Skip to main content

Regulation and Modulation of Depression-Related Behaviours: Role of Dopaminergic Neurons

  • Chapter
  • First Online:
Dopamine and Sleep
  • 1069 Accesses

Abstract

Dopamine, a neurotransmitter produced in various brain regions, is implicated in regulation of motor control, reward, mood and addiction. Depression is a serious disorder affecting the day-to-day activities of patients that also imposes a substantial financial burden on society. The following chapter offers an expansive demonstration of the heterogeneous dopamine system in the brain, by describing some of the advances made in unraveling the various dopaminergic neural pathways and molecular mechanisms involved in depression. It also sheds some light on how these same neural pathways might be responsible for the disturbances in sleep and circadian rhythms experienced by patients suffering from depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ablikim M et al (2015) Observation of the psi(13D2) state in e+e−–> pi+pi− γχc1 at BESIII. Phys Rev Lett 115:011803

    Google Scholar 

  • Aizawa H, Kobayashi M, Tanaka S, Fukai T, Okamoto H (2012) Molecular characterization of the subnuclei in rat habenula. J Comp Neurol 520:4051–4066. doi:10.1002/cne.23167

    Article  CAS  PubMed  Google Scholar 

  • Aizawa H, Cui W, Tanaka K, Okamoto H (2013) Hyperactivation of the habenula as a link between depression and sleep disturbance. Front Hum Neurosci 7:826. doi:10.3389/fnhum.2013.00826

    Article  PubMed  PubMed Central  Google Scholar 

  • Ang E et al (2001) Induction of nuclear factor-kappaB in nucleus accumbens by chronic cocaine administration. J Neurochem 79:221–224

    Article  CAS  PubMed  Google Scholar 

  • Anstrom KK, Miczek KA, Budygin EA (2009) Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience 161:3–12. doi:10.1016/j.neuroscience.2009.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antle MC, Mistlberger RE (2000) Circadian clock resetting by sleep deprivation without exercise in the Syrian hamster. J Neurosci Off J Soc Neurosci 20:9326–9332

    CAS  Google Scholar 

  • Arey RN et al (2014) An important role for cholecystokinin, a CLOCK target gene, in the development and treatment of manic-like behaviors. Mol Psychiatry 19:342–350. doi:10.1038/mp.2013.12

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci Off J Soc Neurosci 1:876–886

    CAS  Google Scholar 

  • Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001) A neural circuit for circadian regulation of arousal. Nat Neurosci 4:732–738. doi:10.1038/89522

    Article  CAS  PubMed  Google Scholar 

  • Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64:238–258. doi:10.1124/pr.111.005108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagot RC et al (2015) Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun 6:7062. doi:10.1038/ncomms8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baik JH et al (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377:424–428. doi:10.1038/377424a0

    Article  CAS  PubMed  Google Scholar 

  • Bao AM, Meynen G, Swaab DF (2008) The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev 57:531–553. doi:10.1016/j.brainresrev.2007.04.005

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM (2012) A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J Psychiatry Neurosci 37:7–16. doi:10.1503/jpn.110011

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellet MM, Vawter MP, Bunney BG, Bunney WE, Sassone-Corsi P (2011) Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression. PLoS One 6:e23982. doi:10.1371/journal.pone.0023982PONE-D-11-13223 [pii]

  • Belujon P, Grace AA (2014) Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry 76:927–936. doi:10.1016/j.biopsych.2014.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benca R et al (2009) Biological rhythms, higher brain function, and behavior: gaps, opportunities, and challenges. Brain Res Rev 62:57–70. doi:10.1016/S0165-0173(09)00099-X [pii]

  • Benedetti F, Barbini B, Campori E, Colombo C, Smeraldi E (1996) Dopamine agonist amineptine prevents the antidepressant effect of sleep deprivation. Psychiatry Res 65:179–184. doi:10.1016/S0165-1781(96)03000-4 [pii]

  • Benedetti F et al (2003) Antidepressant effects of light therapy combined with sleep deprivation are influenced by a functional polymorphism within the promoter of the serotonin transporter gene. Biol Psychiatry 54:687–692

    Article  CAS  PubMed  Google Scholar 

  • Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA (2001) Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci Off J Soc Neurosci 21:6718–6731

    CAS  Google Scholar 

  • Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151. doi:10.1038/nrn1846

    Article  CAS  PubMed  Google Scholar 

  • Berton O et al (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868. doi:10.1126/science.1120972

    Article  CAS  PubMed  Google Scholar 

  • Birchler-Pedross A et al (2009) Subjective well-being is modulated by circadian phase, sleep pressure, age, and gender. J Biol Rhythms 24:232–242. doi:10.1177/0748730409335546

    Article  PubMed  Google Scholar 

  • Blaze J, Roth TL (2013) Exposure to caregiver maltreatment alters expression levels of epigenetic regulators in the medial prefrontal cortex. Int J Dev Neurosci 31:804–810. doi:10.1016/j.ijdevneu.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  • Blum R, Kafitz KW, Konnerth A (2002) Neurotrophin-evoked depolarization requires the sodium channel Na(V)1.9. Nature 419:687–693. doi:10.1038/nature01085

    Google Scholar 

  • Boivin DB et al (1997) Complex interaction of the sleep-wake cycle and circadian phase modulates mood in healthy subjects. Arch Gen Psychiatry 54:145–152

    Article  CAS  PubMed  Google Scholar 

  • Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    CAS  PubMed  Google Scholar 

  • Borbely AA, Daan S, Wirz-Justice A, Deboer T (2016a) The two-process model of sleep regulation: a reappraisal. J Sleep Res. doi:10.1111/jsr.12371

    PubMed  Google Scholar 

  • Borbely AA, Daan S, Wirz-Justice A, Deboer T (2016b) The two-process model of sleep regulation: a reappraisal. J Sleep Res 25:131–143. doi:10.1111/jsr.12371

    Article  PubMed  Google Scholar 

  • Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40:361–379

    Article  CAS  PubMed  Google Scholar 

  • Bremner JD et al (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118. doi:10.1176/ajp.157.1.115

    Article  CAS  PubMed  Google Scholar 

  • Brischoux F, Chakraborty S, Brierley DI, Ungless MA. (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli, Proc Natl Acad Sci U S A, 106:4894–4899. doi:10.1073/pnas.0811507106 (0811507106 [pii])

  • Broms U et al (2011) Evening types are more often current smokers and nicotine-dependent-a study of Finnish adult twins. Addiction 106:170–177. doi:10.1111/j.1360-0443.2010.03112.x

    Article  CAS  PubMed  Google Scholar 

  • Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583

    Article  CAS  PubMed  Google Scholar 

  • Brunel S, de Montigny C (1987) Diurnal rhythms in the responsiveness of hippocampal pyramidal neurons to serotonin, norepinephrine, gamma-aminobutyric acid and acetylcholine. Brain Res Bull 18:205–212

    Article  CAS  PubMed  Google Scholar 

  • Buhr ED, Takahashi JS (2013) Molecular components of the Mammalian circadian clock. Handb Exp Pharmacol: 3–27. doi:10.1007/978-3-642-25950-0_1

