Skip to main content

Megakaryocyte Development and Platelet Production

  • Chapter
  • First Online:
Platelets in Thrombotic and Non-Thrombotic Disorders

Abstract

Blood platelets are 2–3 μm anucleate fragments that are formed from the megakaryocyte cytoplasm and have a distinctive discoid shape. To generate and release platelets, megakaryocytes undergo endomitosis to become polyploid and follow a maturation program that results in the transformation of the bulk of their cytoplasm into multiple long processes called proplatelets. To generate 1000–2000 platelets, a megakaryocyte may extend multiple proplatelets, each of which begins as a thick pseudopodium that over time elongates and branches repetitively. Platelets form predominantly at the tips of proplatelets. As platelets mature, their content of organelles and granules is delivered to them in a flow of individual cargo moving from the cell body of the megakaryocyte to the assembling platelets at the proplatelet ends. Platelet generation can be indiscriminately divided into two stages. The first stage takes days to complete and requires megakaryocyte-specific cytokines, such as thrombopoietin. Substantial nuclear proliferation to 16–32 × N and expansion of the megakaryocyte cytoplasm occur as the platelet is packed with platelet-specific granules, cytoskeletal proteins, and abundant membrane to complete the platelet assembly phase. The second stage is relatively fast and can be completed in hours. During this phase, megakaryocytes generate platelets by reorganizing their cytoplasm first into proplatelets, then preplatelets, which undergo fission to generate platelets. Each day, 100 billion platelets must be generated from megakaryocytes to sustain the normal platelet count of 2–3 × 108/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adolfsson J et al (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121(2):295–306

    Article  CAS  PubMed  Google Scholar 

  • Akashi K et al (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404(6774):193–197

    Article  CAS  PubMed  Google Scholar 

  • Aschoff L (1893) Ueber capilläre Embolie von riesenkernhaltigen Zellen. Arch Pathol Anat Physiol 134:11–14

    Article  Google Scholar 

  • Avecilla ST et al (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10(1):64–71

    Article  CAS  PubMed  Google Scholar 

  • Avraham H et al (1993) Characterization of adhesive interactions between human endothelial cells and megakaryocytes. J Clin Invest 91(6):2378–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avraham H et al (1994) Modulation of megakaryocytopoiesis by human basic fibroblast growth factor. Blood 83(8):2126–2132

    CAS  PubMed  Google Scholar 

  • Barkalow K et al (2003) α-Adducin dissociates from F-actin filaments and spectrin during platelet activation. J Cell Biol 161:557–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker RP, De Bruyn PP (1976) The transmural passage of blood cells into myeloid sinusoids and the entry of platelets into the sinusoidal circulation; a scanning electron microscopic investigation. Am J Anat 145(2):183–205

    Article  CAS  PubMed  Google Scholar 

  • Begonja AJ et al (2011) FlnA-null megakaryocytes prematurely release large and fragile platelets that circulate poorly. Blood 118:2285–2295

    Article  CAS  Google Scholar 

  • Behnke O (1968) An electron microscope study of megakaryocytes of rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. J Ultrastruct Res 24:412–433

    Article  CAS  PubMed  Google Scholar 

  • Behnke O (1969) An electron microscope study of the rat megacaryocyte. II. Some aspects of platelet release and microtubules. J Ultrastruct Res 26(1):111–129

    Article  CAS  PubMed  Google Scholar 

  • Behnke O, Forer A (1998) From megakaryocytes to platelets: platelet morphogenesis takes place in the bloodstream. Eur J Haematol Suppl 61:3–23

    CAS  PubMed  Google Scholar 

  • Bender M et al (2010) ADF/n-cofilin-dependent actin turnover determines platelet formation and sizing. Blood 116(10):1767–1775

    Article  CAS  PubMed  Google Scholar 

  • Bender M et al (2014) Megakaryocyte-specific Profilin1-deficiency alters microtubule stability and causes a Wiskott-Aldrich syndrome-like platelet defect. Nat Commun 5:4746

