Skip to main content

Emerging Metagenomic Strategies for Assessing Xenobiotic Contaminated Sites

  • Chapter
  • First Online:
Xenobiotics in the Soil Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 49))

  • 1426 Accesses

Abstract

Soil-bound xenobiotic compounds resulting from anthropogenic activities are known to be toxic, persistent and recalcitrant. Molecular techniques such as DNA fingerprinting, metagenomics, metaproteomics, metatranscriptomics and proteogenomics offer new insights into phylogenetic and functional diversity of soil microbial assemblages. Metagenomics deals with genetic material directly recovered from environmental samples. Recent advances in molecular techniques have opened up new perspectives in pollution abatement when compared with traditional molecular techniques dependent on isolation of pure cultures. This chapter summarizes basic concepts of metagenomics and various approaches known to facilitate metagenomic screening as well as challenges that hamper the soil xenobiotic metagenomic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agathos SN, Boon N (2015) Editorial overview: environmental biotechnology. Curr Opin Biotechnol 33:5–7

    Article  Google Scholar 

  • An D, Caffrey SM, Soh J, Agrawa A, Brown D, Budwill K, Dong X, Dunfield PF, Foght J, Gieg LM, Hallam SJ (2013) Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. Environ Sci Technol 47(18):10708–10717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashir Y, Singh P, Kumar KB (2014) Metagenomics: an application based perspective. Chin J Biotechnol 1–7. doi:10.1155/2014/146030

  • Boronin AM, Kosheleva IA, Sokolov SL, Izmalkova TY, Sazonova OI (2010) Variability of plasmids and PAH degradation genetic systems of pseudomonas. J Biotechnol 150:45–51

    Article  Google Scholar 

  • Brennerova MV, Josefiova J, Brenner V, Pieper DH, Junca H (2009) Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environ Microbiol 11(9):2216–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci 106(6):1948–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  CAS  Google Scholar 

  • Cao J, Lai Q, Yuan J, Shao Z (2015) Genomic and metabolic analysis of fluoranthene degradation pathway in Celeribacter indicus P73T. Sci Rep 5:67–71

    Google Scholar 

  • Chemerys A, Pelletier E, Cruaud C, Martin F, Violet F, Jouanneau Y (2014) Characterization of novel polycyclic aromatic hydrocarbon dioxygenases from the bacterial metagenomic DNA of a contaminated soil. Appl Environ Microbiol 80(21):6591–6600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1(2):e24

    Article  PubMed Central  Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3(6):470–478

    Article  CAS  PubMed  Google Scholar 

  • Desai C, Madamwar D (2007) Extraction of inhibitor-free metagenomic DNA from polluted sediments, compatible with molecular diversity analysis using adsorption and ion-exchange treatments. Bioresour Technol 98(4):761–768

    Article  CAS  PubMed  Google Scholar 

  • Desai N, Antonopoulos D, Gilbert JA, Glass EM, Meyer F (2012) From genomics to metagenomics. Curr Opin Biotechnol 23(1):72–76

    Article  CAS  PubMed  Google Scholar 

  • Di Bella JM, Bao Y, Gloor GB, Burton JP, Reid G (2013) High throughput sequencing methods and analysis for microbiome research. J Microbiol Method 95(3):401–414

    Article  CAS  Google Scholar 

  • Duarte M (2014) Functional soil metagenomics: elucidation of polycyclic aromatic hydrocarbon degradation potential after 10 years of in situ bioremediation. In: Annual meeting and exhibition 2014, Simb, 20–24 July 2014

    Google Scholar 

  • El Amrani A, Dumas AS, Wick LY, Yergeau E, Berthomé R (2015) “Omics” insights into PAH degradation toward improved green remediation biotechnologies. Environ Sci Technol 49(19):11281–11291

    Article  CAS  PubMed  Google Scholar 

  • Eyers L, George I, Schuler L, Stenuit B, Agathos SN, El Fantroussi S (2004) Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics. Appl Microbiol Biotechnol 66(2):123–130

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Beloqui A, Timmis KN, Golyshin PN (2009) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 16(1–2):109–123

    Article  CAS  PubMed  Google Scholar 

  • Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, Huttenhower C (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13(6):360–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(10):R245–R249

    Article  CAS  PubMed  Google Scholar 

  • Harismendy O, Ng PC, Strausberg RL, Wang X, Stockwell TB, Beeson KY, Schork NJ, Murray SS, Topol EJ, Levy S, Frazer KA (2009) Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol 10(3):R32

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Nojiri H (2014) Structure and function of aromatic-ring hydroxylating dioxygenase system. In: Biodegradative bacteria. Springer, Tokyo, pp 181–205