    Google Scholar 

  • Buijs RM, Kalsbeek A, van der Woude TP, van Heerikhuize JJ, Shinn S (1993) Suprachiasmatic nucleus lesion increases corticosterone secretion. Am J Physiol 264:R1186–R1192

    CAS  PubMed  Google Scholar 

  • Bunney JN, Potkin SG (2008) Circadian abnormalities, molecular clock genes and chronobiological treatments in depression. Br Med Bull 86:23–32. doi:10.1093/bmb/ldn019

    Article  CAS  PubMed  Google Scholar 

  • Bunney BG, Bunney WE (2012) Rapid-acting antidepressant strategies: mechanisms of action. Int J Neuropsychopharmacol 15:695–713. doi:10.1017/S1461145711000927

    Article  CAS  PubMed  Google Scholar 

  • Bunney BG, Bunney WE (2013) Mechanisms of rapid antidepressant effects of sleep deprivation therapy: clock genes and circadian rhythms. Biol Psychiatry 73:1164–1171. doi:10.1016/j.biopsych.2012.07.020 (S0006-3223(12)00634-8 [pii])

  • Bunney BG et al (2015) Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder. Mol Psychiatry 20:48–55. doi:10.1038/mp.2014.138

    Article  CAS  PubMed  Google Scholar 

  • Cacioppo JT, Hughes ME, Waite LJ, Hawkley LC, Thisted RA (2006) Loneliness as a specific risk factor for depressive symptoms: cross-sectional and longitudinal analyses. Psychol Aging 21:140–151. doi:10.1037/0882-7974.21.1.140

    Article  PubMed  Google Scholar 

  • Cao JL et al (2010) Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J Neurosci Off J Soc Neurosci 30:16453–16458. doi:10.1523/JNEUROSCI.3177-10.2010 (30/49/16453 [pii])

  • Cardasis HL et al (2007) The actin-binding interface of a myosin III is phosphorylated in vivo in response to signals from a circadian clock. Biochemistry 46:13907–13919. doi:10.1021/bi701409f

    Article  CAS  PubMed  Google Scholar 

  • Castren E (2004) Neurotrophic effects of antidepressant drugs. Curr Opin Pharmacol 4:58–64. doi:10.1016/j.coph.2003.10.004

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy S et al (2006) Postsynaptic TrkB signaling has distinct roles in spine maintenance in adult visual cortex and hippocampus. Proc Natl Acad Sci USA 103:1071–1076. doi:10.1073/pnas.0506305103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CH, Grace AA (2014) Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol Psychiatry 76:223–230. doi:10.1016/j.biopsych.2013.09.020

    Article  CAS  PubMed  Google Scholar 

  • Charney DS, Dejesus G, Manji HK (2004) Cellular plasticity and resilience and the pathophysiology of severe mood disorders. Dialogues Clin Neurosci 6:217–225

    PubMed  PubMed Central  Google Scholar 

  • Chaudhury D, Wang LM, Colwell CS (2005) Circadian regulation of hippocampal long-term potentiation. J Biol Rhythms 20:225–236. doi:10.1177/0748730405276352 (20/3/225 [pii])

  • Chaudhury D et al (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493:532–536. doi:10.1038/nature11713

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury D, Barbara Juarez, Allyson Friedman, Stacy Ku, Ming-Hu Han (2014) Lateral habenula projections to a subset of ventral tegmental area neurons rapidly encodes for susceptibility to social defeat stress. Soc Neurosci Abs

    Google Scholar 

  • Christoffel DJ et al (2011) IkappaB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J Neurosci Off J Soc Neurosci 31:314–321. doi:10.1523/JNEUROSCI.4763-10.2011 (31/1/314 [pii])

  • Christoph GR, Leonzio RJ, Wilcox KS (1986) Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J Neurosci 6:613–619

    CAS  PubMed  Google Scholar 

  • Chung S et al (2014) Impact of circadian nuclear receptor REV-ERBalpha on midbrain dopamine production and mood regulation. Cell 157:858–868. doi:10.1016/j.cell.2014.03.039

    Article  CAS  PubMed  Google Scholar 

  • Cirelli C, Tononi G (2000) Gene expression in the brain across the sleep-waking cycle. Brain Res 885:303–321

    Article  CAS  PubMed  Google Scholar 

  • Coffin VL, Latranyi MB, Chipkin RE (1989) Acute extrapyramidal syndrome in Cebus monkeys: development mediated by dopamine D2 but not D1 receptors. J Pharmacol Exp Ther 249:769–774

    CAS  PubMed  Google Scholar 

  • Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482:85–88. doi:10.1038/nature10754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covington HE 3rd et al (2009) Antidepressant actions of histone deacetylase inhibitors. J Neurosci Off J Soc Neurosci 29:11451–11460. doi:10.1523/JNEUROSCI.1758-09.2009 (29/37/11451 [pii])

  • Covington HE 3rd et al (2011) A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 71:656–670. doi:10.1016/j.neuron.2011.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cromwell HC, Berridge KC, Drago J, Levine MS (1998) Action sequencing is impaired in D1A-deficient mutant mice. Eur J Neurosci 10:2426–2432

    Article  CAS  PubMed  Google Scholar 

  • Czeisler CA, Dijk DJ (1995) Use of bright light to treat maladaptation to night shift work and circadian rhythm sleep disorders. J Sleep Res 4:70–73

    Article  PubMed  Google Scholar 

  • Daan S, Beersma DG, Borbely AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246:R161–R183

    CAS  PubMed  Google Scholar 

  • De Bundel D, Gangarossa G, Biever A, Bonnefont X, Valjent E (2013) Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice. Front Behav Neurosci 7:152. doi:10.3389/fnbeh.2013.00152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deboer T, Vansteensel MJ, Detari L, Meijer JH (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6:1086–1090. doi:10.1038/nn1122

    Article  CAS  PubMed  Google Scholar 

  • Deboer T, Detari L, Meijer JH (2007) Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 30:257–262

    PubMed  Google Scholar 

  • Deshauer D, Grof E, Alda M, Grof P (1999) Patterns of DST positivity in remitted affective disorders. Biol Psychiatry 45:1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A, Marder E (2004) Plasticity in single neuron and circuit computations. Nature 431:789–795. doi:10.1038/nature03011

    Article  CAS  PubMed  Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549. doi:10.1146/annurev-physiol-021909-135821

    Article  CAS  PubMed  Google Scholar 

  • Dickman DK, Davis GW (2009) The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science 326:1127–1130. doi:10.1126/science.1179685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijk DJ, Czeisler CA (1994) Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 166:63–68

    Article  CAS  PubMed  Google Scholar 

  • Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci Off J Soc Neurosci 15:3526–3538

    CAS  Google Scholar 

  • Dijk DJ, von Schantz M (2005) Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators. J Biol Rhythms 20:279–290. doi:10.1177/0748730405278292

    Article  PubMed  Google Scholar 

  • Dominguez G et al (2014) Rescuing prefrontal cAMP-CREB pathway reverses working memory deficits during withdrawal from prolonged alcohol exposure. Brain Struct Funct. doi:10.1007/s00429-014-0941-3

    PubMed  Google Scholar 

  • Dremencov E (2009) Aiming at new targets for the treatment of affective disorders: an introduction. Curr Drug Targets 10:1050–1051

    Article  CAS  PubMed  Google Scholar 

  • Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327–337. doi:10.1001/archpsyc.64.3.327

    Article  CAS  PubMed  Google Scholar 

  • Dupuis J et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116. doi:10.1038/ng.520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi Y et al (2003) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60:804–815. doi:10.1001/archpsyc.60.8.804

    Article  CAS  PubMed  Google Scholar 

  • Easton A, Meerlo P, Bergmann B, Turek FW (2004) The suprachiasmatic nucleus regulates sleep timing and amount in mice. Sleep 27:1307–1318

    PubMed  Google Scholar 

  • Eckel-Mahan KL et al (2008) Circadian oscillation of hippocampal MAPK activity and cAmp: implications for memory persistence. Nat Neurosci 11:1074–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder DN, Zdravkovic M, Wildschiodtz G (2003) Selective alterations of the first NREM sleep cycle in humans by a dopamine D1 receptor antagonist (NNC-687). J Psychiatr Res 37:305–312

    Article  PubMed  Google Scholar 

  • Ehlers CL, Kupfer DJ (1987) Hypothalamic peptide modulation of EEG sleep in depression: a further application of the S-process hypothesis. Biol Psychiatry 22:513–517

    Article  CAS  PubMed  Google Scholar 

  • Elliott AS, Huber JD, O’Callaghan JP, Rosen CL, Miller DB (2014) A review of sleep deprivation studies evaluating the brain transcriptome. SpringerPlus 3:728. doi:10.1186/2193-1801-3-728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Sayed AM, Palma A, Freedman LP, Kruk ME (2015) Does health insurance mitigate inequities in non-communicable disease treatment? Evidence from 48 low- and middle-income countries. Health Policy 119:1164–1175. doi:10.1016/j.healthpol.2015.07.006

    Article  PubMed  Google Scholar 

  • Estabrooke IV et al (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci Off J Soc Neurosci 21:1656–1662

    CAS  Google Scholar 

  • Flourakis M et al (2015) A conserved bicycle model for circadian clock control of membrane excitability. Cell 162:836–848. doi:10.1016/j.cell.2015.07.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158

    Article  CAS  PubMed  Google Scholar 

  • Francis TC et al (2015) Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress. Biol Psychiatry 77:212–222. doi:10.1016/j.biopsych.2014.07.021

    Article  PubMed  Google Scholar 

  • Franken P, Dijk DJ (2009) Circadian clock genes and sleep homeostasis. Eur J Neurosci 29:1820–1829. doi:10.1111/j.1460-9568.2009.06723.x

    Article  CAS  PubMed  Google Scholar 

  • Freedman MS et al (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504

    Article  CAS  PubMed  Google Scholar 

  • Friedman AK et al (2014) Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 344:313–319. doi:10.1126/science.1249240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman AK et al (2016) KCNQ channel openers reverse depressive symptoms via an active resilience mechanism. Nat Commun 7:11671. doi:10.1038/ncomms11671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frodl T et al (2002) Enlargement of the amygdala in patients with a first episode of major depression. Biol Psychiatry 51:708–714

    Article  PubMed  Google Scholar 

  • Fujihara H, Sei H, Morita Y, Ueta Y, Morita K (2003) Short-term sleep disturbance enhances brain-derived neurotrophic factor gene expression in rat hippocampus by acting as internal stressor. J Mol Neurosci MN 21:223–232

    Article  CAS  PubMed  Google Scholar 

  • Fuller PM, Gooley JJ, Saper CB (2006) Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms 21:482–493. doi:10.1177/0748730406294627

    Article  CAS  PubMed  Google Scholar 

  • Geisler S, Zahm DS (2005) Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J Comp Neurol 490:270–294. doi:10.1002/cne.20668

    Article  PubMed  Google Scholar 

  • Gervais J, Rouillard C (2000) Dorsal raphe stimulation differentially modulates dopaminergic neurons in the ventral tegmental area and substantia nigra. Synapse 35:281–291. doi:10.1002/(SICI)1098-2396(20000315)35:4<281::AID-SYN6>3.0.CO;2-A

  • Gervasoni D et al (2000) Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci Off J Soc Neurosci 20:4217–4225

    CAS  Google Scholar 

  • Goetze U, Tolle R (1987) Circadian rhythm of free urinary cortisol, temperature and heart rate in endogenous depressives and under antidepressant therapy. Neuropsychobiology 18:175–184. doi:118414

    Google Scholar 

  • Goldwater DS et al (2009) Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience 164:798–808. doi:10.1016/j.neuroscience.2009.08.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X et al (2016) Levo-tetrahydropalmatine, a natural, mixed dopamine receptor antagonist, inhibits methamphetamine self-administration and methamphetamine-induced reinstatement. Pharmacol Biochem Behav 144:67–72. doi:10.1016/j.pbb.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Grace AA (2005a) Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization. Neuron 47:255–266. doi:10.1016/j.neuron.2005.06.017 (S0896-6273(05)00522-2 [pii])

  • Goto Y, Grace AA (2005b) Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat Neurosci 8:805–812. doi:10.1038/nn1471 (nn1471 [pii])

  • Gottschlich MM et al (2011) The effect of ketamine administration on nocturnal sleep architecture. J Burn Care Res 32:535–540. doi:10.1097/BCR.0b013e31822ac7d1

    Article  PubMed  Google Scholar 

  • Grace AA, Onn SP (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci Off J Soc Neurosc 9:3463–3481

    CAS  Google Scholar 

  • Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227. doi:10.1016/j.tins.2007.03.003 (S0166-2236(07)00050-1 [pii])

  • Grenhoff J, Svensson TH (1989) Clonidine modulates dopamine cell firing in rat ventral tegmental area. Eur J Pharmacol 165:11–18

    Article  CAS  PubMed  Google Scholar 

  • Gronli J, Soule J, Bramham CR (2013) Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress. Front Behav Neurosci 7:224. doi:10.3389/fnbeh.2013.00224

    PubMed  Google Scholar 

  • Guiard BP, El Mansari M, Merali Z, Blier P (2008) Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychopharmacol 11:625–639. doi:10.1017/S1461145707008383 [pii]

  • Gunaydin LA et al (2014) Natural neural projection dynamics underlying social behavior. Cell 157:1535–1551. doi:10.1016/j.cell.2014.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman-Marin R et al (2006) Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol 575:807–819. doi:10.1113/jphysiol.2006.115287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hairston IS et al (2004) Sleep deprivation effects on growth factor expression in neonatal rats: a potential role for BDNF in the mediation of delta power. J Neurophysiol 91:1586–1595. doi:10.1152/jn.00894.2003

    Article  CAS  PubMed  Google Scholar 

  • Hampp G et al (2008) Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 18:678–683. doi:10.1016/j.cub.2008.04.012

    Article  CAS  PubMed  Google Scholar 

  • Han MH, Friedman AK (2012) Virogenetic and optogenetic mechanisms to define potential therapeutic targets in psychiatric disorders. Neuropharmacology 62:89–100. doi:10.1016/j.neuropharm.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  • Heller EA et al (2014) Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci 17:1720–1727. doi:10.1038/nn.3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmeter UM, Hemmeter-Spernal J, Krieg JC (2010) Sleep deprivation in depression. Expert Rev Neurother 10:1101–1115. doi:10.1586/ern.10.83

    Article  PubMed  Google Scholar 

  • Henriques-Alves AM, Queiroz CM (2015) Ethological evaluation of the effects of social defeat stress in mice: beyond the social interaction ratio. Front Behav Neurosci 9:364. doi:10.3389/fnbeh.2015.00364

    PubMed  Google Scholar 

  • Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66(6):896–907. doi:10.1016/j.neuron.2010.05.011

    Google Scholar 

  • Holly EN, Miczek KA (2016) Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology 233:163–186. doi:10.1007/s00213-015-4151-3

    Article  CAS  PubMed  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacol Off Pub Am Coll Neuropsychopharmacol 23:477–501. doi:10.1016/S0893-133X(00)00159-7

    Article  CAS  Google Scholar 

  • Holt-Lunstad J, Smith TB, Layton JB (2010) Social relationships and mortality risk: a meta-analytic review. PLoS medicine 7:e1000316. doi:10.1371/journal.pmed.1000316

    Article  PubMed  PubMed Central  Google Scholar 

  • Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658. doi:10.1038/nrn2699

    Article  CAS  PubMed  Google Scholar 

  • House JS, Landis KR, Umberson D (1988) Social relationships and health. Science 241:540–545

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Jing XH, Cui CL, Xing GG, Zhu B (2014) NMDA receptors in the midbrain play a critical role in dopamine-mediated hippocampal synaptic potentiation caused by morphine. Addict Biol 19:380–391. doi:10.1111/adb.12010

    Article  CAS  PubMed  Google Scholar 

  • Huang J et al (2015) Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. J Neurosci Off J Soc Neurosci 35:2572–2587. doi:10.1523/JNEUROSCI.2551-14.2015

    Article  CAS  Google Scholar 

  • Hyde J et al (2005) A qualitative study exploring how GPs decide to prescribe antidepressants. Br J Gen Pract 55:755–762

    PubMed  PubMed Central  Google Scholar 

  • Isaac JTR, Ashby MC, McBain CJ (2007) The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54:859–871

    Google Scholar 

  • Isingrini E et al (2016) Resilience to chronic stress is mediated by noradrenergic regulation of dopamine neurons. Nat Neurosci 19:560–563. doi:10.1038/nn.4245

    Article  CAS  PubMed  Google Scholar 

  • Jiang WG et al (2011) Chronic unpredictable stress induces a reversible change of PER2 rhythm in the suprachiasmatic nucleus. Brain Res 1399:25–32. doi:10.1016/j.brainres.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  • Jones BE (2003) Arousal systems. Front Biosci 8:s438–s451

    Article  CAS  PubMed  Google Scholar 

  • Jones MD, Gubbins S (1973) Genetic differences in circadian flight-activity in Anopheles stephensi. Trans R Soc Trop Med Hyg 67:439

    Article  CAS  PubMed  Google Scholar 

  • Jones BE, Bobillier P, Pin C, Jouvet M (1973) The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res 58:157–177

    Article  CAS  PubMed  Google Scholar 

  • Jope RS, Roh MS (2006) Glycogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. Curr Drug Targets 7:1421–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8:844–858. doi:10.1038/nrn2234 (nrn2234 [pii])

  • Kavcic P et al (2011) The impact of sleep deprivation and nighttime light exposure on clock gene expression in humans. Croat Med J 52:594–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelz et al (1999) Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature 401:272–276. doi:10.1038/45790

    Google Scholar 

  • Kelly MA et al (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci Off J Soc Neurosci 18:3470–3479

    CAS  Google Scholar 

  • Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15 Spec No 2:R271–277. doi:10.1093/hmg/ddl207

    Google Scholar 

  • Kondratova AA, Dubrovsky YV, Antoch MP, Kondratov RV (2010) Circadian clock proteins control adaptation to novel environment and memory formation. Aging (Albany NY) 2:285–297

    Article  CAS  Google Scholar 

  • Koob GF (2008) A role for brain stress systems in addiction. Neuron 59:11–34. doi:10.1016/j.neuron.2008.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown RE (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci Off J Soc Neurosci 23:7–11

    CAS  Google Scholar 

  • Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. Curr Top Behav Neurosci 7:121–147. doi:10.1007/7854_2010_108

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan V et al (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404. doi:10.1016/j.cell.2007.09.018 (S0092-8674(07)01206-8 [pii])

  • Kropf W, Kuschinsky K (1993) Effects of stimulation of dopamine D1 receptors on the cortical EEG in rats: different influences by a blockade of D2 receptors and by an activation of putative dopamine autoreceptors. Neuropharmacology 32:493–500

    Article  CAS  PubMed  Google Scholar 

  • Lammel S et al (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773. doi:10.1016/j.neuron.2008.01.022

    Article  CAS  PubMed  Google Scholar 

  • Lammel S, Ion DI, Roeper J, Malenka RC (2011) Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70:855–862. doi:10.1016/j.neuron.2011.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammel S et al (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491:212–217. doi:10.1038/nature11527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammel S, Lim BK, Malenka RC (2014a) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76 Pt B:351–359. doi:10.1016/j.neuropharm.2013.03.019

    Google Scholar 

  • Lammel S, Tye KM, Warden MR (2014b) Progress in understanding mood disorders: optogenetic dissection of neural circuits. Genes Brain Behav 13:38–51. doi:10.1111/gbb.12049

    Google Scholar 

  • Larkin JE, Yokogawa T, Heller HC, Franken P, Ruby NF (2004) Homeostatic regulation of sleep in arrhythmic Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 287:R104–R111. doi:10.1152/ajpregu.00676.2003

    Article  CAS  PubMed  Google Scholar 

  • Lavebratt C et al (2010) CRY2 is associated with depression. PLoS ONE 5:e9407. doi:10.1371/journal.pone.0009407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lecca S, Meye FJ, Mameli M (2014) The lateral habenula in addiction and depression: an anatomical, synaptic and behavioral overview. Eur J Neurosci 39:1170–1178. doi:10.1111/ejn.12480

    Article  PubMed  Google Scholar 

  • Lee RS, Steffensen SC, Henriksen SJ (2001) Discharge profiles of ventral tegmental area GABA neurons during movement, anesthesia, and the sleep-wake cycle. J Neurosci Off J Soc Neurosci 21:1757–1766

    CAS  Google Scholar 

  • Lee MG, Hassani OK, Alonso A, Jones BE (2005) Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci Off J Soc Neurosci 25:4365–4369. doi:10.1523/JNEUROSCI.0178-05.2005

