Skip to main content

Platelets and Bacterial Infections

  • Chapter
  • First Online:
Platelets in Thrombotic and Non-Thrombotic Disorders

Abstract

Platelets are circulating blood cells classically known for their key roles in mediating hemostasis and vascular wall repair. Platelets also possess a dynamic repertoire of effector functions in the immune continuum that span from rapid innate immune responses to more delayed adaptive and acquired immune activities. Platelets express a wide array of structural and functional characteristics of host defense effector cells that augment host defenses to bacterial infections. Platelets display a diverse range of surface ligands and receptors that recognize and bind bacteria, including complement receptors, FcγRII, toll-like receptors (TLRs), and integrins conventionally described in the hemostatic response, such as αIIbβ3 and GPIb. Both direct and indirect binding of bacteria, bacterial toxins, and other agonists to platelets via fibrinogen, fibronectin, C1q, or von Willebrand factor (vWF) may result in platelet activation. Platelets may also internalize bacteria, although the function and fate of these host defense mechanisms remain incompletely understood. Once activated, platelets transform from quiescent discoid forms to amoeboid cells that chemotax to and target microbial pathogens or ligands displayed by tissues injured during infectious insults. Upon activation and subsequent degranulation, platelets secrete an array of multifunctional host defense and antimicrobial peptides that act as direct anti-infective agents and coordinate additional molecular and cellular host defenses. Platelets also release soluble immunomodulatory factors that play crucial roles in the formation of neutrophil extracellular traps (NETs), resulting in bacterial elimination but also enhancing thrombosis in disease situations. Therefore, platelets are increasingly recognized as key effector cells in immune and inflammatory responses to host infection. The multiplicity of events underscores the complexity of platelet–bacterial interaction and illustrates the emerging view that platelets are important sentinel and effector cells in host defenses against pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerberth B, Gudmundsson GH (2006) Host antimicrobial defence peptides in human disease. Curr Top Microbiol Immunol 306:67–90

    CAS  PubMed  Google Scholar 

  • Akinosoglou K, Alexopoulos D (2014) Use of antiplatelet agents in sepsis: a glimpse into the future. Thromb Res 133(2):131–138

    Article  CAS  PubMed  Google Scholar 

  • Andre P, Nannizzi-Alaimo L, Prasad SK, Phillips DR (2002) Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation 106(8):896–899

    Article  PubMed  Google Scholar 

  • Antczak AJ, Vieth JA, Singh N, Worth RG (2011) Internalization of IgG-coated targets results in activation and secretion of soluble CD40 ligand and RANTES by human platelets. Clin Vaccine Immunol 18(2):210–216

    Article  CAS  PubMed  Google Scholar 

  • Arraud N, Linares R, Tan S, Gounou C, Pasquet JM, Mornet S, Brisson AR (2014) Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost 12(5):614–627

    Article  CAS  PubMed  Google Scholar 

  • Arvand M, Bhakdi S, Dahlback B, Preissner KT (1990) Staphylococcus aureus alpha-toxin attack on human platelets promotes assembly of the prothrombinase complex. J Biol Chem 265(24):14377–14381

    CAS  PubMed  Google Scholar 

  • Asaduzzaman M, Lavasani S, Rahman M, Zhang S, Braun OO, Jeppsson B, Thorlacius H (2009) Platelets support pulmonary recruitment of neutrophils in abdominal sepsis. Crit Care Med 37(4):1389–1396

    Article  PubMed  Google Scholar 

  • Assinger A, Laky M, Schabbauer G, Hirschl AM, Buchberger E, Binder BR, Volf I (2011) Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2. J Thromb Haemost 9(4):799–809

    Article  CAS  PubMed  Google Scholar 

  • Assinger A, Laky M, Badrnya S, Esfandeyari A, Volf I (2012) Periodontopathogens induce expression of CD40L on human platelets via TLR2 and TLR4. Thromb Res 130(3):e73–78

    Article  CAS  PubMed  Google Scholar 

  • Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, Henriques-Normark B (2006) An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol 16(4):401–407

