Skip to main content

Introduction to Philosophy of Systems Biology

  • Chapter
  • First Online:
Philosophy of Systems Biology

Part of the book series: History, Philosophy and Theory of the Life Sciences ((HPTL,volume 20))

Teaser

The intention with this volume is to provide a format for scholars to express their personal viewpoints and tell their story in response to the same set of questions (see Preface). Unlike many edited volumes, this book is therefore not divided into thematic sections. The aim of this introduction is to summarize core common themes among the contributor’s chapters so as to guide readers interested in specific topics. Given the richness of the contributions that touch upon many diverse topics in response to the posed questions, I have not summarized each contribution separately. Rather, I focus on core questions and highlight where more information on common themes and novel insights can be found. I also hope that the introduction will provide some background for scientists, philosophers, as well as other readers interested in discussing the philosophical implications of systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://evolutionarysystemsbiology.org, accessed 28-07-2016.

  2. 2.

    As pointed out by Boogerd (personal communication), a high-quality model will indeed reproduce experimental findings but can also be used to do so-called computer-experiments, i.e. experiments that are not yet done or that just cannot be done in reality. For instance, they may be used to test design explanations (Wouters 2007) or to model evolutionary trajectories (Jaeger, Chap. 13). The evidence status of this kind of model results is an interesting epistemological question on its own, and disagreement on this question among scientists can also be a source of insight to different epistemic cultures (Carusi, Chap. 5).

  3. 3.

    Interactional expertise does not require expertise to make specific contributions to the other field.

References

  • Aderem, A. S. (2005). Systems biology: Its practice and challenges. Cell, 121, 511–513.

    Article  Google Scholar 

  • Alberghina, L., & Westerhoff, H. V. (2005). Systems biology: Definitions and perspectives. New York: Springer.

    Book  Google Scholar 

  • Allen, J. F. (2001). Bioinformatics and discovery: Induction beckons again. BioEssays, 23, 104–107.

    Article  Google Scholar 

  • Alon, U. (2007). An introduction to systems biology; design principles of biological circuits. Boca Raton: Chapman and Hall.

    Google Scholar 

  • Alves, R., & Sorribas, A. (2011). Special issue on biological design principles. Mathematical Biosciences, 231, 1–2.

    Article  Google Scholar 

  • Andersen, H. (2013). Interdisciplinarity. In W. Dubitzky, O. Wolkenhauer, H. Yokota, & K. H. Cho (Eds.), Encyclopedia of systems biology (pp. 1032–1033). Amsterdam: Springer.

    Google Scholar 

  • Andersen, H. (2016). Collaboration, interdisciplinarity, and the epistemology of contemporary science. Studies in History and Philosophy of Science Part A, 56, 1–10.

    Article  Google Scholar 

  • Anderson, C. (2008). The end of theory. Wired Magazine, 16.07.

    Google Scholar 

  • Ankeny, R. A., & Leonelli, S. (2015). Valuing data in postgenomic biology: How data donation and curation practices challenge the scientific publication system. In H. Stevens & S. R. Richardson (Eds.), PostGenomics. Perspectives on biology after the genome (pp. 126–149). Durham: Duke University Press.

    Chapter  Google Scholar 

  • Bechtel, W. (2011). Mechanism and biological explanation. Philosophy of Science, 78, 533–557.

    Article  Google Scholar 

  • Bechtel, W. (2015). Generalizing mechanistic explanations using graph-theoretic representations. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 199–225). Dordrecht: Springer.

    Google Scholar 

  • Bechtel, W., & Abrahamsen, A. (2011). Complex biological mechanisms: Cyclic, oscillatory, and autonomous. In C. Hooker (Ed.), Philosophy of complex systems (pp. 257–285). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Bechtel, W., & Abrahamsen, A. (2012). Thinking dynamically about biological mechanisms: Networks of coupled oscillators. Foundations of Science, 18, 707–723.

    Article  Google Scholar 

  • Bechtel, W., & Richardson, R. C. (1993/2010). Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton: Princeton University Press.

    Google Scholar 

  • Bentele, M., & Eils, R. (2005). Systems biology of apoptosis. In H. V. Westerhoff & L. Alberghina (Eds.), Systems biology. Definitions and perspectives (pp. 349–371). Amsterdam: Springer.

    Google Scholar 

  • Bertolaso, M. (2011). Hierarchies and causal relationships in interpretative models of the neoplastic process. History and Philosophy of the Life Sciences, 33, 515–536.