    Article  CAS  Google Scholar 

  • LeGates TA et al (2012) Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 491:594–598. doi:10.1038/nature11673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeGates TA, Fernandez DC, Hattar S (2014) Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 15:443–454. doi:10.1038/nrn3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lessmann V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 69:341–374

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Worrell TR, Zimnisky R, Schmauss C (2012) Early life stress triggers sustained changes in histone deacetylase expression and histone H4 modifications that alter responsiveness to adolescent antidepressant treatment. Neurobiol Dis 45:488–498. doi:10.1016/j.nbd.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  • Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D, Henn F, Malinow R (2011) Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470:535–539. doi:10.1038/nature09742 (nature09742 [pii])

  • Li DP, Byan HS, Pan HL (2012) Switch to glutamate receptor 2-lacking AMPA receptors increases neuronal excitability in hypothalamus and sympathetic drive in hypertension. J Neurosci Off J Soc Neurosci 32:372–380. doi:10.1523/JNEUROSCI.3222-11.2012

    Article  CAS  Google Scholar 

  • Li X, Qi J, Yamaguchi T, Wang HL, Morales M (2013) Heterogeneous composition of dopamine neurons of the rat A10 region: molecular evidence for diverse signaling properties. Brain Struct Funct 218:1159–1176. doi:10.1007/s00429-012-0452-z

    Article  CAS  PubMed  Google Scholar 

  • Li Z et al (2015) A common variant near TGFBR3 is associated with primary open angle glaucoma. Hum Mol Genet. doi:10.1093/hmg/ddv128

    Google Scholar 

  • Lim BK, Huang KW, Grueter BA, Rothwell PE, Malenka RC (2012) Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature 487:183–189. doi:10.1038/nature11160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SQJ, Cull-Candy SG (2000) Synaptic activity at calcuim-permeable AMPA receptors induces a switch in receptor subtype. Nature 405:454–458

    Google Scholar 

  • Liu AC, Lewis WG, Kay SA (2007) Mammalian circadian signaling networks and therapeutic targets. Nat Chem Biol 3:630–639. doi:10.1038/nchembio.2007.37

    Article  CAS  PubMed  Google Scholar 

  • Liu D et al (2014) Histone acetylation and expression of mono-aminergic transmitters synthetases involved in CUS-induced depressive rats. Exp Biol Med (Maywood) 239:330–336. doi:10.1177/1535370213513987

    Article  CAS  Google Scholar 

  • Lobo MK, Nestler EJ (2011) The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat 5:41. doi:10.3389/fnana.2011.00041

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441. doi:10.1146/annurev.genom.5.061903.175925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo AH, Aston-Jones G (2009) Circuit projection from suprachiasmatic nucleus to ventral tegmental area: a novel circadian output pathway. Eur J Neurosci 29:748–760. doi:10.1111/j.1460-9568.2008.06606.x

    Article  PubMed  Google Scholar 

  • Luscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 4. doi:10.1101/cshperspect.a005710 (cshperspect.a005710 [pii])

  • Maia TV, Frank MJ (2011) From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 14:154–162. doi:10.1038/nn.2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marton TF, Sohal VS (2015) Of Mice, Men, and microbial opsins: how optogenetics can help hone mouse models of mental illness. Biol Psychiatry doi:10.1016/j.biopsych.2015.04.012

    Google Scholar 

  • Matsumoto M, Hikosaka O (2007) Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447:1111–1115. doi:10.1038/nature05860

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann NY Acad Sci 1144:97–112. doi:10.1196/annals.1418.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClung CA (2007) Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114:222–232. doi:10.1016/j.pharmthera.2007.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClung CA (2013) How might circadian rhythms control mood? Let me count the ways. Biol Psychiatry 74:242–249. doi:10.1016/j.biopsych.2013.02.019

    Article  PubMed  PubMed Central  Google Scholar 

  • McClung CA et al (2005) Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc Natl Acad Sci USA 102:9377–9381. doi:10.1073/pnas.0503584102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDevitt RA et al (2014) Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell Rep 8:1857–1869. doi:10.1016/j.celrep.2014.08.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meaney MJ (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192. doi:10.1146/annurev.neuro.24.1.1161

    Article  CAS  PubMed  Google Scholar 

  • Meerlo P, Turek FW (2001) Effects of social stimuli on sleep in mice: non-rapid-eye-movement (NREM) sleep is promoted by aggressive interaction but not by sexual interaction. Brain Res 907:84–92

    Article  CAS  PubMed  Google Scholar 

  • Meerlo P, Overkamp GJ, Benning MA, Koolhaas JM, Van den Hoofdakker RH (1996) Long-term changes in open field behaviour following a single social defeat in rats can be reversed by sleep deprivation. Physiol Behav 60:115–119. doi:0031938495022716 [pii]

    Google Scholar 

  • Meerlo P, Sgoifo A, Turek FW (2002) The effects of social defeat and other stressors on the expression of circadian rhythms. Stress 5:15–22. doi:10.1080/102538902900012323

    Article  CAS  PubMed  Google Scholar 

  • Mengod G, Pompeiano M, Martinez-Mir MI, Palacios JM (1990) Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites. Brain Res 524:139–143

    Article  CAS  PubMed  Google Scholar 

  • Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798. doi:10.1016/j.neuron.2005.04.035

    Article  CAS  PubMed  Google Scholar 

  • Mistlberger RE (2005) Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Brain Res Rev 49:429–454. doi:10.1016/j.brainresrev.2005.01.005

    Article  PubMed  Google Scholar 

  • Mohawk JA, Takahashi JS (2011) Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 34:349–358. doi:10.1016/j.tins.2011.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mongrain V, La Spada F, Curie T, Franken P (2011) Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS ONE 6:e26622. doi:10.1371/journal.pone.0026622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11:113–133. doi:10.1016/j.smrv.2006.08.003

    Article  PubMed  Google Scholar 

  • Monti JM, Hawkins M, Jantos H, D’Angelo L, Fernandez M (1988) Biphasic effects of dopamine D-2 receptor agonists on sleep and wakefulness in the rat. Psychopharmacology 95:395–400

    Article  CAS  PubMed  Google Scholar 

  • Monti JM, Jantos H, Fernandez M (1989) Effects of the selective dopamine D-2 receptor agonist, quinpirole on sleep and wakefulness in the rat. Eur J Pharmacol 169:61–66

    Article  CAS  PubMed  Google Scholar 

  • Monti JM, Fernandez M, Jantos H (1990) Sleep during acute dopamine D1 agonist SKF 38393 or D1 antagonist SCH 23390 administration in rats. Neuropsychopharmacol Off Pub Am Coll Neuropsychopharmacol 3:153–162

    CAS  Google Scholar 

  • Moore RY (2007) Suprachiasmatic nucleus in sleep-wake regulation. Sleep Med 8(Suppl 3):27–33. doi:10.1016/j.sleep.2007.10.003

    Article  PubMed  Google Scholar 

  • Mukherjee S et al (2010) Knockdown of clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior. Biol Psychiatry 68:503–511. doi:10.1016/j.biopsych.2010.04.031 (S0006-3223(10)00425-7 [pii])