    Article  CAS  PubMed  Google Scholar 

  • Bender M et al (2015a) Dynamin 2-dependent endocytosis is required for normal megakaryocyte development in mice. Blood 125(6):1014–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender M et al (2015b) Microtubule sliding drives proplatelet elongation and is dependent on cytoplasmic dynein. Blood 125(5):860–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brieher W et al (2006) Rapid actin monomer-insensitive depolymerization of Listeria actin comet tails by cofilin, coronin, and Aip1. J Cell Biol 175:315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broek D, Bartlett R, Crawford K (1991) Involvment of p34cdc2 in establishing the dependency of S phase on mitosis. Nature 349:388–393

    Article  CAS  PubMed  Google Scholar 

  • Browne K et al (2000) Filamin (280-kDa actin-binding protein) is a caspase substrate and is also cleaved directly by the cytotoxic T lymphocyte protease granzyme B during apoptosis. J Biol Chem 275:39262–39266

    Article  CAS  PubMed  Google Scholar 

  • Chen Y et al (2013) Loss of the F-BAR protein CIP4 reduces platelet production by impairing membrane-cytoskeleton remodeling. Blood 122(10):1695–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi ES et al (1995) Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood 85(2):402–413

    CAS  PubMed  Google Scholar 

  • Cramer E et al (1997) Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand. Blood 89:2336–2346

    CAS  PubMed  Google Scholar 

  • Datta NS et al (1996) Novel alterations in CDK1/cyclin B1 kinase complex formation occur during the acquisition of a polyploid DNA content. Mol Biol Cell 7:209–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebbe S (1976) Biology of megakaryocytes. Prog Hemost Thromb 3:211–229

    CAS  PubMed  Google Scholar 

  • Ebbe S, Stohlman F (1965) Megakaryocytopoiesis in the rat. Blood 26:20–34

    CAS  PubMed  Google Scholar 

  • Eckly A et al (2014) Biogenesis of the demarcation membrane system (DMS) in megakaryocytes. Blood 123(6):921–930

    Article  CAS  PubMed  Google Scholar 

  • Fox J et al (1987) Spectrin is associated with membrane-bound actin filaments in platelets and is hydrolyzed by the Ca2+-dependent protease during platelet activation. Blood 69:537–545

    CAS  PubMed  Google Scholar 

  • Fox J, Aggerbeck L, Berndt M (1988) Structure of the glycoprotein Ib-IX complex from platelet membranes. J Biol Chem 263:4882–4890

    CAS  PubMed  Google Scholar 

  • Freson K et al (2005) The b1-tubulin Q43P functional polymorphism reduces the risk of cardiovascular disease in men by modulating platelet function and structure. Blood 106:2356–2362

    Article  CAS  PubMed  Google Scholar 

  • Fucini P et al (1997) The repeating segments of the F-actin cross-linking gelation factor (ABP-120) have an immunoglobulin-like fold. Nat Struct Biol 4(3):223–230

    Article  CAS  PubMed  Google Scholar 

  • Geng Y (2003) Cyclin E ablation in the mouse. Cell 114:431–443

    Article  CAS  PubMed  Google Scholar 

  • Gorlin J et al (1990) Human endothelial actin-binding protein (ABP-280, non-muscle filamin): a molecular leaf spring. J Cell Biol 111:1089–1105

    Article  CAS  PubMed  Google Scholar 

  • Gorlin J et al (1993) Actin-binding protein (ABP-280) filamin gene (FLN) maps telomeric to the colar vision locus (R/GCP) and centromeric to G6PD in Xq28. Genomics 17:496–498

    Article  CAS  PubMed  Google Scholar 

  • Gu M et al (1999) Analysis of the roles of 14-3-3 in the platelet glycoprotein Ib-IX-mediated activation of integrin aIIbb3 using a reconstituted mammalian cell expression model. J Cell Biol 147:1085–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handagama P et al (1987) In vitro platelet release by rat megakaryocytes: effect of metabolic inhibitors and cytoskeletal disrupting agents. Am J Vet Res 48:1142–1146

    CAS  PubMed  Google Scholar 

  • Harker L (1978) Platelet survival time: its measurement and use. Prog Hemost Thromb 4:321–347