    Article  CAS  PubMed  Google Scholar 

  • Bennett JS, Zigmond S, Vilaire G, Cunningham ME, Bednar B (1999) The platelet cytoskeleton regulates the affinity of the integrin alpha(IIb)beta(3) for fibrinogen. J Biol Chem 274(36):25301–25307

    Article  CAS  PubMed  Google Scholar 

  • Bennett JS, Berger BW, Billings PC (2009) The structure and function of platelet integrins. J Thromb Haemost 7(Suppl 1):200–205

    Article  CAS  PubMed  Google Scholar 

  • Bensing BA, Lopez JA, Sullam PM (2004) The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibalpha. Infect Immun 72(11):6528–6537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthet J, Damien P, Hamzeh-Cognasse H, Arthaud CA, Eyraud MA, Zeni F, Pozzetto B, McNicol A, Garraud O, Cognasse F (2012) Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin Immunol 145(3):189–200

    Article  CAS  PubMed  Google Scholar 

  • Blumberg N, Spinelli SL, Francis CW, Taubman MB, Phipps RP (2009) The platelet as an immune cell-CD40 ligand and transfusion immunomodulation. Immunol Res 45(2–3):251–260

    Article  CAS  PubMed  Google Scholar 

  • Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O‘Donnell E, Farndale RW, Ware J, Lee DM (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327(5965): 580–583

    Google Scholar 

  • Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, Gallant M, Martinod K, Ten Cate H, Hofstra L, Crijns HJ, Wagner DD, Kietselaer BL (2013) Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 33(8):2032–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudreau LH, Duchez AC, Cloutier N, Soulet D, Martin N, Bollinger J, Pare A, Rousseau M, Naika GS, Levesque T, Laflamme C, Marcoux G, Lambeau G, Farndale RW, Pouliot M, Hamzeh-Cognasse H, Cognasse F, Garraud O, Nigrovic PA, Guderley H, Lacroix S, Thibault L, Semple JW, Gelb MH, Boilard E (2014) Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 124(14):2173–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ (2008) Identification of FcgammaRIIa as the ITAM-bearing receptor mediating alphaIIbbeta3 outside-in integrin signaling in human platelets. Blood 112(7):2780–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan MP, Loughman A, Devocelle M, Arasu S, Chubb AJ, Foster TJ, Cox D (2009) Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein G in platelet activation. J Thromb Haemost 7(8):1364–1372

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535

    Article  CAS  PubMed  Google Scholar 

  • Brown GT, McIntyre TM (2011) Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1beta-rich microparticles. J Immunol 186(9):5489–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant AE, Bayer CR, Chen RY, Guth PH, Wallace RJ, Stevens DL (2005) Vascular dysfunction and ischemic destruction of tissue in Streptococcus pyogenes infection: the role of streptolysin O-induced platelet/neutrophil complexes. J Infect Dis 192(6):1014–1022

    Article  CAS  PubMed  Google Scholar 

  • Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M, Feramisco J, Nizet V (2006) DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 16(4):396–400

    Article  CAS  PubMed  Google Scholar 

  • Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A (2009) Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost 101(3):439–451

    CAS  PubMed  Google Scholar 

  • Byrne MF, Kerrigan SW, Corcoran PA, Atherton JC, Murray FE, Fitzgerald DJ, Cox DM (2003) Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce platelet aggregation. Gastroenterology 124(7):1846–1854

    Article  CAS  PubMed  Google Scholar 

  • Cassel DL, Keller MA, Surrey S, Schwartz E, Schreiber AD, Rappaport EF, McKenzie SE (1993) Differential expression of Fc gamma RIIA, Fc gamma RIIB and Fc gamma RIIC in hematopoietic cells: analysis of transcripts. Mol Immunol 30(5):451–460

    Article  CAS  PubMed  Google Scholar 

  • Chew M, Rahman M, Ihrman L, Erson A, Zhang S, Thorlacius H (2010) Soluble CD40L (CD154) is increased in patients with shock. Inflamm Res 59(11):979–982., Official Journal of the European Histamine Research Society [et al]

