Skip to main content

Efficient Measurement of Fibre Orientation for Mapping Carbon Fibre Parts with a Robotic System

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 14 (IAS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 531))

Included in the following conference series:

Abstract

The strength of carbon fibre parts depends on the fibre arrangements all over them, but only manual and sparse checks are usually executed to assess their quality. Here, we present an automatic method for computing the fibre orientations in each part point and mapping them onto the 3D model of the part. This process is automated by a robot that moves the measurement sensor above the object to be scanned. Since this sensor needs to acquire multiple images of the same point with different illuminations for correctly estimating the fibre orientation, we developed algorithms for online image registration in presence of translational sensor motion. Moreover, we propose real-time methods for projection of the estimated orientation vectors to a 3D model. Experiments show that this software allows the accurate and fast mapping of carbon fibre parts by means of an industrial robot. Accuracy assessments report a measurement accuracy below 5\(^{\circ }\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.fibremap.eu—2013–2016.

References

  1. Antonello, M., Ghidoni, S., Menegatti, E.: Autonomous robotic system for thermographic detection of defects in upper layers of carbon fiber reinforced polymers. In: IEEE International Conference on Automation Science and Engineering (CASE) (2015)

    Google Scholar 

  2. Bradski, G.: The opencv library. Doct. Dobbs J. 25(11), 120–126 (2000)

    Google Scholar 

  3. Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media, Inc. (2008)

    Google Scholar 

  4. Chang, J., Fisher, J.W.: Analysis of orientation and scale in smoothly varying textures. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 881–888. IEEE (2009)

    Google Scholar 

  5. Chaudhuri, B.B., Kundu, P., Sarkar, N.: Detection and gradation of oriented texture. Pattern Recogn. Lett. 14(2), 147–153 (1993)

    Article  Google Scholar 

  6. Cheung, W., Hamarneh, G.: Sift: dimensional scale invariant feature transform. IEEE Trans. Image Process. 18(9), 2012–2021 (2009)

    Article  MathSciNet  Google Scholar 

  7. Cohen, F.S., Fan, Z., Attali, S.: Automated inspection of textile fabrics using textural models. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 803–808 (1991)

    Article  Google Scholar 

  8. Fernandes, H.-C., Maldague, X.: Fiber orientation assessment in complex shaped parts reinforced with carbon fiber using infrared thermography. Quant. Infrared Thermogr. J. 12(1), 64–79 (2015)

    Article  Google Scholar 

  9. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  10. Fuhr, J.-P., Baumann, J., Härtel, E., Middendorf, P., Feindler, N.: Effects of in-plane waviness on the properties of carbon composites–experimental and numerical analysis. CompTest 2013-Book of Abstracts, p. 61 (2013)

    Google Scholar 

  11. Ghidoni, S., Antonello, M., Nanni, L., Menegatti, E.: A knowledge-based approach to crack detection in thermographic images. In: 13th International Conference on Intelligent Autonomous Systems (IAS-13). In Press (2014)

    Google Scholar 

  12. Hughes, J.E., Foley, J.D.: Computer Graphics: Principles and Practice. Pearson Education (2013)

    Google Scholar 

  13. Kass, M., Witkin, A.: Analyzing oriented patterns. Comput. Vis. Graph. Image Process. 37(3), 362–385 (1987)

    Article  Google Scholar 

  14. Kim, J.-W., Lee, D.-G.: Effect of fiber orientation and fiber contents on the tensile strength in fiber-reinforced composites. J. Nanosci. Nanotechnol. 10(5), 3650–3653 (2010)

    Article  Google Scholar 

  15. Miene, A., Herrmann, A.S., Göttinger, M.: Quality assurance by digital image analysis for the preforming and draping process of dry carbon fiber material. In: SAMPE Europe Conference, Paris (2008)

    Google Scholar 

  16. Munaro, M., Antonello, M., Moro, M., Ferrari, C., Pagello, E., Menegatti, E.: Fibremap: automatic mapping of fibre orientation for draping of carbon fibre parts. In: IAS-13 Workshop on ROS-Industrial in European Research Projects, Padova, Italy, pp. 272–275, July 2014

    Google Scholar 

  17. Ozdemir, S., Baykut, A., Meylani, R., Ercil, A., Ertuzun, A.: Comparative evaluation of texture analysis algorithms for defect inspection of textile products. In: International Conference on Pattern Recognition, vol. 2, pp. 1738–1738. IEEE Computer Society (1998)

    Google Scholar 

  18. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)

    Google Scholar 

  19. Rusu, R.B., Cousins, S.: 3d is here: point cloud library (pcl). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)

    Google Scholar 

  20. Schmitt, R., Mersmann, C., Schoenberg, A.: Machine vision industrialising the textile-based frp production. In: 6th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 260–264. IEEE (2009)

    Google Scholar 

  21. Shi, L., Wu, S.: Automatic fiber orientation detection for sewed carbon fibers. Tsinghua Sci. Technol. 12(4), 447–452 (2007)

    Article  Google Scholar 

  22. Theoharis, T.: Algorithms for Parallel Polygon Rendering, vol. 373. Springer (1989)

    Google Scholar 

  23. Tsai, R.Y., Lenz, R.K.: A new technique for fully autonomous and efficient 3d robotics hand/eye calibration. IEEE Trans. Robot. Autom. 5(3), 345–358 (1989)

    Article  Google Scholar 

  24. Zambal, S., Palfinger, W., Stger, M., Eitzinger, C.: Accurate fibre orientation measurement for carbon fibre surfaces. Pattern Recogn. (2014)

    Google Scholar 

Download references

Acknowledgements

This research has been funded by the European Union’s 7th Framework program ICT under grant agreement No. 608768, FibreMap project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris Antonello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Antonello, M., Munaro, M., Menegatti, E. (2017). Efficient Measurement of Fibre Orientation for Mapping Carbon Fibre Parts with a Robotic System. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds) Intelligent Autonomous Systems 14. IAS 2016. Advances in Intelligent Systems and Computing, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-48036-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48036-7_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48035-0

  • Online ISBN: 978-3-319-48036-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics