and Drainage, 53(1), 87–103.

    Article  Google Scholar 

  • Sharma, D.K., Chaudhari, S.K., Sharma, P.C., & Chinchmalatpure, A.R. (2014a). CSSRI Vision 2015. Karnal: Central Soil Salinity Research Institute.

    Google Scholar 

  • Sharma, D. K., Chaudhari, S. K., & Singh, A. (2014b). In salt-affected soils agroforestry is a promising option. Indian Farming, 63, 19–22.

    Google Scholar 

  • Sheets, K. R., Taylor, J. P., & Hendrickx, J. M. H. (1994). Rapid salinity mapping by electromagnetic induction for determining riparian restoration potential. Restoration Ecology, 2, 242–246.

    Article  Google Scholar 

  • Simonovic, S. P. (2002). World water dynamics: Global modeling of water resources. Journal of Environmental Management, 66, 249–267.

    Article  Google Scholar 

  • Singh, A., Sharma, P. C., Kumar, A., Meena, M. D., & Sharma, D. K. (2015). Salinity induced changes in chlorophyll pigments and ionic relations in bael (Aegle marmelos Correa) cultivars. Journal of Soil Salinity and Water Quality, 7, 40–44.

    Google Scholar 

  • Singh, D. K., & Singh, A. K. (2002). Groundwater situation in India: Problems and perspective. International Journal of Water Resources Development, 18, 563–580.

    Article  Google Scholar 

  • Singh, G. (2009). Salinity-related desertification and management strategies: Indian experience. Land Degradation & Development, 20, 367–385.

    Google Scholar 

  • Singh, G., Bundela, D. S., Sethi, M., Lal, K., & Kamra, S. K. (2010). Remote sensing and geographic information system for appraisal of saltaffected soils in India. Journal of Environmental Quality, 39, 5–15.

    Article  CAS  Google Scholar 

  • Singh, G., Singh, N. T., & Abrol, I. P. (1994). Agroforestry techniques for the rehabilitation of degraded salt-affected lands in India. Land Degradation & Development, 5, 223–242.

    Article  Google Scholar 

  • Singh, J., & Singh, J. P. (1995). Land degradation and economic sustainability. Ecological Economics, 15(1), 77–86.

    Article  Google Scholar 

  • Singh, M., Bhattacharya, A. K., Nair, T. V. R., & Singh, A. K. (2001). Ammonium losses through subsurface drainage effluent from rice fields of coastal saline sodic clay soils. Water, Air, and Soil Pollution, 127, 1–14.

    Article  CAS  Google Scholar 

  • Singh, M., Verma, K. K., & Verma, C. L. (2013). An approach to develop a model for describing the influence of fluoride-contaminated irrigation water on physiological responses in poplar (Populus deltoides clone S7C15). Acta Physiologiae Plantarum, 35, 3357–3364.

    Article  CAS  Google Scholar 

  • Singh, G., Mishra, R., & Pandey, S. (2007). Drip irrigation (Extension Folder No. 2007(2), p. 4). India: Central Institute of Subtropical Horticulture.

    Google Scholar 

  • Sonneveld, C., & Welles, G. W. H. (1988). Yield and quality of rockwool-grown tomatoes as affected by variations in EC-value and climatic conditions. Plant and Soil, 111(1), 37–42.

    Article  CAS  Google Scholar 

  • Stewart, G. R., & Lee, J. A. (1974). The role of proline accumulation in halophytes. Planta, 120, 279–289.

    Article  CAS  Google Scholar 

  • Stirzaker, R. J., Cook, F. J., & Knight, J. H. (1999). Where to plant trees on cropping land for control of dryland salinity: Some approximate solutions. Agricultural Water Management, 39, 115–133.

    Article  Google Scholar 

  • Subba Rao, P. V., & Mantri, V. A. (2006). Indian seaweed resources and sustainable utilization: Scenario at the dawn of a new century. Current Science, 91, 164–174.

    Google Scholar 

  • Tanji, K. K., & Kielen, N. C. (2002). Agricultural drainage water management in arid and semi-arid areas. Rome: Food & Agriculture Organization of the United Nations.

    Google Scholar 

  • Tejada, M., Garcia, C., Gonzalez, J. L., & Hernandez, M. T. (2006). Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biology and Biochemistry, 38(6), 1413–1421.

    Article  CAS  Google Scholar 

  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527.

    Article  CAS  Google Scholar 

  • Tomar, O. S., & Minhas, P. S. (2004). Performance of medicinal plant species under saline irrigation. Indian Journal of Agronomy, 49, 209–211.

    Google Scholar 

  • Tripathi, K. P., & Singh, B. (2010). Impact of different forest plantations and cropping systems on reclamation of sodic soils. Indian Journal of Forestry, 33, 135–142.

    Google Scholar 

  • Tripathi, V. K., Gupta, S., & Kumar, P. (2008). Performance evaluation of subsurface drainage system with the strategy to reuse and disposal of its effluent for arid region of India. Journal of Agricultural Physics, 8, 43–50.

    Google Scholar 

  • UNEP. (2002). Vital water graphics: An overview of the state of the world’s fresh and marine waters. http://www.unep.org/vitalwater.