    Article  CAS  PubMed  Google Scholar 

  • Chow OA, von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL, Gallo RL, Monestier M, Wang Y, Glass CK, Nizet V (2010) Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8(5):445–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claes J, Vanassche T, Peetermans M, Liesenborghs L, Vandenbriele C, Vanhoorelbeke K, Missiakas D, Schneewind O, Hoylaerts MF, Heying R, Verhamme P (2014) Adhesion of Staphylococcus aureus to the vessel wall under flow is mediated by von Willebrand factor-binding protein. Blood 124(10):1669–1676

    Article  CAS  PubMed  Google Scholar 

  • Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469

    Article  CAS  PubMed  Google Scholar 

  • Clark-Lewis I, Dewald B, Geiser T, Moser B, Baggiolini M (1993) Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Proc Natl Acad Sci U S A 90(8):3574–3577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clawson CC (1973) Platelet interaction with bacteria. 3. Ultrastructure. Am J Pathol 70(3):449–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clawson CC, White JG (1980) Platelet interaction with bacteria. V. Ultrastructure of congenital afibrinogenemic platelets. Am J Pathol 98(1):197–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clawson CC, Rao GH, White JG (1975) Platelet interaction with bacteria. IV. Stimulation of the release reaction. Am J Pathol 81(2):411–420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cloutier N, Tan S, Boudreau LH, Cramb C, Subbaiah R, Lahey L, Albert A, Shnayder R, Gobezie R, Nigrovic PA, Farndale RW, Robinson WH, Brisson A, Lee DM, Boilard E (2013) The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 5(2):235–249

    Article  CAS  PubMed  Google Scholar 

  • Cognasse F, Lafarge S, Chavarin P, Acquart S, Garraud O (2007) Lipopolysaccharide induces sCD40L release through human platelets TLR4, but not TLR2 and TLR9. Intensive Care Med 33(2):382–384

    Article  PubMed  Google Scholar 

  • Coller BS (1997) Platelet GPIIb/IIIa antagonists: the first anti-integrin receptor therapeutics. J Clin Invest 99(7):1467–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox D, Kerrigan SW, Watson SP (2011) Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J Thromb Haemost 9(6):1097–1107

    Article  CAS  PubMed  Google Scholar 

  • Deuel TF, Senior RM, Chang D, Griffin GL, Heinrikson RL, Kaiser ET (1981) Platelet factor 4 is chemotactic for neutrophils and monocytes. Proc Natl Acad Sci U S A 78(7):4584–4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA (1996) Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 88(1):146–157

    CAS  PubMed  Google Scholar 

  • Duchez AC, Boudreau LH, Bollinger J, Belleannee C, Cloutier N, Laffont B, Mendoza-Villarroel RE, Levesque T, Rollet-Labelle E, Rousseau M, Allaeys I, Tremblay JJ, Poubelle PE, Lambeau G, Pouliot M, Provost P, Soulet D, Gelb MH, Boilard E (2015) Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc Natl Acad Sci U S A 112(27):E3564–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elzey BD, Grant JF, Sinn HW, Nieswandt B, Waldschmidt TJ, Ratliff TL (2005) Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. J Leukoc Biol 78(1):80–84

    Article  CAS  PubMed  Google Scholar 

  • Etulain J, Martinod K, Wong SL, Cifuni SM, Schattner M, Wagner DD (2015) P-selectin promotes neutrophil extracellular trap formation in mice. Blood 126(2):242–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans G, Lewis AF, Mustard JF (1969) The role of platelet aggregation in the development of endotoxin shock. Br J Surg 56(8):624

    CAS  PubMed  Google Scholar 

  • Fang XM, Shu Q, Chen QX, Book M, Sahl HG, Hoeft A, Stuber F (2003) Differential expression of alpha- and beta-defensins in human peripheral blood. Eur J Clin Invest 33(1):82–87

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick RE, Wijeyewickrema LC, Pike RN (2009) The gingipains: scissors and glue of the periodontal pathogen, Porphyromonas gingivalis. Future Microbiol 4(4):471–487