  • Mutti A et al (2016) The ketamine-like compound methoxetamine substitutes for ketamine in the self-administration paradigm and enhances mesolimbic dopaminergic transmission. Psychopharmacology 233:2241–2251. doi:10.1007/s00213-016-4275-0

    Article  CAS  PubMed  Google Scholar 

  • Napier TC, Maslowski-Cobuzzi RJ (1994) Electrophysiological verification of the presence of D1 and D2 dopamine receptors within the ventral pallidum. Synapse 17:160–166. doi:10.1002/syn.890170304

    Google Scholar 

  • Naylor E et al (2000) The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20:8138–8143

    CAS  PubMed  Google Scholar 

  • Nestler EJ et al (2002) Neurobiology of depression. Neuron 34:13–25. doi:10.1016/S0896-6273(02)00653-0

    Google Scholar 

  • Neuhoff H, Neu A, Liss B, Roeper J (2002) I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci Off J Soc Neurosci 22:1290–1302

    CAS  Google Scholar 

  • Nicola SM (2007) The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology 191:521–550. doi:10.1007/s00213-006-0510-4

    Article  CAS  PubMed  Google Scholar 

  • Nieh EH et al (2016) Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron. doi:10.1016/j.neuron.2016.04.035

    PubMed  Google Scholar 

  • Non AL, Binder AM, Kubzansky LD, Michels KB (2014) Genome-wide DNA methylation in neonates exposed to maternal depression, anxiety, or SSRI medication during pregnancy. Epigenetics 9:964–972. doi:10.4161/epi.28853

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Donnell P, Grace AA (1994) Tonic D2-mediated attenuation of cortical excitation in nucleus accumbens neurons recorded in vitro. Brain Res 634:105–112. doi:10.1016/0006-8993(94)90263-1 [pii]

  • Ozburn AR, Larson EB, Self DW, McClung CA (2012) Cocaine self-administration behaviors in ClockDelta19 mice. Psychopharmacology 223:169–177. doi:10.1007/s00213-012-2704-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozburn AR et al (2013) The role of clock in ethanol-related behaviors. Neuropsychopharmacol Off Pub Am Coll Neuropsychopharmacol 38:2393–2400. doi:10.1038/npp.2013.138

    Article  CAS  Google Scholar 

  • Pandey GN et al (2008) Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int J Neuropsychopharmacol 11:1047–1061. doi:10.1017/S1461145708009000

    Article  CAS  PubMed  Google Scholar 

  • Paquet M, Tremblay M, Soghomonian JJ, Smith Y (1997) AMPA and NMDA glutamate receptor subunits in midbrain dopaminergic neurons in the squirrel monkey: an immunohistochemical and in situ hybridization study. J Neurosci Off J Soc Neurosci 17:1377–1396

    CAS  Google Scholar 

  • Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24:90–99. doi:10.1016/j.tcb.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  • Pellaprat J et al (2014) Deep brain stimulation of the subthalamic nucleus improves pain in Parkinson’s disease. Parkinsonism Relat Disord 20:662–664. doi:10.1016/j.parkreldis.2014.03.011

    Article  PubMed  Google Scholar 

  • Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci Off J Soc Neurosci 21:6706–6717

    CAS  Google Scholar 

  • Perona MT et al (2008) Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions. Behav Pharmacol 19:566–574. doi:10.1097/FBP.0b013e32830cd80f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessia M, Jiang ZG, North RA, Johnson SW (1994) Actions of 5-hydroxytryptamine on ventral tegmental area neurons of the rat in vitro. Brain Res 654:324–330

    Article  CAS  PubMed  Google Scholar 

  • Polter AM, Kauer JA (2014) Stress and VTA synapses: implications for addiction and depression. Eur J Neurosci 39:1179–1188. doi:10.1111/ejn.12490

    Article  PubMed  PubMed Central  Google Scholar 

  • Porkka-Heiskanen T (2003) Gene expression during sleep, wakefulness and sleep deprivation. Front Biosci 8:s421–s437

    Article  CAS  PubMed  Google Scholar 

  • Radley JJ et al (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16:313–320. doi:10.1093/cercor/bhi104

    Article  PubMed  Google Scholar 

  • Ralph MR, Block GD (1990) Circadian and light-induced conductance changes in putative pacemaker cells of Bulla gouldiana. J Comp Physiol A 166:589–595

    Article  CAS  PubMed  Google Scholar 

  • Rapaport MH, Schneider LS, Dunner DL, Davies JT, Pitts CD (2003) Efficacy of controlled-release paroxetine in the treatment of late-life depression. J Clin Psychiatry 64:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Razzoli M, Andreoli M, Michielin F, Quarta D, Sokal DM (2011) Increased phasic activity of VTA dopamine neurons in mice 3 weeks after repeated social defeat. Behav Brain Res 218:253–257. doi:10.1016/j.bbr.2010.11.050

    Article  CAS  PubMed  Google Scholar 

  • Rebec GV, Christensen JR, Guerra C, Bardo MT (1997) Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res 776:61–67

    Article  CAS  PubMed  Google Scholar 

  • Ren ZY et al (2009) Diurnal variation in cue-induced responses among protracted abstinent heroin users. Pharmacol Biochem Behav 91:468–472. doi:10.1016/j.pbb.2008.08.023

    Article  CAS  PubMed  Google Scholar 

  • Renthal W et al (2007) Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56:517–529. doi:10.1016/j.neuron.2007.09.032

    Article  CAS  PubMed  Google Scholar 

  • Robinson DL, Wightman RM (2007) In: Michael AC, Borland LM (eds) Electrochemical Methods for Neuroscience. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  • Robinson DL et al (2001) Sub-second changes in accumbal dopamine during sexual behavior in male rats. Neuro Rep 12:2549–2552

    CAS  Google Scholar 

  • Robinson DL, Heien ML, Wightman RM (2002) Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J Neurosci Off J Soc Neurosci 22:10477–10486

    CAS  Google Scholar 

  • Robinson DL, Zitzman DL, Smith KJ, Spear LP (2011) Fast dopamine release events in the nucleus accumbens of early adolescent rats. Neuroscience 176:296–307. doi:10.1016/j.neuroscience.2010.12.016

    Article  CAS  PubMed  Google Scholar 

  • Roitman MF, Wheeler RA, Wightman RM, Carelli RM (2008) Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nat Neurosci 11:1376–1377. doi:10.1038/nn.2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux PP, Barker PA (2002) Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol 67:203–233

    Article  CAS  PubMed  Google Scholar 

  • Roybal K et al (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 104:6406–6411. doi:10.1073/pnas.0609625104 (0609625104 [pii])

  • Rush AJ (2007) Limitations in efficacy of antidepressant monotherapy. J Clin Psychiatry 68(Suppl 10):8–10

    CAS  PubMed  Google Scholar 

  • Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14:609–625. doi:10.1038/nrn3381

