Skip to main content

Vertebrate Axial Patterning: From Egg to Asymmetry

  • Chapter
  • First Online:
Vertebrate Development

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 953))

Abstract

The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal “organizer.” This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The nomenclature of the gray crescent has been quite variable. Roux (1888) referred to this feature as a “crescent-shaped gray seam” (halbmondförmigen grauen Saumes). Morgan and Tsuda (1894) used the term “white crescent,” whereas Morgan and Boring (1903) used “grey crescent” [sic], translated as “graue Feld” (gray field). Later this became universally referred to as the gray crescent/grauer Halbmond/croissant gris.

  2. 2.

    In this chapter, Hensen’s node is used to refer to the anterior tip of the primitive streak in all birds and mammals, and is considered equivalent to the dorsal lip/organizer. Often the mouse organizer is referred to as the “node” without the eponym. However, the node can also refer to the posterior notochord “node” involved in left-right patterning, which lacks organizer activity. This terminology can cause confusion since the latter structure is embryologically distinct from Hensen’s node. In human embryology, Hensen’s node is referred to as the primitive node/knot or Hensens’ knot (Gray 1918; Larsen et al. 2009).

Abbreviations

AP:

Anteroposterior, Anterior-to-posterior

AVE:

Anterior visceral endoderm

BMP:

Bone morphogenetic protein

CRD:

Cysteine-rich domain

DEP domain:

Dishevelled, Egl10, Pleckstrin

DFC:

Dorsal forerunner cell

DIX domain:

Dishevelled, Axin

DV:

Dorsoventral, Dorsal-to-ventral

dYSL:

Dorsal yolk syncytial layer

EMT:

Epithelial-to-mesenchymal transition

EpiSC:

Epiblast stem cells

ES:

Embryonic stem

EVL:

Enveloping layer

FGF:

Fibroblast growth factor

GPCR:

G protein-coupled receptor

HMG:

High mobility group

ICM:

Inner cell mass

MAPK:

Mitogen-activated protein kinase

MBT:

Mid-blastula transition

MPF:

Maturation promoting factor

PCP:

Planar cell polarity

PDZ domain:

Postsynaptic density protein (PSD95), Disc large tumor suppressor (Dlg1), and zonula occludens1 protein (ZO-1)

PMZ:

Posterior marginal zone

TALEN:

TAL-effector nuclease

TE:

Trophectoderm

Tgfb:

Transforming growth factor beta

UV:

Ultraviolet irradiation

References

  • Aberle H, Bauer A, Stappert J et al (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804. doi:10.1093/emboj/16.13.3797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acampora D, Mazan S, Lallemand Y et al (1995) Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121:3279–3290

    CAS  PubMed  Google Scholar 

  • Adams RJ, Kimmel CB (2004) Morphogenetic cellular flows during zebrafish gastrulation. In: Stern CD (ed) Gastrulation: from cells to embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 305–316

    Google Scholar 

  • Agalliu D, Takada S, Agalliu I et al (2009) Motor neurons with axial muscle projections specified by Wnt4/5 signaling. Neuron 61:708–720. doi:10.1016/j.neuron.2008.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agius E, Oelgeschläger M, Wessely O et al (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127:1173–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahumada A, Slusarski DC, Liu X et al (2002) Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP. Science 298:2006–2010. doi:10.1126/science.1073776

    Article  CAS  PubMed  Google Scholar 

  • Ambrosio AL, Taelman VF, Lee HX et al (2008) Crossveinless-2 is a BMP feedback inhibitor that binds Chordin/BMP to regulate Xenopus embryonic patterning. Dev Cell 15:248–260. doi:10.1016/j.devcel.2008.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amit S, Hatzubai A, Birman Y et al (2002) Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev 16:1066–1076. doi:10.1101/gad.230302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ancel P, Vintemberger P (1948) Recherches sur le déterminisme de la symétrie bilatérale dans l’oeuf des Amphibiens. Bull Biol Fr Belg (Suppl) 31:1–182

    Google Scholar 

  • Antic, D., Stubbs, J. L., Suyama, K., Kintner, C., Scott, M. P. and Axelrod, J. D. (2010) Planar Cell Polarity Enables Posterior Localization of Nodal Cilia and Left-Right Axis Determination during Mouse and Xenopus Embryogenesis. PLoS ONE 5, e8999.