    Article  CAS  PubMed  Google Scholar 

  • Flaumenhaft R, Mairuhu AT, Italiano JE (2010) Platelet- and megakaryocyte-derived microparticles. Semin Thromb Hemost 36(8):881–887

    Article  PubMed  Google Scholar 

  • Flock JI, Froman G, Jonsson K, Guss B, Signas C, Nilsson B, Raucci G, Hook M, Wadstrom T, Lindberg M (1987) Cloning and expression of the gene for a fibronectin-binding protein from Staphylococcus aureus. EMBO J 6(8):2351–2357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fodor J (1887) Die Faehigkeit des Blutes Bakterien zu vernichten. Dtsch Med Wochenschr 13:745–747

    Article  Google Scholar 

  • Fong KP, Barry C, Tran AN, Traxler EA, Wannemacher KM, Tang HY, Speicher KD, Blair IA, Speicher DW, Grosser T, Brass LF (2011) Deciphering the human platelet sheddome. Blood 117(1):e15–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford I, Douglas CW, Heath J, Rees C, Preston FE (1996) Evidence for the involvement of complement proteins in platelet aggregation by Streptococcus sanguis NCTC 7863. Br J Haematol 94(4):729–739

    Article  CAS  PubMed  Google Scholar 

  • Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 107(36):15880–15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadjeva M (2014) The complement system. Overview. Methods Mol Biol 1100:1–9

    Article  CAS  PubMed  Google Scholar 

  • Garraud O, Hamzeh-Cognasse H, Pozzetto B, Cavaillon JM, Cognasse F (2013) Bench-to-bedside review: Platelets and active immune functions - new clues for immunopathology? Crit Care 17(4):236

    Article  PubMed  PubMed Central  Google Scholar 

  • Gawaz M, Fateh-Moghadam S, Pilz G, Gurland HJ, Werdan K (1995) Platelet activation and interaction with leucocytes in patients with sepsis or multiple organ failure. Eur J Clin Invest 25(11):843–851

    Article  CAS  PubMed  Google Scholar 

  • Ge S, Hertel B, Emden SH, Beneke J, Menne J, Haller H, von Vietinghoff S (2012) Microparticle generation and leucocyte death in Shiga toxin-mediated HUS. Nephrol Dial Transplant 27(7):2768–2775. Official publication of the European Dialysis and Transplant Association—European Renal Association

    Article  CAS  PubMed  Google Scholar 

  • Gengou O (1901) De l‘origine de l‘axenine de serums normaux. Ann Inst Pasteur 15:232–245

    Google Scholar 

  • George FD (2008) Microparticles in vascular diseases. Thromb Res 122(Suppl 1):S55–59

    Article  CAS  PubMed  Google Scholar 

  • Greinacher A (2015) Clinical Practice. Heparin-Induced Thrombocytopenia. N Engl J Med 373(3):252–261

    Article  CAS  PubMed  Google Scholar 

  • Hamad OA, Nilsson PH, Wouters D, Lambris JD, Ekdahl KN, Nilsson B (2010) Complement component C3 binds to activated normal platelets without preceding proteolytic activation and promotes binding to complement receptor 1. J Immunol 184(5):2686–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O (2015) Platelets and infections—complex interactions with bacteria. Front Immunol 6:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto K, Jayachandran M, Owen WG, Miller VM (2009) Aggregation and microparticle production through toll-like receptor 4 activation in platelets from recently menopausal women. J Cardiovasc Pharmacol 54(1):57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inwald DP, Faust SN, Lister P, Peters MJ, Levin M, Heyderman R, Klein NJ (2006) Platelet and soluble CD40L in meningococcal sepsis. Intensive Care Med 32(9):1432–1437

    Article  PubMed  Google Scholar 

  • Italiano JE Jr, Mairuhu AT, Flaumenhaft R (2010) Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol 17(6):578–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson MK, Boese-Marrazzo D, Pierce WA Jr (1981) Effects of pneumolysin on human polymorphonuclear leukocytes and platelets. Infect Immun 34(1):171–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Josefsson E, McCrea KW, Ni Eidhin D, O'Connell D, Cox J, Hook M, Foster TJ (1998) Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology 144(Pt 12):3387–3395