    Google Scholar 

  • Boogerd, F. C., Bruggeman, F., Richardson, R., Achim, S., & Westerhoff, H. V. (2005). Emergence and its place in nature: A case study of biochemical networks. Synthese, 145, 131–164.

    Article  Google Scholar 

  • Boogerd, F. C., Bruggeman, F. J., Hofmeyr, J.-H. S., & Westerhoff, H. V. (Eds.). (2007). Systems biology: Philosophical foundations. Amsterdam: Elsevier.

    Google Scholar 

  • Boogerd, F. C., Bruggeman, F. J., & Richardson, R. C. (2013). Mechanistic explanations and models in molecular systems biology. Foundations of Science, 18, 725–744.

    Article  Google Scholar 

  • Boudry, M., & Pigliucci, M. (2013). The mismeasure of machine: Synthetic biology and the trouble with engineering metaphors. Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 660–668.

    Article  Google Scholar 

  • Braillard, P. (2010). Systems biology and the mechanistic framework. History and Philosophy of the Life Sciences, 32, 43–62.

    Google Scholar 

  • Braillard, P. A. (2015). Prospect and limits of explaining biological systems in engineering terms. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 319–344). Dordrecht: Springer.

    Google Scholar 

  • Brigandt, I. (2013). Systems biology and the integration of mechanistic explanation and mathematical explanation. Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 477–492.

    Article  Google Scholar 

  • Brigandt, I., Green, S., & O’Malley, M. (forthcoming). Systems biology and mechanistic explanation. In S. Glennan & P. Illiary (Eds.), Routledge handbook of the philosophy of mechanisms. New York: Routledge.

    Google Scholar 

  • Calcott, B., Levy, A., Siegal, M. L., Soyer, O. S., & Wagner, A. (2015). Engineering and biology: Counsel for a continued relationship. Biological Theory, 10, 50–59.

    Article  Google Scholar 

  • Carusi, A., Burrage, K., & Rodríguez, B. (2012). Bridging experiments, models and simulations: An integrative approach to validation in computational cardiac electrophysiology. American Journal of Physiology – Heart and Circulatory Physiology, 303, H144–H155.

    Article  Google Scholar 

  • Collins, H. M., & Evans, R. (2002). The third wave of science studies: Studies of expertise and experience. Social Studies of Science, 32, 235–296.

    Article  Google Scholar 

  • De Grandis, G., & Halgunset, V. (2016). Conceptual and terminological confusion around personalised medicine: A coping strategy. BMC Medical Ethics, 17, 43.

    Google Scholar 

  • Drack, M., & Wolkenhauer, O. (2011). System approaches of Weiss and Bertalanffy and their relevance for systems biology today. Seminars in Cancer Biology, 21, 150–155.

    Google Scholar 

  • Fagan, M. B. (2012). Waddington redux: Models and explanation in stem cell and systems biology. Biology and Philosophy, 27, 179–213.

    Article  Google Scholar 

  • Fagan, M. B. (2016). Stem cells and systems models: Clashing views of explanation. Synthese, 193, 873–907.

    Article  Google Scholar 

  • Goodwin, B. (1994). How the leopard changed its sports. The evolution of complexity. London: Phoenix.

    Google Scholar 

  • Green, S. (2013). When one model is not enough: Combining epistemic tools in systems biology. Studies in History and Philosophy of Biology and Biomedical Sciences, 44, 170–180.

    Article  Google Scholar 

  • Green, S. (2014). A philosophical evaluation of adaptationism as a heuristic strategy. Acta Biotheoretica, 62, 479–498.

    Article  Google Scholar 

  • Green, S. (2015a). Can biological complexity be reverse engineered? Studies in History and Philosophy of Biology and Biomedical Sciences, 53, 73–83.

    Article  Google Scholar 

  • Green, S. (2015b). Revisiting generality in the life sciences: Systems biology and the quest for design principles. Biology and Philosophy, 30, 629–652.

    Article  Google Scholar 

  • Green, S., & Vogt, H. (2016). Personalizing medicine: Disease prevention in silico and in socio. In M. Bertolaso & M. MacLeod (Eds.), In silico medicine: The human factor, Humana.Mente, 30, 105145.

    Google Scholar 

  • Green, S., & Wolkenhauer, O. (2013). Tracing organizing principles – Learning from the history of systems biology. History and Philosophy of the Life Sciences, 35, 553–576.

    Google Scholar 

  • Green, S., Fagan, M., & Jaeger, J. (2015a). Explanatory integration challenges in evolutionary systems biology. Biological Theory, 10, 18–35.