    CAS  PubMed  Google Scholar 

  • Harker LA, Finch CA (1969) Thrombokinetics in man. J Clin Investig 48:963–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwig J, DeSisto M (1991) The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol 112:407–425

    Article  CAS  PubMed  Google Scholar 

  • Hayles J, Fisher D, Woodlard A (1994) Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc22-mitotic B cyclin complex. Cell 78:813–822

    Article  CAS  PubMed  Google Scholar 

  • Italiano J Jr et al (1999) Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 147:1299–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junt T et al (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317(5845):1767–1770

    Article  CAS  PubMed  Google Scholar 

  • Kaiser H, O’Keefe E, Bennett V (1989) Adducin: Ca++-dependent association with sites of cell-cell contact. J Cell Biol 109:557–569

    Article  CAS  PubMed  Google Scholar 

  • Kaufman RM, Airo R, Pollack S, Crosby WH (1965) Circulating megakaryocytes and platelet release in the lung. Blood 26:720–728

    CAS  PubMed  Google Scholar 

  • Kautz J, De Marsh QB (1955) Electron microscopy of sectioned blood and bone marrow elements. Rev Hematol 10(2):314–323, discussion, 324–344

    Google Scholar 

  • Kenney D, Linck R (1985) The cytoskeleton of unstimulated blood platelets: structure and composition of the isolated marginal microtubular band. J Cell Sci 78:1–22

    CAS  PubMed  Google Scholar 

  • Kopp HG et al (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 20:349–356

    Article  CAS  Google Scholar 

  • Kosaki G (2005) In vivo platelet production from mature megakaryocytes: does platelet release occur via proplatelets? Int J Hematol 81(3):208–219

    Article  CAS  PubMed  Google Scholar 

  • Kovacsovics T et al (1995) Phosphoinositide 3-kinase inhibition spares actin assembly in activating platelets, but reverses platelet aggregation. J Biol Chem 270:11358–11366

    Article  CAS  PubMed  Google Scholar 

  • Kowata S et al (2014) Platelet demand modulates the type of intravascular protrusion of megakaryocytes in bone marrow. Thromb Haemost 112(4):743–756

    Article  PubMed  Google Scholar 

  • Kozar K (2004) Mouse development and cell proliferation in the absence of D-cyclins. Cell 118:477–491

    Article  CAS  PubMed  Google Scholar 

  • Kuhlman P et al (1996) A new function for adducin. Calcium/calmodulin-regulated capping of the barbed ends of actin filaments. J Biol Chem 271:7986–7991

    Article  CAS  PubMed  Google Scholar 

  • Lecine P, Villeval J-L, Paresh V, Swencki B, Xu Y, Shivdasani R (1998) Mice lacking transcription factor NF-E2 provide in vivo validation of the proplatelet model of thrombocytopoiesis and show a platelet production defect that is intrinsic to megakaryocytes. Blood 92:1608–1616

    CAS  PubMed  Google Scholar 

  • Leven RM (1987) Megakaryocyte motility and platelet formation. Scanning Microsc 1(4):1701–1709

    CAS  PubMed  Google Scholar 

  • Levine J, Willard M (1983) Redistribution of fodrin (a component of the cortical cytoplasm) accompanying capping of cell surface surface molecules. Proc Natl Acad Sci U S A 80:191–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CL, Johnson GR (1995) Murine hematopoietic stem and progenitor cells: I. Enrichment and biologic characterization. Blood 85(6):1472–1479

    CAS  PubMed  Google Scholar 

  • Lichtman M et al (1978) Parasinusoidal location of megakaryocytes in marrow: a determinant of platelet release. Am J Hematol 4:303–312

    Article  CAS  PubMed  Google Scholar 

  • Long MW, Williams N, Ebbe S (1982) Immature megakaryocytes in the mouse: physical characteristics, cell cycle status, and in vitro responsiveness to thrombopoietic stimulatory factor. Blood 59(3):569–575