    Article  CAS  PubMed  Google Scholar 

  • Kappelmayer J, Beke Debreceni I, Vida A, Antal-Szalmas P, Clemetson KJ, Nagy B Jr (2013) Distinct effects of Re- and S-forms of LPS on modulating platelet activation. J Thromb Haemost 11(4):775–778

    Article  CAS  PubMed  Google Scholar 

  • Karshovska E, Weber C, von Hundelshausen P (2013) Platelet chemokines in health and disease. Thromb Haemost 110(5):894–902

    Article  CAS  PubMed  Google Scholar 

  • Katz JN, Kolappa KP, Becker RC (2011) Beyond thrombosis: the versatile platelet in critical illness. Chest 139(3):658–668

    Article  PubMed  Google Scholar 

  • Kerrigan SW, Cox D (2010) Platelet-bacterial interactions. Cell Mol Life Sci 67(4):513–523

    Article  CAS  PubMed  Google Scholar 

  • Kraemer BF, Campbell RA, Schwertz H, Cody MJ, Franks Z, Tolley ND, Kahr WH, Lindemann S, Seizer P, Yost CC, Zimmerman GA, Weyrich AS (2011) Novel anti-bacterial activities of beta-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog 7(11):e1002355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krauel K, Potschke C, Weber C, Kessler W, Furll B, Ittermann T, Maier S, Hammerschmidt S, Broker BM, Greinacher A (2011) Platelet factor 4 binds to bacteria, [corrected] inducing antibodies cross-reacting with the major antigen in heparin-induced thrombocytopenia. Blood 117(4):1370–1378

    Article  CAS  PubMed  Google Scholar 

  • Krauel K, Weber C, Brandt S, Zahringer U, Mamat U, Greinacher A, Hammerschmidt S (2012) Platelet factor 4 binding to lipid A of Gram-negative bacteria exposes PF4/heparin-like epitopes. Blood 120(16):3345–3352

    Article  CAS  PubMed  Google Scholar 

  • Laffont B, Corduan A, Ple H, Duchez AC, Cloutier N, Boilard E, Provost P (2013) Activated platelets can deliver mRNA regulatory Ago2*microRNA complexes to endothelial cells via microparticles. Blood 122(2):253–261

    Article  CAS  PubMed  Google Scholar 

  • Laffont B, Corduan A, Rousseau M, Duchez AC, Lee CH, Boilard E, Provost P (2015) Platelet microparticles reprogram macrophage gene expression and function. Thromb Haemost 115(1). doi:10.1160/TH15-05-0389

  • Li X, Iwai T, Nakamura H, Inoue Y, Chen Y, Umeda M, Suzuki H (2008) An ultrastructural study of Porphyromonas gingivalis-induced platelet aggregation. Thromb Res 122(6):810–819

    Article  CAS  PubMed  Google Scholar 

  • Lorente L, Martin MM, Varo N, Borreguero-Leon JM, Sole-Violan J, Blanquer J, Labarta L, Diaz C, Jimenez A, Pastor E, Belmonte F, Orbe J, Rodriguez JA, Gomez-Melini E, Ferrer-Aguero JM, Ferreres J, Lliminana MC, Paramo JA (2011) Association between serum soluble CD40 ligand levels and mortality in patients with severe sepsis. Crit Care 15(2):R97

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz R, Brauer M (1988) Platelet factor 4 (PF4) in septicaemia. Infection 16(5):273–276

    Article  CAS  PubMed  Google Scholar 

  • Loughman A, Fitzgerald JR, Brennan MP, Higgins J, Downer R, Cox D, Foster TJ (2005) Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol Microbiol 57(3):804–818

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Zhang S, Wang Y, Rahman M, Syk I, Zhang E, Thorlacius H (2014) Proinflammatory role of neutrophil extracellular traps in abdominal sepsis. Am J Physiol Lung Cell Mol Physiol 307(7):L586–596