    Article  Google Scholar 

  • Green, S., Levy, A., & Bechtel, W. (2015b). Design sans adaptation. European Journal of Philosophy of Science, 5, 15–29.

    Article  Google Scholar 

  • Gross, F. (2013). The Sum of the Parts: Heuristic Strategies in Systems Biology. PhD thesis in Foundations of the Life Sciences and Their Ethical Consequences (FOLSATEC), European School for Molecular Medicine (SEMM) and the University of Milan, Italy.

    Google Scholar 

  • Gross, F. (2015). The relevance of irrelevance: Explanation in systems biology. In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 175–198). Dordrecht: Springer.

    Google Scholar 

  • Hofmeyr, J. (2007). The biochemical factory that autonomously fabricates itself: A systems biological view of the living cell. In F. C. Boogerd, F. J. Bruggeman, J.-H. Hofmeyr, & H. V. Westerhoff (Eds.), Systems biology. Philosophical foundations (pp. 215–242). Amsterdam: Elsevier.

    Google Scholar 

  • Hood, L., & Flores, M. (2012). A personal view on systems medicine and the emergence of proactive P4 medicine: Predictive, preventive, personalized and participatory. New Biotechnology, 29, 613–624.

    Article  Google Scholar 

  • Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese, 177, 213–245.

    Article  Google Scholar 

  • Isalan, M., Lemerle, C., Michalodimitrakis, K., Horn, C., Beltrao, P., Raineri, E., Garriga- Canut, M., & Serrano, L. (2008). Evolvability and hierarchy in rewired bacterial gene networks. Nature, 452, 840–846.

    Article  Google Scholar 

  • Issad, T., & Malaterre, C. (2015). Are dynamic mechanistic explanations still mechanistic? In P.-A. Braillard & C. Malaterre (Eds.), Explanation in biology. An enquiry into the diversity of explanatory patterns in the life sciences (pp. 265–292). Dordrecht: Springer.

    Google Scholar 

  • Jaeger, J., & Crombach, A. (2012). Life’s attractors: Understanding developmental systems through reverse engineering and in silico evolution. In O. Soyer (Ed.), Evolutionary systems biology (pp. 93–120). Berlin: Springer.

    Chapter  Google Scholar 

  • Jaeger, J., & Monk, N. (2014). Bioattractors: Dynamical systems theory and the evolution of regulatory processes. Journal of Physiology, 592, 2267–2281.

    Article  Google Scholar 

  • Jones, N. (2014). Bowtie structures, pathway diagrams, and topological explanation. Erkenntnis, 79, 1135–1155.

    Article  Google Scholar 

  • Jones, N., & Wolkenhauer, O. (2012). Diagrams as locality aids for explanation and model construction in cell biology. Biology and Philosophy, 27, 705–721.

    Article  Google Scholar 

  • Kastenhofer, K. (2007). Converging epistemic cultures? A discussion drawing on empirical findings. Innovation: The European Journal of Social Science Research, 20, 359–373.

    Google Scholar 

  • Kastenhofer, K. (2013a). Synthetic biology as understanding, control, construction and creation? Techno-epistemic and socio-political implications of different stances in talking and doing technoscience. Futures, 48, 13–22.

    Article  Google Scholar 

  • Kastenhofer, K. (2013b). Two sides of the same coin? The (techno)epistemic cultures of systems and synthetic biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 130–140.

    Article  Google Scholar 

  • Kell, D. B., & Oliver, S. G. (2003). Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis‐driven science in the post‐genomic era. BioEssays, 26, 99–105.

    Google Scholar 

  • Kitano, H. (Ed.). (2001). Foundations of systems biology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kitano, H. (2002a). Computational systems biology. Nature, 420, 206–210.

    Article  Google Scholar 

  • Kitano, H. (2002b). Systems biology: A brief overview. Science, 295, 1662–1664.

    Article  Google Scholar 

  • Kohl, P., & Noble, D. (2009). Systems biology and the virtual physiological human. Molecular Systems Biology, 5, 292.

    Article  Google Scholar 

  • Kolodkin, A. N., & Westerhoff, H. V. (2011). Parsimony for systems biology: Shaving Occam’s razor away. European Communications in Mathematical and Theoretical Biology, 14, 149–152.

    Google Scholar 

  • Kolodkin, A., Boogerd, F. C., Plant, N., Bruggeman, F. J., Goncharuk, V., Lunshof, J., … Westerhoff, H. V. (2011). Emergence of the silicon human and network targeting drugs. European Journal of Pharmaceutical Sciences, 46, 190–197.

