Skip to main content

Megakaryopoiesis and Platelet Biogenesis

  • Chapter
  • First Online:
Molecular and Cellular Biology of Platelet Formation

Abstract

Blood platelets are 2–3 um anucleate fragments that are formed from the megakaryocyte cytoplasm and have a distinctive discoid shape. To generate and release platelets, megakaryocytes undergo endomitosis to become polyploid and follow a maturation program that results in the transformation of the bulk of their cytoplasm into multiple long processes called proplatelets. To generate 1000 to 2000 platelets, a megakaryocyte may extend multiple proplatelets, each of which begins as a thick pseudopodia that over time elongates and branches repetitively. Platelets form predominantly at the tips of proplatelets. As platelets mature, their content of organelles and granules is delivered to them in a flow of individual cargo moving from the cell body of the megakaryocyte to the assembling platelets at the proplatelet ends. Platelet generation can be indiscriminately divided into two stages. The first stage takes days to complete and requires megakaryocyte-specific cytokines, such as thrombopoietin. Substantial nuclear proliferation to 16 to 32 × N and expansion of the megakaryocyte cytoplasm occur as the platelet is packed with platelet-specific granules, cytoskeletal proteins, and abundant membrane to complete the platelet assembly phase. The second stage is relatively fast and can be completed in hours. During this phase, megakaryocytes generate platelets by reorganizing their cytoplasm first into proplatelets, then preplatelets, which undergo fission to generate platelets. Each day, 100 billion platelets must be generated from megakaryocytes to sustain the normal platelet count of 2 to 3 × 108/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Li CL, Johnson GR (1995) Murine hematopoietic stem and progenitor cells: I. Enrichment and biologic characterization. Blood 85(6):1472–1479

    CAS  PubMed  Google Scholar 

  2. Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403

    Article  CAS  PubMed  Google Scholar 

  3. Akashi K et al (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404(6774):193–197

    Article  CAS  PubMed  Google Scholar 

  4. Adolfsson J et al (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121(2):295–306

    Article  CAS  PubMed  Google Scholar 

  5. Long MW, Williams N, Ebbe S (1982) Immature megakaryocytes in the mouse: physical characteristics, cell cycle status, and in vitro responsiveness to thrombopoietic stimulatory factor. Blood 59(3):569–575

    CAS  PubMed  Google Scholar 

  6. Ebbe S (1976) Biology of megakaryocytes. Prog Hemostasis Thromb 3:211–229

    CAS  Google Scholar 

  7. Ebbe S, Stohlman F (1965) Megakaryocytopoiesis in the rat. Blood 26:20–34

    CAS  PubMed  Google Scholar 

  8. Odell T, Jackson CJ, Reiter R (1968) Generation cycle of rat megakaryocytes. Exp Cell Res 53:321

    Article  Google Scholar 

  9. Odell TT Jr, Jackson CW, Friday TJ (1970) Megakaryocytopoiesis in rats with special reference to polyploidy. Blood 35(6):775–782

    PubMed  Google Scholar 

  10. Therman E, Sarto G, Stubblefiels P (1983) Endomitosis: a reappraisal. Hum Genet 63:13–18

    Article  CAS  PubMed  Google Scholar 

  11. Raslova H et al (2003) Megakaryocyte polyploidization is associated with a functional gene amplification. Blood 101:541–544

    Article  CAS  PubMed  Google Scholar 

  12. Nagata Y, Muro Y, Todokoro K (1997) Thrombopoietin-induced polyploidization of bone marrow megakaryocytes is due to a unique regulatory mechanism in late mitosis. J Cell Biol 139:449–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vitrat N et al (1998) Endomitosis of human megakaryocytes are due to abortive mitosis. Blood 91:3711–3723