    Article  CAS  PubMed  Google Scholar 

  • Russo SJ et al (2009) Nuclear factor kappa B signaling regulates neuronal morphology and cocaine reward. J Neurosci Off J Soc Neurosci 29:3529–3537. doi:10.1523/JNEUROSCI.6173-08.2009

    Article  CAS  Google Scholar 

  • Russo SJ et al (2010) The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 33:267–276. doi:10.1016/j.tins.2010.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saini C, Morf J, Stratmann M, Gos P, Schibler U (2012) Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev 26:567–580. doi:10.1101/gad.183251.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saper CB (1985) Organization of cerebral cortical afferent systems in the rat.II. Hypothalamocortical projections. J Comp Neurol 237:21–46. doi:10.1002/cne.902370103

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Lu J, Chou TC, Gooley J (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28:152–157. doi:10.1016/j.tins.2004.12.009

    Article  CAS  PubMed  Google Scholar 

  • Saper CB et al (2010) Sleep state switching. Neuron 60:1023–1042. doi:10.1016/j.neuron.2010.11.032

    Google Scholar 

  • Schmidt TM, Chen SK, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34:572–580. doi:10.1016/j.tins.2011.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev Neurosci 30:259–288. doi:10.1146/annurev.neuro.28.061604.135722

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2013) Updating dopamine reward signals. Curr Opin Neurobiol 23:229–238. doi:10.1016/j.conb.2012.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumann G et al (2001) Antidepressive response to sleep deprivation in unipolar depression is not associated with dopamine D3 receptor genotype. Neuropsychobiology 43:127–130. doi:54879 [pii]

    Google Scholar 

  • Schwartz JR, Roth T (2008) Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol 6:367–378. doi:10.2174/157015908787386050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seamans JK, Gorelova N, Durstewitz D, Yang CR (2001) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci Off J Soc Neurosci 21:3628–3638

    CAS  Google Scholar 

  • Seeman P, Van Tol HH (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15:264–270

    Article  CAS  PubMed  Google Scholar 

  • Sequeira A et al (2012) Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide. PLoS ONE 7:e35367. doi:10.1371/journal.pone.0035367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47. doi:10.1038/npp.2009.93

    Google Scholar 

  • Shansky RM, Hamo C, Hof PR, McEwen BS, Morrison JH (2009) Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb Cortex 19:2479–2484. doi:10.1093/cercor/bhp003

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321(5890):848–851. doi: 10.1126/science.1160575

    Google Scholar 

  • Shinohara F, Kihara Y, Ide S, Minami M, Kaneda K (2014) Critical role of cholinergic transmission from the laterodorsal tegmental nucleus to the ventral tegmental area in cocaine-induced place preference. Neuropharmacology 79:573–579. doi:10.1016/j.neuropharm.2014.01.019

    Article  CAS  PubMed  Google Scholar 

  • Sidor MM, McClung CA (2014) Timing matters: using optogenetics to chronically manipulate neural circuitry and rhythms. Front Behav Neurosci 8:41. doi:10.3389/fnbeh.2014.00041

    Article  PubMed  PubMed Central  Google Scholar 

  • Sidor MM et al (2015) Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice. Mol Psychiatry 5. doi:10.1038/mp.2014.167

    Google Scholar 

  • Slater IH, Jones GT, Moore RA (1978) Inhibition of REM sleep by fluoxetine, a specific inhibitor of serotonin uptake. Neuropharmacology 17:383–389

    Article  CAS  PubMed  Google Scholar 

  • Slattery DA et al (2012) Behavioural consequences of two chronic psychosocial stress paradigms: anxiety without depression. Psychoneuroendocrinology 37:702–714. doi:10.1016/j.psyneuen.2011.09.002

    Article  PubMed  Google Scholar 

  • Smith DR et al (1998) Behavioural assessment of mice lacking D1A dopamine receptors. Neuroscience 86:135–146

    Article  CAS  PubMed  Google Scholar 

  • Smith RJ, Lobo MK, Spencer S, Kalivas PW (2013) Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr Opin Neurobiol 23:546–552. doi:10.1016/j.conb.2013.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souetre E et al (1988) Twenty-four-hour profiles of body temperature and plasma TSH in bipolar patients during depression and during remission and in normal control subjects. Am J Psychiatry 145:1133–1137. doi:10.1176/ajp.145.9.1133

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis AM, Stuber GD (2012) Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat Neurosci 15:1105–1107. doi:10.1038/nn.3145[pii] (nn.3145)

  • Stamatakis AM et al (2013) A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron 80:1039–1053. doi:10.1016/j.neuron.2013.08.023

    Article  CAS  PubMed  Google Scholar 

  • Steininger TL, Alam MN, Gong H, Szymusiak R, McGinty D (1999) Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res 840:138–147

    Article  CAS  PubMed  Google Scholar 

  • Stratmann M, Schibler U (2006) Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J Biol Rhythms 21:494–506. doi:10.1177/0748730406293889

    Article  CAS  PubMed  Google Scholar 

  • Sylvester CM, Krout KE, Loewy AD (2002) Suprachiasmatic nucleus projection to the medial prefrontal cortex: a viral transneuronal tracing study. Neuroscience 114:1071–1080. doi:10.1016/S0306-4522(02)00361-5 [pii]

  • Taishi P et al (2001) Conditions that affect sleep alter the expression of molecules associated with synaptic plasticity. Am J Physiol Regul Integr Comp Physiol 281:R839–R845

    CAS  PubMed  Google Scholar 

  • Tebartz van Elst L, Woermann F, Lemieux L, Trimble MR (2000) Increased amygdala volumes in female and depressed humans. A quantitative magnetic resonance imaging study. Neuroscience letters 281:103–106

    Google Scholar 

  • Tononi G, Cirelli C (2001) Modulation of brain gene expression during sleep and wakefulness: a review of recent findings. Neuropsychopharmacol Off Pub Am Coll Neuropsychopharmacol 25:S28–S35. doi:10.1016/S0893-133X(01)00322-0

    Article  CAS  Google Scholar 

  • Trachsel L, Edgar DM, Seidel WF, Heller HC, Dement WC (1992) Sleep homeostasis in suprachiasmatic nuclei-lesioned rats: effects of sleep deprivation and triazolam administration. Brain Res 589:253–261

    Article  CAS  PubMed  Google Scholar 

  • Trivedi RB, Nieuwsma JA, Williams JW Jr (2011) Examination of the utility of psychotherapy for patients with treatment resistant depression: a systematic review. J Gen Intern Med 26:643–650. doi:10.1007/s11606-010-1608-2

    Article  PubMed  Google Scholar 

  • Tsai HC et al (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:1080–1084. doi:1168878 [pii]

    Google Scholar 

  • Tye KM et al (2011) Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471:358–362. doi:10.1038/nature09820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tye KM et al (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493:537–541. doi:10.1038/nature11740

    Article  CAS  PubMed  Google Scholar 

  • Uchida S et al (2011) Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 69:359–372. doi:10.1016/j.neuron.2010.12.023