    Google Scholar 

  • Arendt D, Nübler-Jung K (1999) Rearranging gastrulation in the name of yolk: evolution of gastrulation in yolk-rich amniote eggs. Mech Dev 81:3–22

    Article  CAS  PubMed  Google Scholar 

  • Ault KT, Dirksen ML, Jamrich M (1996) A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos. Proc Natl Acad Sci U S A 93:6415–6420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axelrod JD, Miller JR, Shulman JM et al (1998) Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev 12:2610–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azar Y, Eyal-Giladi H (1981) Interaction of epiblast and hypoblast in the formation of the primitive streak and the embryonic axis in chick, as revealed by hypoblast-rotation experiments. J Embryol Exp Morphol 61:133–144

    CAS  PubMed  Google Scholar 

  • Bachiller D, Klingensmith J, Kemp C et al (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403:658–661. doi:10.1038/35001072

    Article  CAS  PubMed  Google Scholar 

  • Bachvarova RF, Skromne I, Stern CD (1998) Induction of primitive streak and Hensen’s node by the posterior marginal zone in the early chick embryo. Development 125:3521–3534

    CAS  PubMed  Google Scholar 

  • von Baer KE (1828) Über Entwicklungsgeschichte der Thiere. Beobachtung und Reflexion. Gebrüder Borntrager, Konigsberg

    Book  Google Scholar 

  • Baker J, Beddington R, Harland R (1999) Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev 13:3149–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker N, Morin P, Clevers H (2000) The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res 77:1–24

    Article  CAS  PubMed  Google Scholar 

  • Barrott JJ, Cash GM, Smith AP et al (2011) Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. Proc Natl Acad Sci U S A 108:12752–12757. doi:10.1073/pnas.1006437108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartscherer K, Pelte N, Ingelfinger D, Boutros M (2006) Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125:523–533. doi:10.1016/j.cell.2006.04.009

    Article  CAS  PubMed  Google Scholar 

  • Bayly R, Axelrod JD (2011) Pointing in the right direction: new developments in the field of planar cell polarity. Nat Rev Genet 12:385–391. doi:10.1038/nrg2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bánki Ö (1927) Die Langebeziehung der Spermiumeintritts stelle zur Medianeben und zur ersten Furche nach Versuchen mit örtlicher Vitälfarbung am Axolotl Ei. Verh. Anat. Ges., Jena, 36:198–208

    Google Scholar 

  • Becker KA, Ghule PN, Therrien JA et al (2006) Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol 209:883–893. doi:10.1002/jcp.20776

    Article  CAS  PubMed  Google Scholar 

  • Beddington RS (1994) Induction of a second neural axis by the mouse node. Development 120:613–620

    CAS  PubMed  Google Scholar 

  • Bedzhov I, Graham SJL, Leung CY, Zernicka-Goetz M (2014) Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo. Philos Trans R Soc B Biol Sci 369:20130538. doi:10.1098/rstb.2013.0538

    Article  CAS  Google Scholar 

  • Bedzhov I, Zernicka-Goetz M (2014) Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156:1032–1044. doi:10.1016/j.cell.2014.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belenkaya TY, Han C, Standley HJ et al (2002) pygopus Encodes a nuclear protein essential for wingless/Wnt signaling. Development 129:4089–4101

    CAS  PubMed  Google Scholar 

  • Belo JA, Bouwmeester T, Leyns L et al (1997) Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech Dev 68:45–57

    Article  CAS  PubMed  Google Scholar 

  • Ben-Haim N, Lu C, Guzman-Ayala M et al (2006) The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev Cell 11:313–323. doi:10.1016/j.devcel.2006.07.005