    CAS  PubMed  Google Scholar 

  14. Ravid K et al (2002) Roads to polyploidy: the megakaryocyte example. J Cell Physiol 190(1):7–20

    Article  CAS  PubMed  Google Scholar 

  15. Gu M et al (1999) Analysis of the roles of 14-3-3 in the platelet glycoprotein Ib-IX-mediated activation of integrin aIIbb3 using a reconstituted mammalian cell expression model. J Cell Biol 147:1085–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Z et al (1995) Cyclin D3 is essential for megakaryocytopoiesis. Blood 86:3783–3788

    CAS  PubMed  Google Scholar 

  17. Broek D, Bartlett R, Crawford K (1991) Involvement of p34cdc2 in establishing the dependency of S phase on mitosis. Nature 349:388–393

    Article  CAS  PubMed  Google Scholar 

  18. Hayles J, Fisher D, Woodlard A (1994) Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc22-mitotic B cyclin complex. Cell 78:813–822

    Article  CAS  PubMed  Google Scholar 

  19. Brieher W et al (2006) Rapid actin monomer-insensitive depolymerization of Listeria actin comet tails by cofilin, coronin, and Aip1. J Cell Biol 175:315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Datta NS et al (1996) Novel alterations in CDK1/cyclin B1 kinase complex formation occur during the acquisition of a polyploid DNA content. Mol Biol Cell 7:209–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Wang Z, Ravid K (1996) The cell cycle in polyploid megakaryocytes is associated with reduced activity of cyclin B1-dependent cdc2 kinase. J Biol Chem 271:4266–4272

    Article  CAS  PubMed  Google Scholar 

  22. Kozar K (2004) Mouse development and cell proliferation in the absence of D-cyclins. Cell 118:477–491

    Article  CAS  PubMed  Google Scholar 

  23. Geng Y (2003) Cyclin E ablation in the mouse. Cell 114:431–443

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y et al (2004) Aberrant quantity and localization of Aurora-B/AIM-1 and survivin during megakaryocyte polyploidization and the consequences of Aurora-B/AIM-1-deregulated expression. Blood 103(10):3717–3726

    Article  CAS  PubMed  Google Scholar 

  25. Trakala M et al (2015) Functional reprogramming of polyploidization in megakaryocytes. Dev Cell 32(2):155–167

    Google Scholar 

  26. Kautz J, De Marsh QB (1955) Electron microscopy of sectioned blood and bone marrow elements. Rev Hematol 10(2):314–323; discussion, 324–44

    CAS  PubMed  Google Scholar 

  27. Yamada F (1957) The fine structure of the megakaryocyte in the mouse spleen. Acta Anat 29:267–290

    Article  CAS  PubMed  Google Scholar 

  28. Behnke O (1968) An electron microscope study of megakaryocytes of rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. J Ultrastuct Res 24:412–433

    Article  CAS  Google Scholar 

  29. Nakao K, Angrist AA (1968) Membrane surface specialization of blood platelet and megakaryocyte. Nature 217(5132):960–961

    Article  CAS  PubMed  Google Scholar 

  30. Zucker-Franklin D, Benson KA, Myers KM (1985) Absence of a surface-connected canalicular system in bovine platelets. Blood 65(1):241–244

    CAS  PubMed  Google Scholar 

  31. Eckly A et al (2014) Biogenesis of the demarcation membrane system (DMS) in megakaryocytes. Blood 123(6):921–930

    Google Scholar 

  32. Wandall HH et al (2012) The origin and function of platelet glycosyltransferases. Blood. 120(3):626–635

    Google Scholar 

  33. Chen Y et al (2013) Loss of the F-BAR protein CIP4 reduces platelet production by impairing membrane-cytoskeleton remodeling. Blood 122(10):1695–1706

    Google Scholar 

  34. Bender M et al (2015) Dynamin 2-dependent endocytosis is required for normal megakaryocyte development in mice. Blood 125(6):1014–1024