    Google Scholar 

  • Kolodkin, A., Simeonidis, E., Balling, R., & Westerhoff, H. (2012). Understanding complexity in neurodegenerative diseases: In silico reconstruction of emergence. Frontiers in Physiology, 3, 291.

    Google Scholar 

  • Krohs, U. (2012). Convenience experimentation. Studies in History and Philosophy of Biological and Biomedical Sciences, 43, 52–57.

    Article  Google Scholar 

  • Krohs, U., & Callebaut, W. (2007). Data without models merging with models without data. In F. Boogerd, F. Bruggeman, J. Hofmeyr, & H. Westerhoff (Eds.), Systems biology. Philosophical foundations (pp. 181–212). Amsterdam: Elsevier.

    Google Scholar 

  • Lazebnik, Y. (2010). What are the hallmarks of cancer? Nature Comment, 10, 232–233.

    Google Scholar 

  • Leonelli, S. (2012). Introduction: Making sense of data-driven research in the biological and biomedical sciences. Studies in History and Philosophy of Biological and Biomedical Sciences, 43, 1–3.

    Article  Google Scholar 

  • Leonelli, S. (2014). What difference does quantity make? On the epistemology of big data in biology. Big Data & Society, 1, 2053951714534395.

    Article  Google Scholar 

  • Levy, A., & Bechtel, W. (2013). Abstraction and the organization of mechanisms. Philosophy of Science, 80, 241–261.

    Article  Google Scholar 

  • Loscalzo, J., & Barabasi, A. L. (2011). Systems biology and the future of medicine. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3, 619–627.

    Google Scholar 

  • Machamer, P., Darden, L., & Craver, C. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.

    Article  Google Scholar 

  • MacLeod, M., & Nersessian, N. J. (2015). Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 49, 1–11.

    Article  Google Scholar 

  • Mekios, C. (2015). Explanation in systems biology: Is it all about mechanisms? In P.-A. Braillard & C. Malaterre (Eds.), Explanation in Biology: An enquiry into the diversity of explanatory patterns in the life sciences (pp. 47–72). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mesarović, M. D. (1968). Systems theory and biology – View of a theoretician. In M. D. Mesarovic (Ed.), Systems theory and biology. Proceedings of the III systems symposium at case institute of technology (pp. 59–87). New York: Springer.

    Google Scholar 

  • Mesarović, M., & Sreenath, S. N. (2006). Beyond the flat earth perspective in systems biology. Biological Theory, 1, 33.

    Article  Google Scholar 

  • Nicholson, D. J. (2013). Organisms ≠ machines. Studies in History and Philosophy of Biological and Biomedical Sciences, 44(4), 669–678.

    Article  Google Scholar 

  • Noble, D. (2012). A theory of biological relativity: No privileged level of causation. Interface Focus, 2, 55–64.

    Article  Google Scholar 

  • O’Malley, M. A. (2012). Evolutionary systems biology: Historical and philosophical perspectives on an emerging synthesis. Advances in Experimental Medicine and Biology, 751, 1–28.

    Article  Google Scholar 

  • O’Malley, M. A. (2013). Philosophy and the microbe: A balancing act. Biology & Philosophy, 28, 153–159.

    Article  Google Scholar 

  • O’Malley, M. A., & Dupré, J. (2005). Fundamental issues in systems biology. BioEssays, 27, 1270–1276.

    Article  Google Scholar 

  • O’Malley, M. A., & Soyer, O. S. (2012). The roles of integration in molecular systems biology. Studies in History and Philosophy of Biological and Biomedical Sciences, 43, 58–68.

    Article  Google Scholar 

  • Papp, B., Notebaart, R. A., & Pall, C. (2011). Systems-biology approaches for predicting genomic evolution. Nature Review Genetics, 12, 591–602.

    Article  Google Scholar 

  • Peter, I. S., & Davidson, E. H. (2015). Genomic control process in development and evolution. London: Academic Press/Elsevier.

    Google Scholar 

  • Peter, I. S., Faure, E., & Davidson, E. H. (2012). Feature article: Predictive computation of genomic logic processing functions in embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 109, 16434–16442.

    Article  Google Scholar 

  • Pigliucci, M. (2007). Do we need an extended evolutionary synthesis? Evolution, 61, 2743–2749.

    Article  Google Scholar 

  • Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.

    Google Scholar 

  • Richardson, R. C., & Stephan, A. (2007). Mechanism and mechanical explanation in systems biology. In F. Boogerd, F. Bruggeman, J. Hofmeyr, & H. V. Westerhoff (Eds.), Systems Biology, philosophical foundations (pp. 123–144). Amsterdam: Elsevier Publications.