    Article  CAS  PubMed  Google Scholar 

  • ten Berge D, Kurek D, Blauwkamp T et al (2011) Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 13:1070–1075. doi:10.1038/ncb2314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertocchini F, Alev C, Nakaya Y, Sheng G (2013) A little winning streak: the reptilian-eye view of gastrulation in birds. Dev Growth Differ 55:52–59. doi:10.1111/dgd.12014

    Article  PubMed  Google Scholar 

  • Bertocchini F, Skromne I, Wolpert L, Stern CD (2004) Determination of embryonic polarity in a regulative system: evidence for endogenous inhibitors acting sequentially during primitive streak formation in the chick embryo. Development 131:3381–3390. doi:10.1242/dev.01178

    Article  CAS  PubMed  Google Scholar 

  • Bertocchini F, Stern CD (2002) The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling. Dev Cell 3:735–744

    Article  CAS  PubMed  Google Scholar 

  • Bertocchini F, Stern CD (2012) Gata2 provides an early anterior bias and uncovers a global positioning system for polarity in the amniote embryo. Development 139:4232–4238. doi:10.1242/dev.081901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betchaku T, Trinkaus JP (1978) Contact relations, surface activity, and cortical microfilaments of marginal cells of the enveloping layer and of the yolk syncytial and yolk cytoplasmic layers of fundulus before and during epiboly. J Exp Zool 206:381–426. doi:10.1002/jez.1402060310

    Article  CAS  PubMed  Google Scholar 

  • Biechele S, Cockburn K, Lanner F et al (2013) Porcn-dependent Wnt signaling is not required prior to mouse gastrulation. Development 140:2961–2971. doi:10.1242/dev.094458

    Article  CAS  PubMed  Google Scholar 

  • Biechele S, Cox BJ, Rossant J (2011) Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos. Dev Biol 355:275–285. doi:10.1016/j.ydbio.2011.04.029

    Article  CAS  PubMed  Google Scholar 

  • Bilic J, Huang Y-L, Davidson G et al (2007) Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316:1619–1622. doi:10.1126/science.1137065

    Article  CAS  PubMed  Google Scholar 

  • Bin-Nun N, Lichtig H, Malyarova A et al (2014) PTK7 modulates Wnt signaling activity via LRP6. Development 141:410–421. doi:10.1242/dev.095984

    Article  CAS  PubMed  Google Scholar 

  • Birsoy B, Kofron M, Schaible K et al (2006) Vg 1 is an essential signaling molecule in Xenopus development. Development 133:15–20. doi:10.1242/dev.02144

    Article  CAS  PubMed  Google Scholar 

  • Blitz IL, Cho KWY (2009) Finding partners: how BMPs select their targets. Dev Dyn 238:1321–1331. doi:10.1002/dvdy.21984

    Article  CAS  PubMed  Google Scholar 

  • Blum M, Andre P, Muders K, et al. (2007) Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo. Differentiation

    Google Scholar 

  • Blum M, Feistel K, Thumberger T, Schweickert A (2014) The evolution and conservation of left-right patterning mechanisms. Development 141:1603–1613. doi:10.1242/dev.100560

    Article  CAS  PubMed  Google Scholar 

  • Blum M, Gaunt SJ, Cho KW et al (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Blythe SA, Cha S-W, Tadjuidje E et al (2010) Beta-catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev Cell 19:220–231. doi:10.1016/j.devcel.2010.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boterenbrood EC, Nieuwkoop PD (1973) The formation of the mesoderm in urodelean amphibians. Wilhelm Roux' Arch Entwicklungsmech 173:319–332. doi:10.1007/BF00575837

    Article  Google Scholar 

  • Boucaut JC, Darribere T, De Li S, Boulekbache H, Yamada KM, Thiery JP (1985) Evidence for the role of fibronectin in amphibian gastrulation. Development 89:211–227