    Google Scholar 

  35. Wright J (1906) The origin and nature of blood platelets. Boston Med Surg J 154:643–645

    Article  Google Scholar 

  36. Shaklai M, Loskutoff D, Tavassoli M (1978) Membrane characteristics of cultured endothelial cells: identification of gap junction. Isr J Med Sci 14(3):306–313

    CAS  PubMed  Google Scholar 

  37. Kosaki G (2005) In vivo platelet production from mature megakaryocytes: does platelet release occur via proplatelets? Int J Hematol 81(3):208–219

    Article  CAS  PubMed  Google Scholar 

  38. Radley J, Hatshorm M (1987) Megakaryocyte fragments and the microtubule coil. Blood Cells 12:603–608

    CAS  PubMed  Google Scholar 

  39. Radley JM, Haller CJ (1982) The demarcation membrane system of the megakaryocyte: a misnomer? Blood 60:213–219

    CAS  PubMed  Google Scholar 

  40. Becker RP, DeBruyn PP (1976) The transmural passage of blood cells into myeloid sinusoids and the entry of platelets into the sinusoidal circulation; a scanning electron microscopic investigation. Am J Anat 145:1046–1052

    Article  Google Scholar 

  41. Thiery JP, Bessis M (1956) Mechanism of platelet genesis; in vitro study by cinemicrophotography. Rev Hematol 11(2):162–174

    CAS  PubMed  Google Scholar 

  42. Behnke O (1969) An electron microscope study of the rat megakaryocyte. II. Some aspects of platelet release and microtubules. J Ultrastruct Res 26:111–129

    Article  CAS  PubMed  Google Scholar 

  43. Choi E, Nichol JL, Hokom MM, Hornkohl AC, Hunt P (1995) Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood 85:402–413

    CAS  PubMed  Google Scholar 

  44. Handagama P et al (1987) In vitro platelet release by rat megakaryocytes: effect of metabolic inhibitors and cytoskeletal disrupting agents. Am J Vet Res 48:1142–1146

    CAS  PubMed  Google Scholar 

  45. Leven R (1987) Megakaryocyte motility and platelet formation. Scanning Microsc 1:1701–1709

    CAS  PubMed  Google Scholar 

  46. Tablin F, Castro M, Leven R (1990) Blood platelet formation in vitro. The role of the cytoskeleton in megakaryocyte fragmentation. J Cell Sci 97:59–70

    PubMed  Google Scholar 

  47. Cramer E et al (1997) Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand. Blood 89:2336–2346

    CAS  PubMed  Google Scholar 

  48. Lichtman M et al (1978) Parasinusoidal location of megakaryocytes in marrow: a determinant of platelet release. Am J Hematol 4:303–312

    Article  CAS  PubMed  Google Scholar 

  49. Scurfield G, Radley JM (1981) Aspects of platelet formation and release. Am J Hematol 10:285–296

    Article  CAS  PubMed  Google Scholar 

  50. Tavassoli M, Aoki M (1989) Localization of megakaryocytes in the bone marrow. Blood Cells 15(1):3–14

    CAS  PubMed  Google Scholar 

  51. Lecine P, Villeval J-L, Paresh V, Swencki B, Xu Y, Shivdasani R (1998) Mice lacking transcription factor NF-E2 provide in vivo validation of the proplatelet model of thrombocytopoiesis and show a platelet production defect that is intrinsic to megakaryocytes. Blood 92:1608–1616

    CAS  PubMed  Google Scholar 

  52. Shivdasani RA et al (1997) A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J 16:3965–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shivdasani RA et al (1995) Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81:695–704

    Article  CAS  PubMed  Google Scholar 

  54. Italiano JE Jr et al (1999) Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 147(6):1299–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Patel S et al (2005) Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood 106:4076–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. White J, Krivit W (1967) An ultrastructural basis for the shape changes induced in platelets by chilling. Blood 30:625–635

