Skip to main content

Nano-Engineered Hierarchical Carbon Fibres and Their Composites: Preparation, Properties and Multifunctionalities

  • Chapter
  • First Online:
The Structural Integrity of Carbon Fiber Composites

Abstract

A general review of carbon fibre/carbon nanotube hierarchical composites is undertaken in this chapter, with a focus on preparation, properties and multifunctionalities of such composites. Various innovative nano-modifications to carbon fibres are discussed together with their morphological changes and advantages over traditional methods. The mechanical, electrical and thermal properties of nano-modified carbon fibres and their composites are summarized at both interfacial and macroscopic levels. Particular effort has been placed on multifunctionalities of nano-engineered carbon fibre composites, such as strain and damage sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Zhu, C.H. Su, S.L. Lehoczky, I. Muntele, D. Ila, Carbon nanotube growth on carbon fibers. Diamond Relat. Mater. 12, 1825–1828 (2003). doi:10.1016/s0925-9635(03)00205-x

    Article  Google Scholar 

  2. Z.G. Zhao, L.J. Ci, H.M. Cheng, J.B. Bai, The growth of multi-walled carbon nanotubes with different morphologies on carbon fibers. Carbon 43, 663–665 (2005). doi:10.1016/j.carbon.2004.10.013

    Article  Google Scholar 

  3. E.T. Thostenson, W.Z. Li, D.Z. Wang, Z.F. Ren, T.W. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91, 6034–6037 (2002). doi:10.1063/1.1466880

    Article  Google Scholar 

  4. T.R. Pozegic, I. Hamerton, J.V. Anguita, W. Tang, P. Ballocchi, P. Jenkins, S.R.P. Silva, Low temperature growth of carbon nanotubes on carbon fibre to create a highly networked fuzzy fibre reinforced composite with superior electrical conductivity. Carbon 74, 319–328 (2014). doi:10.1016/j.carbon.2014.03.038

    Article  Google Scholar 

  5. K.L. Kepple, G.P. Sanborn, P.A. Lacasse, K.M. Gruenberg, W.J. Ready, Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon 46, 2026–2033 (2008). doi:10.1016/j.carbon.2008.08.010

    Article  Google Scholar 

  6. A.R. Boccaccini, J. Cho, J.A. Roether, B.J.C. Thomas, E. Jane Minay, M.S.P. Shaffer, Electrophoretic deposition of carbon nanotubes. Carbon 44, 3149–3160 (2006). doi:10.1016/j.carbon.2006.06.021

    Article  Google Scholar 

  7. J. Guo, C. Lu, F. An, Effect of electrophoretically deposited carbon nanotubes on the interface of carbon fiber reinforced epoxy composite. J. Mater. Sci. 47, 2831–2836 (2012). doi:10.1007/s10853-011-6112-5

    Article  Google Scholar 

  8. K.Z. Li, L. Li, H.J. Li, Q. Song, J.H. Lu, Q.G. Fu, Electrophoretic deposition of carbon nanotubes onto carbon fiber felt for production of carbon/carbon composites with improved mechanical and thermal properties. Vacuum 104, 105–110 (2014). doi:10.1016/j.vacuum.2014.01.024

    Article  Google Scholar 

  9. T. Takeda, Y. Shindo, T. Fukuzaki, F. Narita, Short beam interlaminar shear behavior and electrical resistance-based damage self-sensing of woven carbon/epoxy composite laminates in a cryogenic environment. J. Compos. Mater. 48, 119–128 (2014). doi:10.1177/0021998312469240

    Article  Google Scholar 

  10. D.D.L. Chung, Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50, 3342–3353 (2012). doi:10.1016/j.carbon.2012.01.031

    Article  Google Scholar 

  11. H. Zhang, Y. Liu, E. Bilotti, T. Peijs, In-situ monitoring of interlaminar shear damage in carbon fibre composites. Adv. Compos. Lett. 24, 92–97 (2015)

    Google Scholar 

  12. H. Qian, A. Bismarck, E.S. Greenhalgh, G. Kalinka, M.S.P. Shaffer, Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level. Chem. Mater. 20, 1862–1869 (2008). doi:10.1021/cm702782j

    Article  Google Scholar 

  13. B.G. Falzon, S.C. Hawkins, C.P. Huynh, R. Radjef, C. Brown, An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface. Compos. Struct. 106, 65–73 (2013). doi:10.1016/j.compstruct.2013.05.051

    Article  Google Scholar 

  14. E. Bekyarova, E.T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H.T. Hahn, T.W. Chou, M.E. Itkis, R.C. Haddon, Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir 23, 3970–3974 (2007). doi:10.1021/la062743p

    Article  Google Scholar 

  15. Q. An, A.N. Rider, E.T. Thostenson, Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 50, 4130–4143 (2012). doi:10.1016/j.carbon.2012.04.061

    Article  Google Scholar 

  16. H. Zhang, M. Kuwata, E. Bilotti, T. Peijs, Integrated damage sensing in fibre-reinforced composites with extremely low carbon nanotube loadings. J. Nanomater. 2015, 7 (2015). doi:10.1155/2015/785834

    Google Scholar 

  17. H. Zhang, E. Bilotti, T. Peijs, The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: a review. Nanocomposites 1, 167–184 (2015). doi:10.1080/20550324.2015.1113639

    Article  Google Scholar 

  18. H. Zhang, Y. Liu, M. Kuwata, E. Bilotti, T. Peijs, Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Compos. A: Appl. Sci. Manuf. 70, 102–110 (2015). doi:10.1016/j.compositesa.2014.11.029