  • UN-Water (2006). Coping with water scarcity: A strategic issue and priority for system-wide action. UN-Water Thematic Initiatives.

    Google Scholar 

  • Valipour, M. (2014). Drainage, waterlogging, and salinity. Archives of Agronomy & Soil Science, 60, 1625–1640.

    Google Scholar 

  • Walker, D. J., & Bernal, M. P. (2008). The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresource Technology, 99(2), 396–403.

    Article  CAS  Google Scholar 

  • Wallace, A., Wallace, G. A., & Abouzamzam, A. M. (1986). Amelioration of sodic soils with polymers. Soil Science, 141, 359–362.

    Article  CAS  Google Scholar 

  • Ward, F. A., & Pulido-Velazquez, M. (2008). Water conservation in irrigation can increase water use. Proceedings of the National Academy of Sciences, 105(47), 18215–18220.

    Article  CAS  Google Scholar 

  • Welfare, K., Flowers, T. J., Taylor, G., & Yeo, A. R. (1996). Additive and antagonistic effects of ozone and salinity on the growth, ion contents and gas exchange of five varieties of rice (Oryza sativa L.). Environmental Pollution, 92(3), 257–266.

    Article  CAS  Google Scholar 

  • Welfare, K., Yeo, A. R., & Flowers, T. J. (2002). Effects of salinity and ozone, individually and in combination, on the growth and ion contents of two chickpea (Cicer arietinum L.) varieties. Environmental Pollution, 120(2), 397–403.

    Article  CAS  Google Scholar 

  • Wicke, B., et al. (2011). The global technical and economic potential of bioenergy from salt-affected soils. Energy & Environmental Science, 4, 2669–2681.

    Google Scholar 

  • Wiegand, C. L., Rhoades, J. D., Escobar, D. E., & Everitt, J. H. (1994). Photographic and videographic observations for determining and mapping the response of cotton to soil salinity. Remote Sensing of Environment, 49(3), 212–223.

    Article  Google Scholar 

  • Williams, W. D. (1999). Salinisation: A major threat to water resources in the arid and semi-arid regions of the world. Lakes and Reservoirs: Research & Management, 4, 85–91.

    Article  Google Scholar 

  • WMO. (2005). Climate and land degradation (WMO-No. 989, p. 32). World Meteorological Organization.

    Google Scholar 

  • Wong, V. N., Dalal, R. C., & Greene, R. S. (2009). Carbon dynamics of sodic and saline soils following gypsum and organic material additions: A laboratory incubation. Applied Soil Ecology, 41, 29–40.

    Article  Google Scholar 

  • Wu, Q. S., Zou, Y. N., & He, X. H. (2010). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum, 32, 297–304.

    Article  CAS  Google Scholar 

  • Xiubin, H., & Zhanbin, H. (2001). Zeolite application for enhancing water infiltration and retention in loess soil. Resources, Conservation and Recycling, 34, 45–52.

    Article  Google Scholar 

  • Yadav, J. S. P., Bandopadhyay, A. K., Rao, K. V. G. K., Sinha, T. S., & Biswas, C. R. (1979). Coastal saline soils of India (p. 34). Karnal, India: Central Soil Salinity Research Institute.

    Google Scholar 

  • Yadav, R. K., Goyal, B., Sharma, R. K., Dubey, S. K., & Minhas, P. S. (2002). Post-irrigation impact of domestic sewage effluent on composition of soils, crops and ground water- A case study. Environment International, 28, 481–486.

    Article  CAS  Google Scholar 

  • Yaduvanshi, N. P. S., & Swarup, A. (2005). Effect of continuous use of sodic irrigation water with and without gypsum, farmyard manure, pressmud and fertilizer on soil properties and yields of rice and wheat in a long term experiment. Nutrient Cycling in Agroecosystems, 73, 111–118.

    Article  CAS  Google Scholar 

  • Yaduvanshi, N. P. S., & Sharma, D. R. (2007). Use of wheat residue and manures to enhance nutrient availability and rice-wheat yields in sodic soil under sodic water irrigation. Journal of the Indian Society of Soil Science, 55, 330–334.

    Google Scholar 

  • Yeo, A. (1998). Predicting the interaction between the effects of salinity and climate change on crop plants. Scientia Horticulturae, 78, 159–174.

    Article  Google Scholar 

  • Zegelin, S. J., White, I., & Russell, G. F. (1992). A critique of the time domain reflectometry technique for determining field soil-water content. In: G. C. Topp, W. D. Reynolds & R. E. Green (Eds.), Advances in measurement of soil physical properties: Bringing theory into practice (pp. 187–208). Soil Science Society of America.

    Google Scholar 

  • Zekri, M., & Koo, R. C. (1993). A reclaimed water citrus irrigation project. Canadian Journal of Plant Science, 69, 1285–1294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sharma, D.K., Singh, A. (2017). Current Trends and Emerging Challenges in Sustainable Management of Salt-Affected Soils: A Critical Appraisal. In: Arora, S., Singh, A., Singh, Y. (eds) Bioremediation of Salt Affected Soils: An Indian Perspective. Springer, Cham. https://doi.org/10.1007/978-3-319-48257-6_1

Download citation

Publish with us

Policies and ethics