    CAS  PubMed  Google Scholar 

  57. Schwer H et al (2001) A lineage-restricted and divergent b tubulin isoform is essential for the biogenesis, structure and function of mammalian blood platelets. Curr Biol 11:579–586

    Article  CAS  PubMed  Google Scholar 

  58. Freson K et al (2005) The b1-tubulin Q43P functional polymorphism reduces the risk of cardiovascular disease in men by modulating platelet function and structure. Blood 106:2356–2362

    Article  CAS  PubMed  Google Scholar 

  59. Browne K et al (2000) Filamin (280-kDa actin-binding protein) is a caspase substrate and is also cleaved directly by the cytotoxic T lymphocyte protease granzyme B during apoptosis. J Biol Chem 275:39262–39266

    Article  CAS  PubMed  Google Scholar 

  60. Kenney D, Linck R (1985) The cytoskeleton of unstimulated blood platelets: structure and composition of the isolated marginal microtubular band. J Cell Sci 78:1–22

    CAS  PubMed  Google Scholar 

  61. Bender M et al (2015) Microtubule sliding drives proplatelet elongation and is dependent on cytoplasmic dynein. Blood. 125(5):860–868

    Google Scholar 

  62. Richardson J et al (2005) Mechanisms of organelle transport and capture along proplatelets during platelet production. Blood 106:4066–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nachmias VT, Yoshida K-i (1988) The cytoskeleton of the blood platelet: a dynamic structure. Adv Cell Biol 2:181–211

    Article  Google Scholar 

  64. Hartwig J, DeSisto M (1991) The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol 112:407–425

    Article  CAS  PubMed  Google Scholar 

  65. Safer D, Nachmias V (1994) Beta thymosins as actin binding peptides. Bioessays 16:473–479

    Article  CAS  PubMed  Google Scholar 

  66. Rosenberg S, Stracher A (1982) Effect of actin-binding protein on the sedimentation properties of actin. J Cell Biol 94:51–55

    Article  CAS  PubMed  Google Scholar 

  67. Rosenberg S, Stracher A, Burridge K (1981) Isolation and characterization of a calcium-sensitive α-actinin-like protein from human platelet cytoskeletons. J Biol Chem 256:12986–12991

    CAS  PubMed  Google Scholar 

  68. Fucini P et al (1997) The repeating segments of the F-actin cross-linking gelation factor (ABP-120) have an immunoglobulin-like fold. Nat Struct Biol 4(3):223–230

    Article  CAS  PubMed  Google Scholar 

  69. Gorlin J et al (1990) Human endothelial actin-binding protein (ABP-280, non-muscle filamin): a molecular leaf spring. J Cell Biol 111:1089–1105

    Article  CAS  PubMed  Google Scholar 

  70. Gorlin J et al (1993) Actin-binding protein (ABP-280) filamin gene (FLN) maps telomeric to the colar vision locus (R/GCP) and centromeric to G6PD in Xq28. Genomics 17:496–498

    Article  CAS  PubMed  Google Scholar 

  71. Stossel T et al (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev 2:138–145

    Article  CAS  Google Scholar 

  72. Ohta Y et al (1999) The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci U S A 96:2122–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kovacsovics T et al (1995) Phosphoinositide 3-kinase inhibition spares actin assembly in activating platelets, but reverses platelet aggregation. J Biol Chem 270:11358–11366

    Article  CAS  PubMed  Google Scholar 

  74. Harker L (1978) Platelet survival time: its measurement and use. Prog Hemostatis Thromb 4:321–347

    CAS  Google Scholar 

  75. Harker LA, Finch CA (1969) Thrombokinetics in man. J Clin Investig 48:963–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kaufman RM, Airo R, Pollack S, Crosby WH (1965) Circulating megakaryocytes and platelet release in the lung. Blood 26:720–728

    CAS  PubMed  Google Scholar 

  77. Trowbridge EA, Martin JF, Slater DN, Kishk YT, Warren CW, Harley PJ, Woodcock B (1984) The origin of platelet count and volume. Clin Phys Physiol Meas 5:145–156