    Google Scholar 

  • Bourillot PY, Garrett N, Gurdon JB (2002) A changing morphogen gradient is interpreted by continuous transduction flow. Development 129:2167–2180

    CAS  PubMed  Google Scholar 

  • Boutros M, Mlodzik M (1999) Dishevelled: at the crossroads of divergent intracellular signaling pathways. Mech Dev 83:27–37

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester T, Kim S-H, Sasai Y et al (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382:595–601. doi:10.1038/382595a0

    Article  CAS  PubMed  Google Scholar 

  • Brachet A (1904) Recherches expérimentales sur l'oeuf de Rana fusca. Arch Biol 21:103–160

    Google Scholar 

  • Brannon M, Gomperts M, Sumoy L et al (1997) A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11:2359–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brannon M, Kimelman D (1996) Activation of Siamois by the Wnt pathway. Dev Biol 180:344–347

    Article  CAS  PubMed  Google Scholar 

  • Brennan J, Lu CC, Norris DP et al (2001) Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411:965–969. doi:10.1038/35082103

    Article  CAS  PubMed  Google Scholar 

  • Brieher WM, Gumbiner BM (1994) Regulation of C-cadherin function during activin induced morphogenesis of Xenopus animal caps. J Cell Biol 126:519–527

    Article  CAS  PubMed  Google Scholar 

  • Brown A, Papkoff J, Fung Y et al (1987) Identification of protein products encoded by the proto-oncogene int-1. Mol Cell Biol 7:3971–3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner E, Peter O, Schweizer L, Basler K (1997) pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385:829–833

    Article  CAS  PubMed  Google Scholar 

  • Bytinski-Salz H (1937) Trapianti di organizzatore nelle uova di Lampreda. Tip Luigi Niccolai

    Google Scholar 

  • Callebaut M (2005) Origin, fate, and function of the components of the avian germ disc region and early blastoderm: role of ooplasmic determinants. Dev Dyn 233:1194–1216. doi:10.1002/dvdy.20493

    Article  PubMed  Google Scholar 

  • Callebaut M, Van Nueten E (1994) Rauber’s (Koller’s) sickle: the early gastrulation organizer of the avian blastoderm. Eur J Morphol 32:35–48

    CAS  PubMed  Google Scholar 

  • Callebaut M, Van Nueten E (1995) Gastrulation inducing potencies of endophyll and Rauber’s sickle in isolated caudocranially oriented prestreak avian blastoderm quadrants (or fragments) in vitro. Eur J Morphol 33:221–235

    CAS  PubMed  Google Scholar 

  • Camp E, Sánchez-Sánchez AV, García-España A et al (2009) Nanog regulates proliferation during early fish development. Stem Cells 27:2081–2091. doi:10.1002/stem.133

    Article  CAS  PubMed  Google Scholar 

  • Campbell PD, Heim AE, Smith MZ, Marlow FL (2015) Kinesin-1 interacts with Bucky ball to form germ cells and is required to pattern the zebrafish body axis. Development 142:2996–3008. doi:10.1242/dev.124586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camus A, Perea-Gomez A, Moreau A, Collignon J (2006) Absence of Nodal signaling promotes precocious neural differentiation in the mouse embryo. Dev Biol 295:743–755. doi:10.1016/j.ydbio.2006.03.047

    Article  CAS  PubMed  Google Scholar 

  • Cha S-W, Tadjuidje E, Tao Q et al (2008) Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation. Development 135:3719–3729. doi:10.1242/dev.029025

    Article  CAS  PubMed  Google Scholar 

  • Cha S-W, Tadjuidje E, White J et al (2009) Wnt11/5a complex formation caused by tyrosine sulfation increases canonical signaling activity. Curr Biol 19:1573–1580. doi:10.1016/j.cub.2009.07.062

    Article  CAS  PubMed  Google Scholar 

  • Chambers SM, Fasano CA, Papapetrou EP et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280. doi:10.1038/nbt.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamorro MN, Schwartz DR, Vonica A et al (2005) FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J 24:73–84. doi:10.1038/sj.emboj.7600460