    Article  Google Scholar 

  19. T. Kamae, L.T. Drzal, Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber–matrix interphase—part I: the development of carbon nanotube coated carbon fibers and the evaluation of their adhesion. Compos. A: Appl. Sci. Manuf. 43, 1569–1577 (2012). doi:10.1016/j.compositesa.2012.02.016

    Article  Google Scholar 

  20. M. Li, Y. Gu, Y. Liu, Y. Li, Z. Zhang, Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon 52, 109–121 (2013). doi:10.1016/j.carbon.2012.09.011

    Article  Google Scholar 

  21. N. Lachman, H. Qian, M. Houlle, J. Amadou, M.S.P. Shaffer, H.D. Wagner, Fracture behavior of carbon nanotube/carbon microfiber hybrid polymer composites. J. Mater. Sci. 48, 5590–5595 (2013). doi:10.1007/s10853-013-7353-2

    Article  Google Scholar 

  22. H. Qian, A. Bismarck, E.S. Greenhalgh, M.S.P. Shaffer, Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation. Compos. A: Appl. Sci. Manuf. 41, 1107–1114 (2010). doi:10.1016/j.compositesa.2010.04.004

    Article  Google Scholar 

  23. R.J. Sager, P.J. Klein, D.C. Lagoudas, Q. Zhang, J. Liu, L. Dai, J.W. Baur, Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos. Sci. Technol. 69, 898–904 (2009). doi:10.1016/j.compscitech.2008.12.021

    Article  Google Scholar 

  24. S.B. Lee, O. Choi, W. Lee, J.W. Yi, B.S. Kim, J.H. Byun, M.K. Yoon, H. Fong, E.T. Thostenson, T.W. Chou, Processing and characterization of multi-scale hybrid composites reinforced with nanoscale carbon reinforcements and carbon fibers. Compos. A: Appl. Sci. Manuf. 42, 337–344 (2011). doi:10.1016/j.compositesa.2010.10.016

    Article  Google Scholar 

  25. P. Lv, Y.-y. Feng, P. Zhang, H.-m. Chen, N. Zhao, W. Feng, Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers. Carbon 49, 4665–4673 (2011). doi:10.1016/j.carbon.2011.06.064

    Article  Google Scholar 

  26. Q. Zhang, J. Liu, R. Sager, L. Dai, J. Baur, Hierarchical composites of carbon nanotubes on carbon fiber: influence of growth condition on fiber tensile properties. Compos. Sci. Technol. 69, 594–601 (2009). doi:10.1016/j.compscitech.2008.12.002

    Article  Google Scholar 

  27. S.A. Steiner III, R. Li, B.L. Wardle, Circumventing the mechanochemical origins of strength loss in the synthesis of hierarchical carbon fibers. ACS Appl. Mater. Interfaces 5, 4892–4903 (2013). doi:10.1021/am4006385

    Article  Google Scholar 

  28. R.B. Mathur, S. Chatterjee, B.P. Singh, Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol. 68, 1608–1615 (2008). doi:10.1016/j.compscitech.2008.02.020

    Article  Google Scholar 

  29. S.I. Kundalwal, R. Suresh Kumar, M.C. Ray, Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes. Int. J. Heat Mass Transf. 72, 440–451 (2014). doi:10.1016/j.ijheatmasstransfer.2014.01.025

    Article  Google Scholar 

  30. J. Zhang, Q. Guo, B.L. Fox, Study on thermoplastic-modified multifunctional epoxies: influence of heating rate on cure behaviour and phase separation. Compos. Sci. Technol. 69, 1172–1179 (2009). doi:10.1016/j.compscitech.2009.02.016

    Article  Google Scholar 

  31. Z. Fan, M.H. Santare, S.G. Advani, Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Compos. A: Appl. Sci. Manuf. 39, 540–554 (2008). doi:10.1016/j.compositesa.2007.11.013

    Article  Google Scholar 

  32. X. Zhao, X. Lu, W.T.Y. Tze, P. Wang, A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes. Biosens. Bioelectron. 25, 2343–2350 (2010). doi:10.1016/j.bios.2010.03.030

    Article  Google Scholar 

  33. J.S. Im, J. Yun, J.G. Kim, T.S. Bae, Y.S. Lee, The effects of carbon nanotube addition and oxyfluorination on the glucose-sensing capabilities of glucose oxidase-coated carbon fiber electrodes. Appl. Surf. Sci. 258, 2219–2225 (2012). doi:10.1016/j.apsusc.2011.08.017

    Article  Google Scholar 

  34. A. Khan, A.A.P. Khan, A.M. Asiri, M.A. Rub, M.M. Rahman, S.A. Ghani, In vitro studies of carbon fiber microbiosensor for dopamine neurotransmitter supported by copper-graphene oxide composite. Microchim. Acta 181, 1049–1057 (2014). doi:10.1007/s00604-014-1202-0

    Article  Google Scholar 

  35. J. Bai, L. Wu, X. Wang, H.M. Zhang, Hemoglobin-graphene modified carbon fiber microelectrode for direct electrochemistry and electrochemical H2O2 sensing. Electrochim. Acta 185, 142–147 (2015). doi:10.1016/j.electacta.2015.10.100

    Article  Google Scholar 

  36. J. Bai, P. Qi, X. Ding, H. Zhang, Graphene composite coated carbon fiber: electrochemical synthesis and application in electrochemical sensing. RSC Adv. 6, 11250–11255 (2016). doi:10.1039/c5ra26620c

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ton Peijs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, H., Bilotti, E., Peijs, T. (2017). Nano-Engineered Hierarchical Carbon Fibres and Their Composites: Preparation, Properties and Multifunctionalities. In: Beaumont, P., Soutis, C., Hodzic, A. (eds) The Structural Integrity of Carbon Fiber Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-46120-5_5

Download citation

Publish with us

Policies and ethics