    Article  CAS  PubMed  Google Scholar 

  78. Rojnuckarin P, Kaushansky K (2001) Actin reorganization and proplatelet formation in murine megakaryocytes: the role of protein kinase c alpha. Blood 97:154–161

    Article  CAS  PubMed  Google Scholar 

  79. Begonja AJ et al (2011) FlnA-null megakaryocytes prematurely release large and fragile platelets that circulate poorly. Blood 118:2285–2295

    Article  CAS  Google Scholar 

  80. Bender M et al (2010) ADF/n-cofilin-dependent actin turnover determines platelet formation and sizing. Blood 116(10):1767–1775

    Google Scholar 

  81. Bender M et al (2014) Megakaryocyte-specific Profilin1-deficiency alters microtubule stability and causes a Wiskott-Aldrich syndrome-like platelet defect. Nat Commun 5:4746

    Google Scholar 

  82. Pleines I et al (2013) Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42. Blood 122(18):3178–3187

    Google Scholar 

  83. Pleines I et al (2012) Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis. Blood 119(4):1054–1063

    Google Scholar 

  84. Fox J, Aggerbeck L, Berndt M (1988) Structure of the glycoprotein Ib-IX complex from platelet membranes. J Biol Chem 263:4882–4890

    CAS  PubMed  Google Scholar 

  85. Fox J et al (1987) Spectrin is associated with membrane-bound actin filaments in platelets and is hydrolyzed by the Ca2+-dependent protease during platelet activation. Blood 69:537–545

    CAS  PubMed  Google Scholar 

  86. Barkalow K et al (2003) a-Adducin dissociates from F-actin filaments and spectrin during platelet activation. J Cell Biol 161:557–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kaiser H, O’Keefe E, Bennett V (1989) Adducin: Ca++-dependent association with sites of cell-cell contact. J Cell Biol 109:557–569

    Article  CAS  PubMed  Google Scholar 

  88. Kuhlman P et al (1996) A new function for adducin. Calcium/calmodulin-regulated capping of the barbed ends of actin filaments. J Biol Chem 271:7986–7991

    Article  CAS  PubMed  Google Scholar 

  89. Matsuoka Y, Li X, Bennett V (1998) Adducin is an in vivo substrate for protein kinase C: phosphorylation in the MARCKS-related domain inhibits activity in promoting spectrin-actin complexes and occurs in many cells, including dendritic spines of neurons. J Cell Biol 142:485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Matsuoka Y, Li X, Bennett V (2000) Adducin: structure, function, and regulation. Cell Mot Life Sci 57:884–895

    Article  CAS  Google Scholar 

  91. Patel-Hett S et al (2011) The spectrin-based membrane skeleton stabilizes mouse megakaryocyte membrane systems and is essential for proplatelet and platelet formation. Blood 118(6):1641–1652

    Google Scholar 

  92. Junt T et al (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317(5845):1767–1770

    Google Scholar 

  93. Zhang L et al (2012) A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J Exp Med 209(12):2165–2181

    Google Scholar 

  94. Thon JN et al (2010) Cytoskeletal mechanics of proplatelet maturation and platelet release. J Cell Biol 191(4):861–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thon JN et al (2012) Microtubule and cortical forces determine platelet size during vascular platelet production. Nat Commun 3:852

    Article  PubMed  Google Scholar 

  96. Schwertz H et al (2010) Anucleate platelets generate progeny. Blood 115(18):3801–3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Italiano Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Italiano, J.E. (2016). Megakaryopoiesis and Platelet Biogenesis. In: Schulze, H., Italiano, J. (eds) Molecular and Cellular Biology of Platelet Formation. Springer, Cham. https://doi.org/10.1007/978-3-319-39562-3_1

Download citation

Publish with us

Policies and ethics