    Article  CAS  PubMed  Google Scholar 

  • Ma AC, Kubes P (2008) Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J Thromb Haemost 6(3):415–420

    Article  CAS  PubMed  Google Scholar 

  • Marcos V, Zhou Z, Yildirim AO, Bohla A, Hector A, Vitkov L, Wiedenbauer EM, Krautgartner WD, Stoiber W, Belohradsky BH, Rieber N, Kormann M, Koller B, Roscher A, Roos D, Griese M, Eickelberg O, Doring G, Mall MA, Hartl D (2010) CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation. Nat Med 16(9):1018–1023

    Article  CAS  PubMed  Google Scholar 

  • McDevitt D, Francois P, Vaudaux P, Foster TJ (1994) Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol 11(2):237–248

    Article  CAS  PubMed  Google Scholar 

  • Mezzano S, Burgos ME, Ardiles L, Olavarria F, Concha M, Caorsi I, Aranda E, Mezzano D (1992) Glomerular localization of platelet factor 4 in streptococcal nephritis. Nephron 61(1):58–63

    Article  CAS  PubMed  Google Scholar 

  • Miajlovic H, Zapotoczna M, Geoghegan JA, Kerrigan SW, Speziale P, Foster TJ (2010) Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIIb/IIIa receptor on platelets. Microbiology 156(Pt 3):920–928

    Article  CAS  PubMed  Google Scholar 

  • Miedzobrodzki J, Panz T, Plonka PM, Zajac K, Dracz J, Pytel K, Mateuszuk L, Chlopicki S (2008) Platelets augment respiratory burst in neutrophils activated by selected species of gram-positive or gram-negative bacteria. Folia histochemica et cytobiologica/Polish Academy of Sciences, Polish Histochemical and Cytochemical Society 46(3):383–388

    Google Scholar 

  • Mitchell J, Tristan A, Foster TJ (2004) Characterization of the fibrinogen-binding surface protein Fbl of Staphylococcus lugdunensis. Microbiology 150(Pt 11):3831–3841

    Article  CAS  PubMed  Google Scholar 

  • Ni Eidhin D, Perkins S, Francois P, Vaudaux P, Hook M, Foster TJ (1998) Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 30(2):245–257

    Article  CAS  PubMed  Google Scholar 

  • Ogura H, Kawasaki T, Tanaka H, Koh T, Tanaka R, Ozeki Y, Hosotsubo H, Kuwagata Y, Shimazu T, Sugimoto H (2001) Activated platelets enhance microparticle formation and platelet-leukocyte interaction in severe trauma and sepsis. J Trauma 50(5):801–809

    Article  CAS  PubMed  Google Scholar 

  • O’Seaghdha M, van Schooten CJ, Kerrigan SW, Emsley J, Silverman GJ, Cox D, Lenting PJ, Foster TJ (2006) Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions. FEBS J 273(21):4831–4841

    Article  PubMed  CAS  Google Scholar 

  • Owens AP 3rd, Mackman N (2011) Microparticles in hemostasis and thrombosis. Circ Res 108(10):1284–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peerschke EI, Murphy TK, Ghebrehiwet B (2003) Activation-dependent surface expression of gC1qR/p33 on human blood platelets. Thromb Haemost 89(2):331–339

    CAS  PubMed  Google Scholar 

  • Peerschke EI, Yin W, Ghebrehiwet B (2010) Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol 47(13):2170–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen HJ, Keane C, Jenkinson HF, Vickerman MM, Jesionowski A, Waterhouse JC, Cox D, Kerrigan SW (2010) Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa. Infect Immun 78(1):413–422

    Article  CAS  PubMed  Google Scholar 

  • Plummer C, Wu H, Kerrigan SW, Meade G, Cox D, Ian Douglas CW (2005) A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb. Br J Haematol 129(1):101–109

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Zhang S, Chew M, Ersson A, Jeppsson B, Thorlacius H (2009) Platelet-derived CD40L (CD154) mediates neutrophil upregulation of Mac-1 and recruitment in septic lung injury. Ann Surg 250(5):783–790