    Chapter  Google Scholar 

  • Ito M, Ono A, Ohtsubo Y, Tsuda M, Nagata Y (2012) Cloning of γ-hexachlorocyclohexane dehydrochlorinase gene with its flanking regions from soil by activity-based screening techniques. Eur J Soil Biol 52:16–19

    Article  CAS  Google Scholar 

  • Ivanova N, Tringe SG, Liolios K, Liu WT, Morrison N, Hugenholtz P, Kyrpides NC (2010) A call for standardized classification of metagenome projects. Environ Microbiol 12(7):1803–1805

    Article  PubMed  Google Scholar 

  • Jansson J (2015) Soil metagenomics. Encyclopedia of metagenomics: environmental metagenomics. Springer, New York, pp. 600–609

    Google Scholar 

  • Jouanneau Y, Martin F, Krivobok S, Willison JC (2011) Ring-hydroxylating dioxygenases involved in PAH biodegradation: structure, function, biodiversity. Microbial bioremediation of non-metals: current research. Caister Academic, Norflok, pp. 149–175

    Google Scholar 

  • Kakirde KS, Parsley C, Liles MR (2010) Size does matter: application-driven approaches for soil metagenomics. Soil Biol Biochem 42(11):1911–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato H, Mori H, Maruyama F, Toyoda A, Oshima K, Endo R, Fuchu G, Miyakoshi M, Dozono A, Ohtsubo Y, Nagata Y (2015) Time-series metagenomic analysis reveals robustness of soil microbiome against chemical disturbance. DNA Res 22(6):413–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni M, Chaudhari A (2007) Microbial remediation of nitro-aromatic compounds: an overview. J Environ Manage 85(2):496–512

    Article  CAS  PubMed  Google Scholar 

  • Larsen PE, Collart FR, Field D, Meyer F, Keegan KP, Henry CS, McGrath J, Quinn J, Gilbert JA (2011) Predicted relative metabolomic turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset. Microb Inf Exp 1(1):1–11

    Article  Google Scholar 

  • Lee KS, Parales JV, Friemann R, Parales RE (2005) Active site residues controlling substrate specificity in 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42. J Ind Microbiol Biotechnol 32(10):465–473

    Article  CAS  PubMed  Google Scholar 

  • Lombard N, Prestat E, van Elsas JD, Simonet P (2011) Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol 78(1):31–49

    Article  CAS  PubMed  Google Scholar 

  • Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3(6):510–516

    Article  CAS  PubMed  Google Scholar 

  • Loviso CL, Lozada M, Guibert LM, Musumeci MA, Sarango CS, Kuin RV, Marcos MS, Dionisi HM (2015) Metagenomics reveals the high polycyclic aromatic hydrocarbon-degradation potential of abundant uncultured bacteria from chronically polluted subantarctic and temperate coastal marine environments. J Appl Microbiol 119(2):411–424

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Lyu XF, Zha T, Gong J, He Y, Xu JM (2015) Reconstructed metagenomes reveal changes of microbial functional profiling during PAHs degradation along a rice (Oryza sativa) rhizosphere gradient. J Appl Microbiol 118(4):890–900

    Article  CAS  PubMed  Google Scholar 

  • Malik S, Beer M, Megharaj M, Naidu R (2008) The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34(2):265–276

    Article  CAS  PubMed  Google Scholar 

  • Martin HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He S, Salamov AA, Szeto E, Dalin E (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24(10):1263–1269

    Article  CAS  Google Scholar 

  • Meier MJ, Paterson ES, Lambert IB (2015) Metagenomic analysis of an aromatic hydrocarbon contaminated soil using substrate-induced gene expression. Appl Environ Microbiol 82(3):897–909

    Article  PubMed  Google Scholar 

  • Meier MJ, Paterson ES, Lambert IB (2016) Use of substrate-induced gene expression in metagenomic analysis of an aromatic hydrocarbon-contaminated soil. Appl Environ Microbiol 82(3):897–909

    Article  CAS  PubMed Central  Google Scholar 

  • Muller EE, Pinel N, Laczny CC, Hoopmann MR, Narayanasamy S, Lebrun LA, Roume H, Lin J, May P, Hicks ND, Heintz-Buschart A (2014) Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage. Nat Commun 5:5603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2010) A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants. Rev Environ Contam Toxicol 206:65–94 (Springer: New York)

    CAS  PubMed  Google Scholar 

  • Prosser JI (2015) Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat Rev Microbiol 13(7):439–446

    Article  CAS  PubMed  Google Scholar 

  • Rylott EL, Lorenz A, Bruce NC (2011) Biodegradation and biotransformation of explosives. Curr Opin Biotechnol 22(3):434–440

    Article  CAS  PubMed  Google Scholar 

  • Scholz MB, Lo CC, Chain PS (2012) Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol 23(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Sierra-Garcia IN, Alvarez JC, de Vasconcellos SP, de Souza AP, dos Santos Neto EV, de Oliveira VM (2014) New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs. PLoS One 9(2):e90087