    Article  CAS  PubMed  Google Scholar 

  • Chan AP, Kloc M, Larabell CA et al (2007) The maternally localized RNA fatvg is required for cortical rotation and germ cell formation. Mech Dev 124:350–363. doi:10.1016/j.mod.2007.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C, Harland RM (2007) Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation. Development 134:3861–3872. doi:10.1242/dev.007179

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Hemmati-Brivanlou A (1998) Cell fate determination in embryonic ectoderm. J Neurobiol 36:128–151

    Article  CAS  PubMed  Google Scholar 

  • Chazaud C, Rossant J (2006) Disruption of early proximodistal patterning and AVE formation in Apc mutants. Development 133:3379–3387. doi:10.1242/dev.02523

    Article  CAS  PubMed  Google Scholar 

  • Cheng AM, Thisse B, Thisse C, Wright CV (2000) The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in Xenopus. Development 127:1049–1061

    CAS  PubMed  Google Scholar 

  • Cheung KJ, Gabrielson E, Werb Z, Ewald AJ (2013) Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155:1639–1651. doi:10.1016/j.cell.2013.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Child CM (1915) Individuality in organisms (Google Books). The University of Chicago Press, Chicago, IL

    Google Scholar 

  • Cho KW, Blumberg B, Steinbeisser H, De Robertis EM (1991) Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67:1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christian J, Moon R (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev 7:13–28

    Article  CAS  PubMed  Google Scholar 

  • Christian JL, McMahon JA, McMahon AP, Moon RT (1991) Xwnt-8, a Xenopus Wnt-1/int-1-related gene responsive to mesoderm-inducing growth factors, may play a role in ventral mesodermal patterning during embryogenesis. Development 111:1045–1055

    CAS  PubMed  Google Scholar 

  • Chung HM, Malacinski GM (1980) Establishment of the dorsal/ventral polarity of the amphibian embryo: use of ultraviolet irradiation and egg rotation as probes. Dev Biol 80:120–133

    Article  CAS  PubMed  Google Scholar 

  • Ciemerych MA, Mesnard D, Zernicka-Goetz M (2000) Animal and vegetal poles of the mouse egg predict the polarity of the embryonic axis, yet are nonessential for development. Development 127:3467–3474

    CAS  PubMed  Google Scholar 

  • Ciruna B, Jenny A, Lee D et al (2006) Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nat Cell Biol 439:220–224. doi:10.1038/nature04375

    CAS  Google Scholar 

  • Clavert J (1962) Symmetrization of the egg of vertebrates. Adv Morphol 2:27–60

    Article  Google Scholar 

  • Clavert J (1961) Développement de la symétrie chez les Vertébrés. Bull Soc Zool Fr 86:381–401

    Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205. doi:10.1016/j.cell.2012.05.012

    Article  CAS  PubMed  Google Scholar 

  • Cliffe A, Hamada F, Bienz M (2003) A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr Biol 13:960–966

    Article  CAS  PubMed  Google Scholar 

  • Cole MF, Johnstone SE, Newman JJ et al (2008) Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22:746–755. doi:10.1101/gad.1642408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collavin L, Kirschner MW (2003) The secreted Frizzled-related protein Sizzled functions as a negative feedback regulator of extreme ventral mesoderm. Development 130:805–816

    Article  CAS  PubMed  Google Scholar 

  • Colozza G, De Robertis EM (2014) Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus. Differentiation 88:17–26. doi:10.1016/j.diff.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  • Conlon FL, Lyons KM, Takaesu N et al (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120:1919–1928

    CAS  PubMed  Google Scholar 

  • Connolly DJ, Patel K, Cooke J (1997) Chick noggin is expressed in the organizer and neural plate during axial development, but offers no evidence of involvement in primary axis formation. Int J Dev Biol 41:389–396

    CAS  PubMed  Google Scholar 

  • Cook D, Fry MJ, Hughes K et al (1996) Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J 15:4526–4536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke J, Smith JC (1987) The midblastula cell cycle transition and the character of mesoderm in UV-induced nonaxial Xenopus development. Development 99:197–210