    Article  PubMed  Google Scholar 

  • Rahman M, Roller J, Zhang S, Syk I, Menger MD, Jeppsson B, Thorlacius H (2012) Metalloproteinases regulate CD40L shedding from platelets and pulmonary recruitment of neutrophils in abdominal sepsis. Inflamm Res 61(6):571–579. Official journal of the European Histamine Research Society [et al]

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Zhang S, Chew M, Syk I, Jeppsson B, Thorlacius H (2013) Platelet shedding of CD40L is regulated by matrix metalloproteinase-9 in abdominal sepsis. J Thromb Haemost 11(7):1385–1398

    Article  CAS  PubMed  Google Scholar 

  • Rondina MT, Schwertz H, Harris ES, Kraemer BF, Campbell RA, Mackman N, Grissom CK, Weyrich AS, Zimmerman GA (2011) The septic milieu triggers expression of spliced tissue factor mRNA in human platelets. J Thromb Haemost 9(4):748–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russwurm S, Vickers J, Meier-Hellmann A, Spangenberg P, Bredle D, Reinhart K, Losche W (2002) Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock 17(4):263–268

    Article  PubMed  Google Scholar 

  • Schubert S, Schwertz H, Weyrich AS, Franks ZG, Lindemann S, Otto M, Behr H, Loppnow H, Schlitt A, Russ M, Presek P, Werdan K, Buerke M (2011) Staphylococcus aureus alpha-toxin triggers the synthesis of B-cell lymphoma 3 by human platelets. Toxins 3(2):120–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semple JW, Italiano JE Jr, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11(4):264–274

    Article  CAS  PubMed  Google Scholar 

  • Siboo IR, Chambers HF, Sullam PM (2005) Role of SraP, a Serine-Rich Surface Protein of Staphylococcus aureus, in binding to human platelets. Infect Immun 73(4):2273–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullam PM, Hyun WC, Szollosi J, Dong J, Foss WM, Lopez JA (1998) Physical proximity and functional interplay of the glycoprotein Ib-IX-V complex and the Fc receptor FcgammaRIIA on the platelet plasma membrane. J Biol Chem 273(9):5331–5336

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Li J, Kambayashi J (1999) Interaction between GPIbalpha and FcgammaIIA receptor in human platelets. Biochem Biophys Res Commun 266(1):24–27

    Article  CAS  PubMed  Google Scholar 

  • Tang YQ, Yeaman MR, Selsted ME (2002) Antimicrobial peptides from human platelets. Infect Immun 70(12):6524–6533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomer L, Schneewind O, Missiakas D (2013) Multiple ligands of von Willebrand factor-binding protein (vWbp) promote Staphylococcus aureus clot formation in human plasma. J Biol Chem 288(39):28283–28292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tohidnezhad M, Varoga D, Podschun R, Wruck CJ, Seekamp A, Brandenburg LO, Pufe T, Lippross S (2011) Thrombocytes are effectors of the innate immune system releasing human beta defensin-3. Injury 42(7):682–686

    Article  PubMed  Google Scholar 

  • Tohidnezhad M, Varoga D, Wruck CJ, Podschun R, Sachweh BH, Bornemann J, Bovi M, Sonmez TT, Slowik A, Houben A, Seekamp A, Brandenburg LO, Pufe T, Lippross S (2012) Platelets display potent antimicrobial activity and release human beta-defensin 2. Platelets 23(3):217–223

    Article  CAS  PubMed  Google Scholar 

  • Trier DA, Gank KD, Kupferwasser D, Yount NY, French WJ, Michelson AD, Kupferwasser LI, Xiong YQ, Bayer AS, Yeaman MR (2008) Platelet antistaphylococcal responses occur through P2X1 and P2Y12 receptor-induced activation and kinocidin release. Infect Immun 76(12):5706–5713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzeng DY, Deuel TF, Huang JS, Baehner RL (1985) Platelet-derived growth factor promotes human peripheral monocyte activation. Blood 66(1):179–183

