Skip to main content

CPP-GMR of Multilayered Nanowires Electrodeposited into Anodized Aluminum Oxide Nanochannel Filters Mechanically Exfoliated from Metallic Aluminum Rods

  • Conference paper
TMS 2015 144th Annual Meeting & Exhibition
  • 3791 Accesses

Abstract

Anodized aluminum oxide (AAO) thick films with numerous nanochannels have been exfoliated mechanically by the pressure of hydrogen gas generated at the interface between an oxide layer and a metallic aluminum during the subsequent cathodic reduction process after growing of anodic aluminum oxide layer. Co/Cu multilayered nanowires with alternating Co and Cu layers of 10 nm in thickness have been electrodeposited into extremely long nanochannels of AAO films with 60 µm in thickness. Average growth rate of the multilayered nanowires is around 18.2 nm sec-1 and the cylindrical shape is precisely transferred from the nanochannels to the nanowires and the aspect ratio reaches up to ca. 1,000. Co/Cu multilayered nanowires with diameter 60 nm are easily magnetized to the long axis direction of nanowires due to the uni-axial shape anisotropy. 30% of current perpendicular to plane giant magnetoresistance effect has been observed in the multilayered nanowires with 6,000 Co/Cu bilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Ohgai, I. Enculescu, C. Zet, L. Westerberg, K. Hjort, R. Spohr and R. Neumann, J. Appl. Electrochem., 36, 1157 (2006).

    Article  Google Scholar 

  2. D. Davis, M. Zamanpour, M. Moldovan, D. Young and E. J. Podlaha, J. Electrochem. Soc. 157, D317 (2010).

    Article  Google Scholar 

  3. Y. F. Lin, J. Song, Y. Ding, S. Y. Lu and Z. L. Wang, Adv. Mater., 20, 3127 (2008).

    Article  Google Scholar 

  4. D. J. Kim, J. K. Seol, M. R. Lee, J. H. Hyung, G. S. Kim, T. Ohgai and S. K. Lee, Appl. Phys. Lett, 100, 163703 (2012).

    Article  Google Scholar 

  5. CR. Martin, Adv. Mater., 3, 457 (1991).

    Article  Google Scholar 

  6. S. Z. Chu, S. Inoue, K. Wada, Y. Kanke and K. Kurashima, J. Electrochem. Soc. 152, C42 (2005).

    Article  Google Scholar 

  7. D. Carlier and J. P. Ansermet, J. Electrochem. Soc. 153, C277 (2006).

    Article  Google Scholar 

  8. T. Ohgai, T. Fujimaru and Y. Tanaka, J. Appl. Electrochem. 44, 301 (2014).

    Article  Google Scholar 

  9. T. Ohgai, K. Hjort, R. Spohr and R. Neumann, J. Appl. Electrochem. 38, 713 (2008).

    Article  Google Scholar 

  10. R. Spohr, C. Zet, B. E. Fischer, H. Kiesewetter, P. Apel, I. Gunko, T. Ohgai and L. Westerberg, Nucl. Inst. Meth. Phys. Res. B, 268, 676 (2010).

    Article  Google Scholar 

  11. T. Ohgai, R. Washio and Y. Tanaka, J. Electrochem. Soc. 159, H800 (2012).

    Article  Google Scholar 

  12. H. Masuda and K. Fukuda, Science, 268, 1466 (1995).

    Article  Google Scholar 

  13. G. Patermarakis and K. Moussoutzanis, J. Electrochem. Soc. 142, 737 (1995).

    Article  Google Scholar 

  14. G. D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs and J. P. Celis, J. Electrochem. Soc. 149, D97 (2002).

    Article  Google Scholar 

  15. G. D. Sulka, S. Stroobants, V. V. Moshchalkov, G. Borghs and J. P. Celis, J. Electrochem. Soc. 151, B260 (2004).

    Article  Google Scholar 

  16. R. H. Rico, B. D. Bois, A. Witvrouw, C. V. Hoof and J. P. Celis, J. Electrochem. Soc. 154, K74 (2007).

    Article  Google Scholar 

  17. A. Orsi and D. J. Riley, J. Electrochem. Soc. 160, D10 (2013).

    Article  Google Scholar 

  18. T. M. Whitney, J. S. Jiang, P. C. Searson and C. L. Chien, Science, 261, 1316 (1993).

    Article  Google Scholar 

  19. T. Ohgai, Y. Tanaka and R. Washio, J. Solid State Electrochem. 17, 743 (2013).

    Article  Google Scholar 

  20. T. Ohgai, Y. Tanaka and T. Fujimaru, J. Appl. Electrochem. 42, 893 (2012).

    Article  Google Scholar 

  21. J. O’M. Bockris and H. Kita, J. Electrochem. Soc., 108, 676 (1961).

    Article  Google Scholar 

  22. S. Krimpalis, O. G. Dragos, A. E. Moga, N. Lupu and H. Chiriac, J. Mater. Res., 26, 1081 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Ishizuka, K., Zenimoto, Y., Ohgai, T. (2015). CPP-GMR of Multilayered Nanowires Electrodeposited into Anodized Aluminum Oxide Nanochannel Filters Mechanically Exfoliated from Metallic Aluminum Rods. In: TMS 2015 144th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48127-2_44

Download citation

Publish with us

Policies and ethics