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77(4):1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kang SH, Mulchandani A, Chen W (2008) Bioremediation: environmental clean-up through pathway engineering. Curr Opin Biotechnol 19(5):437–444

    Article  CAS  PubMed  Google Scholar 

  • Singleton DR, Powel SN, Sangaiah R, Gold A, Ball LM, Aitken MD (2005) Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Appl Environ Microbiol 71(3):1202–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srujana K, Khan AB (2012) Isolation and characterisation of polycyclic aromatic hydrocarbon degrading soil microbes from automobile workshop sediments. J Environ Sci Technol 5(1):74–83

    Article  CAS  Google Scholar 

  • Standfuß-Gabisch C, Al-Halbouni D, Hofer B (2012) Characterization of biphenyl dioxygenase sequences and activities encoded by the metagenomes of highly polychlorobiphenyl-contaminated soils. Appl Environ Microbiol 78(8):2706–2715

    Article  PubMed  PubMed Central  Google Scholar 

  • Stenuit B, Eyers L, Schuler L, Agathos SN, George I (2008) Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 26(6):561–575

    Article  CAS  PubMed  Google Scholar 

  • Suenaga H (2012) Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ Microbiol 14(1):13–22

    Article  CAS  PubMed  Google Scholar 

  • Suenaga H, Ohnuki T, Miyazaki K (2007) Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol 9(9):2289–2297

    Article  CAS  PubMed  Google Scholar 

  • Suenaga H, Mizuta S, Miyazaki K (2009) The molecular basis for adaptive evolution in novel extradiol dioxygenases retrieved from the metagenome. FEMS Microbiol Ecol 69(3):472–480

    Article  CAS  PubMed  Google Scholar 

  • Tannieres M, Beury-Cirou A, Vigouroux A, Mondy S, Pellissier F, Dessaux Y, Faure D (2013) A metagenomic study highlights phylogenetic proximity of quorum-quenching and xenobiotic-degrading amidases of the AS-family. PLoS One 8(6):e65473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taupp M, Mewis K, Hallam SJ (2011) The art and design of functional metagenomic screens. Curr Opin Biotechnol 22(3):465–472

    Article  CAS  PubMed  Google Scholar 

  • Theerachat M, Emond S, Cambon E, Bordes F, Marty A, Nicaud JM, Chulalaksananukul W, Guieysse D, Remaud-Siméon M, Morel S (2012) Engineering and production of laccase from Trametes versicolor in the yeast Yarrowia lipolytica. Bioresour Technol 125:267–274

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Gilbert J, Meyer F (2015) A 123 of metagenomics. In: Nelson KE (ed) Encyclopedia of metagenomics. Springer, New York, pp 1–9

    Google Scholar 

  • Turnbaugh PJ, Gordon JI (2008) An invitation to the marriage of metagenomics and metabolomics. Cell 134(5):708–713

    Article  CAS  PubMed  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama T, Miyazaki K (2013) Metagenomic screening for aromatic compound-responsive transcriptional regulators. PLoS One 8(9):e75795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ufarte L, Laville E, Duquesne S, Potocki-Veronese G (2015) Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol Adv 33(8):1845–1854

    Article  CAS  PubMed  Google Scholar 

  • Uhlik O, Wald J, Strejcek M, Musilova L, Ridl J, Hroudova M, Vlcek C, Cardenas E, Mackova M, Macek T (2012) Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS One 7(7):e40653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB, Macek T (2013) Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 31(2):154–165

    Article  CAS  PubMed  Google Scholar 

  • Vijgen J, Abhilash PC, Li YF, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian C, Schäffer A, Weber R (2011) Hexachlorocyclohexane (HCH) as new Stockholm convention POPs—a global perspective on the management of lindane and its waste isomers. Environ Sci Pollut Res 18(2):152–162

    Article  CAS  Google Scholar 

  • Vikram S, Pandey J, Kumar S, Raghava GPS (2013) Genes involved in degradation of para-nitrophenol are differentially arranged in form of non-contiguous gene clusters in Burkholderia sp. strain SJ98. PLoS One 8(12):e84766

    Article  PubMed  PubMed Central  Google Scholar 

  • Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils. PLoS One 7:e30058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong YC, Zhong JJ (2010) Recent advances in biodegradation in China: new microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochem 45(12):1937–1943

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Pondicherry University for providing Internet access to collect the information essential for writing this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srujana Kathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kathi, S. (2017). Emerging Metagenomic Strategies for Assessing Xenobiotic Contaminated Sites. In: Hashmi, M., Kumar, V., Varma, A. (eds) Xenobiotics in the Soil Environment. Soil Biology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-47744-2_7

Download citation

Publish with us

Policies and ethics