    CAS  PubMed  Google Scholar 

  • Matsuoka Y, Li X, Bennett V (1998) Adducin is an in vivo substrate for protein kinase C: phosphorylation in the MARCKS-related domain inhibits activity in promoting spectrin-actin complexes and occurs in many cells, including dendritic spines of neurons. J Cell Biol 142:485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka Y, Li X, Bennett V (2000) Adducin: structure, function, and regulation. Cell Mol Life Sci 57:884–895

    Article  CAS  PubMed  Google Scholar 

  • Nachmias VT, Yoshida K-I (1988) The cytoskeleton of the blood platelet: a dynamic structure. Adv Cell Biol 2:181–211

    Article  Google Scholar 

  • Nagata Y, Muro Y, Todokoro K (1997) Thrombopoietin-induced polyploidization of bone marrow megakaryocytes is due to a unique regulatory mechanism in late mitosis. J Cell Biol 139:449–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakao K, Angrist AA (1968) Membrane surface specialization of blood platelet and megakaryocyte. Nature 217(5132):960–961

    Article  CAS  PubMed  Google Scholar 

  • Nishimura S et al (2015) IL-1alpha induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J Cell Biol 209(3):453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odell T, Jackson CJ, Reiter R (1968) Generation cycle of rat megakaryocytes. Exp Cell Res 53:321

    Article  Google Scholar 

  • Odell TT Jr, Jackson CW, Friday TJ (1970) Megakaryocytopoiesis in rats with special reference to polyploidy. Blood 35(6):775–782

    PubMed  Google Scholar 

  • Ohta Y et al (1999) The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci U S A 96:2122–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel SR et al (2005) Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood 106(13):4076–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel-Hett S et al (2011) The spectrin-based membrane skeleton stabilizes mouse megakaryocyte membrane systems and is essential for proplatelet and platelet formation. Blood 118(6):1641–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pleines I et al (2012) Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis. Blood 119(4):1054–1063

    Article  CAS  PubMed  Google Scholar 

  • Pleines I et al (2013) Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42. Blood 122(18):3178–3187

    Article  CAS  PubMed  Google Scholar 

  • Radley JM (1986) Ultastructural aspects of platelet formation. Prog Clin Biol Res 215:387

    CAS  PubMed  Google Scholar 

  • Radley JM, Haller CJ (1982) The demarcation membrane system of the megakaryocyte: a misnomeer? Blood 60:213–219

    CAS  PubMed  Google Scholar 

  • Radley J, Hatshorm M (1987) Megakaryocyte fragments and the microtubule coil. Blood Cells 12:603–608

    CAS  PubMed  Google Scholar 

  • Radley JM, Scurfield G (1980) The mechanism of platelet release. Blood 56(6):996–999

    CAS  PubMed  Google Scholar 

  • Raslova H et al (2003) Megakaryocyte polyploidization is associated with a functional gene amplification. Blood 101:541–544

    Article  CAS  PubMed  Google Scholar 

  • Ravid K et al (2002) Roads to polyploidy: the megakaryocyte example. J Cell Physiol 190(1):7–20

    Article  CAS  PubMed  Google Scholar 

  • Richardson JL et al (2005) Mechanisms of organelle transport and capture along proplatelets during platelet production. Blood 106(13):4066–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojnuckarin P, Kaushansky K (2001) Actin reorganization andproplatelet formation in murine megakaryocytes: the role of protein kinase c alpha. Blood 97:154–161

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg S, Stracher A (1982) Effect of actin-binding protein on the sedimentation properties of actin. J Cell Biol 94:51–55

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg S, Stracher A, Burridge K (1981) Isolation and characterization of a calcium-sensitive α-actinin-like protein from human platelet cytoskeletons. J Biol Chem 256:12986–12991

    CAS  PubMed  Google Scholar 

  • Safer D, Nachmias V (1994) Beta thymosins as actin binding peptides. Bioessays 16:473–479

    Article  CAS  PubMed  Google Scholar 

  • Schwer H et al (2001) A lineage-restricted and divergent b tubulin isoform is essential for the biogenesis, structure and function of mammalian blood platelets. Curr Biol 11:579–586