    CAS  PubMed  Google Scholar 

  • Vasina E, Heemskerk JW, Weber C, Koenen RR (2010) Platelets and platelet-derived microparticles in vascular inflammatory disease. Inflamm Allergy Drug Targets 9(5):346–354

    Article  CAS  PubMed  Google Scholar 

  • Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA (2012) Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol 34(1):5–30

    Article  CAS  PubMed  Google Scholar 

  • Vincent JL, Abraham E (2006) The last 100 years of sepsis. Am J Respir Crit Care Med 173(3):256–263

    Article  PubMed  Google Scholar 

  • Ward JR, Bingle L, Judge HM, Brown SB, Storey RF, Whyte MK, Dower SK, Buttle DJ, Sabroe I (2005) Agonists of toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor. Thromb Haemost 94(4):831–838

    PubMed  Google Scholar 

  • Warkentin TE, Aird WC, Rand JH (2003) Platelet-endothelial interactions: sepsis, HIT, and antiphospholipid syndrome. Hematology (Am Soc Hematol Educ Program): 497–519

    Google Scholar 

  • Weyrich AS, Zimmerman GA (2004) Platelets: signaling cells in the immune continuum. Trends Immunol 25(9):489–495

    Article  CAS  PubMed  Google Scholar 

  • Weyrich AS, Lindemann S, Zimmerman GA (2003) The evolving role of platelets in inflammation. J Thromb Haemost 1(9):1897–1905

    Article  CAS  PubMed  Google Scholar 

  • White JG (2006) Why human platelets fail to kill bacteria. Platelets 17(3):191–200

    Article  CAS  PubMed  Google Scholar 

  • Worth RG, Chien CD, Chien P, Reilly MP, McKenzie SE, Schreiber AD (2006) Platelet FcgammaRIIA binds and internalizes IgG-containing complexes. Exp Hematol 34(11):1490–1495

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, Taylor FB, Esmon NL, Lupu F, Esmon CT (2009) Extracellular histones are major mediators of death in sepsis. Nat Med 15(11):1318–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ (2003) Many chemokines including CCL20/MIP-3alpha display antimicrobial activity. J Leukoc Biol 74(3):448–455

    Article  CAS  PubMed  Google Scholar 

  • Yeaman MR (2010) Platelets in defense against bacterial pathogens. Cell Mol Life Sci 67(4):525–544

    Article  CAS  PubMed  Google Scholar 

  • Yeaman MR, Yount NY, Waring AJ, Gank KD, Kupferwasser D, Wiese R, Bayer AS, Welch WH (2007) Modular determinants of antimicrobial activity in platelet factor-4 family kinocidins. Biochim Biophys Acta 1768(3):609–619

    Article  CAS  PubMed  Google Scholar 

  • Yost CC, Cody MJ, Harris ES, Thornton NL, McInturff AM, Martinez ML, Chandler NB, Rodesch CK, Albertine KH, Petti CA, Weyrich AS, Zimmerman GA (2009) Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. doi: blood-2008-07-171629

    Google Scholar 

  • Yost CC, Weyrich AS, Zimmerman GA (2010) The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses. Biochimie 92(6):692–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16(11):1438–1444

    Article  CAS  PubMed  Google Scholar 

  • Youssefian T, Drouin A, Masse JM, Guichard J, Cramer EM (2002) Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood 99(11):4021–4029

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Rahman M, Zhang S, Qi Z, Thorlacius H (2011) Simvastatin antagonizes CD40L secretion, CXC chemokine formation, and pulmonary infiltration of neutrophils in abdominal sepsis. J Leukoc Biol 89(5):735–742

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Diana Lim for her excellent figure preparation. This work was supported by the NIH (HL112311 and HL126547 to M.T.R.), the NIA (AG048022 to M.T.R.), and the George E. Wahlen Department of Veterans Affairs Geriatric Research Education and Clinical Center (GRECC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansjörg Schwertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rondina, M.T., Garraud, O., Schwertz, H. (2017). Platelets and Bacterial Infections. In: Gresele, P., Kleiman, N., Lopez, J., Page, C. (eds) Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-47462-5_71

Download citation

Publish with us

Policies and ethics