    Google Scholar 

  • Rowbottom, D. P. (2011). Approximations, idealizations and ‘experiments’ at the physics–biology interface. Studies in History and Philosophy of Biological and Biomedical Sciences, 42, 145–154.

    Article  Google Scholar 

  • Savageau, M. A. (1976). Biochemical systems analysis. A study of function and design in molecular biology. Reading: Addison-Wesley Pub. Co.

    Google Scholar 

  • Savageau, M. A. (1985). A theory of alternative designs for biochemical control systems. Biomedica Biochimica Acta, 44, 875–880.

    Google Scholar 

  • SBML. (2001). Systems biology markup language. http://sbml.org/

  • Sonnenschein, C., & Soto, A. M. (1999). The society of cells – Cancer and control of cell proliferation. Oxford: Bios Scientific Publishers.

    Google Scholar 

  • Soyer, O. (Ed.). (2012). Evolutionary systems biology. London: Springer.

    Google Scholar 

  • Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J., III, & Doyle, J. (2004). Robustness of cellular functions. Cell, 118, 675–685.

    Article  Google Scholar 

  • Tyson, J. J., & Novák, B. (2010). Functional motifs in biochemical reaction networks. Annual Review of Physical Chemistry, 61, 219–240.

    Article  Google Scholar 

  • Vogt, H., Ulvestad, E., Eriksen, T. E., & Getz, L. (2014). Getting personal: Can systems medicine integrate scientific and humanistic conceptions of the patient? Journal of Evaluation in Clinical Practice, 20, 942–952.

    Article  Google Scholar 

  • Vogt, H., Hofmann, B., & Getz, L. (2016). The new holism: P4 systems medicine and the medicalization of health and life itself. Medicine, Health Care and Philosophy, 19, 1–17.

    Google Scholar 

  • Voit, E. O. (2003). Design principles and operating principles: The yin and yang of optimal functioning. Mathematical Biosciences, 182, 81–92.

    Article  Google Scholar 

  • Voit, E. O. (2012). A first course in systems biology. New York: Garland Science.

    Google Scholar 

  • Voit, E. O. (2014). Mesoscopic modeling as a starting point for computational analyses of cystic fibrosis as a systemic disease. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1844, 258–270.

    Article  Google Scholar 

  • Voit, E. O. (2016). The inner workings of life. Vignettes in systems biology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Voit, E. O., & Brigham, K. L. (2008). The role of systems biology in predictive health and personalized medicine. The Open Pathology Journal, 2, 68–70.

    Article  Google Scholar 

  • Voit, E. O., Newstetter, W. C., & Kemp, M. L. (2012). A feel for systems. Molecular Systems Biology, 8, 609.

    Article  Google Scholar 

  • Wagner, A. (2012). Metabolic networks and their evolution. In O. Soyer (Ed.), Evolutionary systems biology (pp. 29–52). New York: Springer.

    Chapter  Google Scholar 

  • Westerhoff, H. V., & Hofmeyr, J. S. (2005). What is systems biology? From genes to function and back. In H. V. Westerhoff & L. Alberghina (Eds.), Systems biology. Definitions and perspectives (pp. 119–141). Amsterdam: Springer.

    Google Scholar 

  • Wolkenhauer, O., & Green, S. (2013). The search for organizing principles as a cure against reductionism in systems medicine. FEBS Journal, 280, 5938–5948.

    Article  Google Scholar 

  • Wolkenhauer, O., & Mesarović, M. (2005). Feedback dynamics and cell function: Why systems biology is called systems biology. Molecular BioSystems, 1, 14–16.

    Article  Google Scholar 

  • Wolkenhauer, O., Auffray, C., Jaster, R., Steinhoff, G., & Dammann, O. (2013). The road from systems biology to systems medicine. Pediatric Research, 73, 502–507.

    Article  Google Scholar 

  • Wouters, A. (2007). Design explanation: Determining the constraints on what can be alive. Erkenntnis, 67, 65–80.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Melinda Fagan, William Bechtel, Eberhard Voit, Fred Boogerd, Jan-Hendrik Hofmeyr, Marta Bertolaso, Fridolin Gross, Karen Kastenhofer, Nicholaos Jones, Manfred Drack, and Olaf Wolkenhauer for valuable feedback on an earlier version of the introduction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Green, S. (2017). Introduction to Philosophy of Systems Biology. In: Green, S. (eds) Philosophy of Systems Biology. History, Philosophy and Theory of the Life Sciences, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-47000-9_1

Download citation

Publish with us

Policies and ethics