    Article  CAS  PubMed  Google Scholar 

  • Schwertz H et al (2010) Anucleate platelets generate progeny. Blood 115(18):3801–3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scurfield G, Radley JM (1981) Aspects of platelet formation and release. Am J Hematol 10:285–296

    Article  CAS  PubMed  Google Scholar 

  • Shaklai M, Loskutoff D, Tavassoli M (1978) Membrane characteristics of cultured endothelial cells: identification of gap junction. Isr J Med Sci 14(3):306–313

    CAS  PubMed  Google Scholar 

  • Shivdasani RA et al (1995) Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81:695–704

    Article  CAS  PubMed  Google Scholar 

  • Shivdasani RA et al (1997) A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J 16:3965–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stossel T et al (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145

    Article  CAS  PubMed  Google Scholar 

  • Tablin F, Castro M, Leven R (1990) Blood platelet formation in vitro. The role of the cytoskeleton in megakaryocyte fragmentation. J Cell Sci 97:59–70

    PubMed  Google Scholar 

  • Tavassoli M, Aoki M (1989) Localization of megakaryocytes in the bone marrow. Blood Cells 15(1):3–14

    CAS  PubMed  Google Scholar 

  • Therman E, Sarto G, Stubblefiels P (1983) Endomitosis: a reappraisal. Hum Genet 63:13–18

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP, Bessis M (1956) Mechanism of platelet genesis; in vitro study by cinemicrophotography. Rev Hematol 11(2):162–174

    CAS  PubMed  Google Scholar 

  • Thon JN et al (2010) Cytoskeletal mechanics of proplatelet maturation and platelet release. J Cell Biol 191(4):861–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thon JN et al (2012) Microtubule and cortical forces determine platelet size during vascular platelet production. Nat Commun 3:852

    Article  PubMed  CAS  Google Scholar 

  • Trakala M et al (2015) Functional reprogramming of polyploidization in megakaryocytes. Dev Cell 32(2):155–167

    Article  CAS  PubMed  Google Scholar 

  • Trowbridge EA, Martin JF, Slater DN, Kishk YT, Warren CW, Harley PJ, Woodcock B (1984) The origin of platelet count and volume. Clin Phys Physiol Meas 5:145–156

    Article  CAS  PubMed  Google Scholar 

  • Vitrat N et al (1998) Endomitosis of human megakaryocytes are due to abortive mitosis. Blood 91:3711–3723

    CAS  PubMed  Google Scholar 

  • Wandall HH et al (2012) The origin and function of platelet glycosyltransferases. Blood 120(3):626–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z et al (1995) Cyclin D3 is essential for megakaryocytopoiesis. Blood 86:3783–3788

    CAS  PubMed  Google Scholar 

  • Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403

    Article  CAS  PubMed  Google Scholar 

  • White J, Krivit W (1967) An ultrastructural basis for the shape changes induced in platelets by chilling. Blood 30:625–635

    CAS  PubMed  Google Scholar 

  • Wright J (1906) The origin and nature of blood platelets. Boston Med Surg J 154:643–645

    Article  Google Scholar 

  • Yamada F (1957) The fine structure of the megakaryocyte in the mouse spleen. Acta Anat (Basel) 29:267–290

    Article  CAS  Google Scholar 

  • Zhang Y, Wang Z, Ravid K (1996) The cell cycle in polyploid megakaryocytes is associated with reduced activity of cyclin B1-dependent cdc2 kinase. J Biol Chem 271:4266–4272

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2004) Aberrant quantity and localization of Aurora-B/AIM-1 and survivin during megakaryocyte polyploidization and the consequences of Aurora-B/AIM-1-deregulated expression. Blood 103(10):3717–3726

    Article  CAS  PubMed  Google Scholar 

  • Zhang L et al (2012) A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J Exp Med 209(12):2165–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker-Franklin D, Benson KA, Myers KM (1985) Absence of a surface-connected canalicular system in bovine platelets. Blood 65(1):241–244

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Italiano Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Italiano, J.E. (2017). Megakaryocyte Development and Platelet Production. In: Gresele, P., Kleiman, N., Lopez, J., Page, C. (eds) Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-47462-5_4

Download citation

Publish with us

Policies and ethics