    Article  CAS  PubMed  Google Scholar 

  • Ulery PG, Rudenko G, Nestler EJ (2006) Regulation of DeltaFosB stability by phosphorylation. J Neurosci Off J Soc Neurosci 26:5131–5142. doi:10.1523/JNEUROSCI.4970-05.2006 (26/19/5131 [pii])

  • Ungless MA, Grace AA (2012) Are you or aren’t you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci 35:422–430. doi:10.1016/j.tins.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenti O, Gill KM, Grace AA (2012) Different stressors produce excitation or inhibition of mesolimbic dopamine neuron activity: response alteration by stress pre-exposure. Eur J Neurosci 35:1312–1321. doi:10.1111/j.1460-9568.2012.08038.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallone D et al (2002) Activity, non-selective attention and emotionality in dopamine D2/D3 receptor knock-out mice. Behav Brain Res 130:141–148

    Article  CAS  PubMed  Google Scholar 

  • Vasudeva RK, Lin RC, Simpson KL, Waterhouse BD (2011) Functional organization of the dorsal raphe efferent system with special consideration of nitrergic cell groups. J Chem Neuroanat 41:281–293. doi:10.1016/j.jchemneu.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  • Vialou V et al (2010) DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nature Neurosci 13:745–752. doi:10.1038/nn.2551

    Google Scholar 

  • Vogel GW (1975) A review of REM sleep deprivation. Arch Gen Psychiatry 32:749–761

    Article  CAS  PubMed  Google Scholar 

  • Walsh JJ et al (2014a) Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nat Neurosci 17:27–29. doi:10.1038/nn.3591

    Article  CAS  PubMed  Google Scholar 

  • Walsh JJ, Han MH (2014b) The heterogeneity of ventral tegmental area neurons: projection functions in a mood-related context. Neuroscience 282C:101–108. doi:10.1016/j.neuroscience.2014.06.006

    Google Scholar 

  • Wanat MJ, Hopf FW, Stuber GD, Phillips PE, Bonci A (2008) Corticotropin-releasing factor increases mouse ventral tegmental area dopamine neuron firing through a protein kinase C-dependent enhancement of Ih. J Physiol 586:2157–2170. doi:10.1113/jphysiol.2007.150078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RY, Aghajanian GK (1977) Inhibiton of neurons in the amygdala by dorsal raphe stimulation: mediation through a direct serotonergic pathway. Brain Res 120:85–102

    Article  CAS  PubMed  Google Scholar 

  • Wang JB, Mantsch JR (2012) l-tetrahydropalamatine: a potential new medication for the treatment of cocaine addiction. Future Med Chem 4:177–186. doi:10.4155/fmc.11.166

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse EG, Xu B (2009) New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci 42:81–89. doi:10.1016/j.mcn.2009.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb IC et al (2009) Diurnal variations in natural and drug reward, mesolimbic tyrosine hydroxylase, and clock gene expression in the male rat. J Biol Rhythms 24:465–476. doi:10.1177/0748730409346657

    Article  CAS  PubMed  Google Scholar 

  • Weil ZM, Nelson RJ (2014) Introduction to the special issue on circadian rhythms in behavioral neuroscience. Behav Neurosci 128:237–239. doi:10.1037/a0036740

    Article  PubMed  Google Scholar 

  • Wenzel JM, Rauscher NA, Cheer JF, Oleson EB (2015) A role for phasic dopamine release within the nucleus accumbens in encoding aversion: a review of the neurochemical literature. ACS Chem Neurosci 6:16–26. doi:10.1021/cn500255p

    Article  CAS  PubMed  Google Scholar 

  • West AR, Grace AA (2002) Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci Off J Soc Neurosci 22:294–304 (22/1/294 [pii])

    Google Scholar 

  • Whalley K (2013) Synaptic plasticity: balancing firing rates in vivo. Nat Rev Neurosci 14:820–821. doi:10.1038/nrn3637

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MB et al (2011) A novel role of the WNT-dishevelled-GSK3beta signaling cascade in the mouse nucleus accumbens in a social defeat model of depression. J Neurosci Off J Soc Neurosci 31:9084–9092. doi:10.1523/JNEUROSCI.0039-11.2011

    Article  CAS  Google Scholar 

  • Wirz-Justice A (2006) Biological rhythm disturbances in mood disorders. Int Clin Psychopharmacol 21(Suppl 1):S11–S15. doi:10.1097/01.yic.0000195660.37267.cf

    Article  PubMed  Google Scholar 

  • Wirz-Justice A, Van den Hoofdakker RH (1999) Sleep deprivation in depression: what do we know, where do we go? Biol Psychiatry 46:445–453. doi:10.1016/S0006-3223(99)00125-0 [pii]

  • Wisor JP et al (2001) Dopaminergic role in stimulant-induced wakefulness. J Neurosci Off J Soc Neurosci 21:1787–1794

    CAS  Google Scholar 

  • Wisor JP et al (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Wisor JP et al (2008) Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J Neurosci Off J Soc Neurosci 28:7193–7201. doi:10.1523/JNEUROSCI.1150-08.2008

    Article  CAS  Google Scholar 

  • Wu JC, Bunney WE (1990) The biological basis of an antidepressant response to sleep deprivation and relapse: review and hypothesis. Am J Psychiatry 147:14–21. doi:10.1176/ajp.147.1.14

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Korkmaz KS, Braun K, Bock J (2013) Early life stress-induced histone acetylations correlate with activation of the synaptic plasticity genes Arc and Egr1 in the mouse hippocampus. J Neurochem 125:457–464. doi:10.1111/jnc.12210

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki et al (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685. doi:10.1126/science.288.5466.682

    Google Scholar 

  • Yang X, Lamia KA, Evans RM (2007) Nuclear receptors, metabolism, and the circadian clock. Cold Spring Harb Symp Quant Biol 72:387–394. doi:10.1101/sqb.2007.72.058

    Article  CAS  PubMed  Google Scholar 

  • Yeim S, Boudebesse C, Etain B, Belliviera F (2015) Circadian markers and genes in bipolar disorder. Encephale 41:S38–S44. doi:10.1016/s0013-7006(15)30005-1

    Article  CAS  PubMed  Google Scholar 

  • Yoshii A, Constantine-Paton M (2010) Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 70:304–322. doi:10.1002/dneu.20765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yue K et al (2012) The dopamine receptor antagonist levo-tetrahydropalmatine attenuates heroin self-administration and heroin-induced reinstatement in rats. Pharmacol Biochem Behav 102:1–5

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Shapiro MS (2012) Activity-dependent transcriptional regulation of M-Type (Kv7) K(+) channels by AKAP79/150-mediated NFAT actions. Neuron 76:1133–1146. doi:10.1016/j.neuron.2012.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipesh Chaudhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Radwan, B., Liu, H., Chaudhury, D. (2016). Regulation and Modulation of Depression-Related Behaviours: Role of Dopaminergic Neurons. In: Monti, J., Pandi-Perumal, S., Chokroverty, S. (eds) Dopamine and Sleep. Springer, Cham. https://doi.org/10.1007/978-3-319-46437-4_8

Download citation

Publish with us

Policies and ethics