    CAS  PubMed  Google Scholar 

  • Cooper MS, D'Amico LA (1996) A cluster of noninvoluting endocytic cells at the margin of the zebrafish blastoderm marks the site of embryonic shield formation. Dev Biol 180:184–198. doi:10.1006/dbio.1996.0294

    Article  CAS  PubMed  Google Scholar 

  • Coudreuse DYM (2006) Wnt gradient formation requires retromer function in Wnt-producing cells. Science 312:921–924. doi:10.1126/science.1124856

    Article  CAS  PubMed  Google Scholar 

  • Cruciat C-M, Niehrs C (2013) Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 5:a015081. doi:10.1101/cshperspect.a015081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Csardi G, Nepusz T (2014) igraph: Network analysis and visualization. R package version 0.7

    Google Scholar 

  • Cselenyi CS, Jernigan KK, Tahinci E et al (2008) LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta-catenin. Proc Natl Acad Sci U S A 105:8032–8037. doi:10.1073/pnas.0803025105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Tian Q, Christian JL (1996) Synergistic effects of Vg1 and Wnt signals in the specification of dorsal mesoderm and endoderm. Dev Biol 180:22–34. doi:10.1006/dbio.1996.0281

    Article  CAS  PubMed  Google Scholar 

  • Curtin JA, Quint E, Tsipouri V et al (2003) Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 13:1129–1133

    Article  CAS  PubMed  Google Scholar 

  • Cuykendall TN, Houston DW (2009) Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation. Development 136:3057–3065. doi:10.1242/dev.036855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalcq A, Pasteels J (1937) Une conception nouvelle des bases physiologiques de la morphogénèse. Arch Biol (Liege) 48:699–710

    Google Scholar 

  • Dale L, Howes G, Price B, Smith J (1992) Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115:573–585

    CAS  PubMed  Google Scholar 

  • Dale L, Smith JC, Slack JM (1985) Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies. J Embryol Exp Morphol 89:289–312

    CAS  PubMed  Google Scholar 

  • Dalle Nogare D, Somers K, Rao S et al (2014) Leading and trailing cells cooperate in collective migration of the zebrafish posterior lateral line primordium. Development 141:3188–3196. doi:10.1242/dev.106690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darken R, Scola A, Rakeman A et al (2002) The planar polarity gene strabismus regulates convergent extension movements in Xenopus. EMBO J 21:976–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darras S, Marikawa Y, Elinson RP, Lemaire P (1997) Animal and vegetal pole cells of early Xenopus embryos respond differently to maternal dorsal determinants: implications for the patterning of the organiser. Development 124:4275–4286

    CAS  PubMed  Google Scholar 

  • Davidson G, Shen J, Huang Y-L et al (2009) Cell cycle control of wnt receptor activation. Dev Cell 17:788–799. doi:10.1016/j.devcel.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  • Davidson G, Wu W, Shen J et al (2005) Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438:867–872. doi:10.1038/nature04170

    Article  CAS  PubMed  Google Scholar 

  • De Robertis E, Larrain J, Oelgeschlager M, Wessely O (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat Rev Genet 1:171–181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Robertis EM (2009) Spemann’s organizer and the self-regulation of embryonic fields. Mech Dev 126:925–941. doi:10.1016/j.mod.2009.08.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Robertis EM (2006) Spemann’s organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol 7:296–302. doi:10.1038/nrm1855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Robertis EM, Sasai Y (1996) A common plan for dorsoventral patterning in Bilateria. Nature 380:37–40. doi:10.1038/380037a0

    Article  PubMed  Google Scholar 

  • De Vries WN, Evsikov AV, Haac BE et al (2004) Maternal beta-catenin and E-cadherin in mouse development. Development 131:4435–4445. doi:10.1242/dev.01316

    Article  PubMed  CAS  Google Scholar 

  • Deans MR, Antic D, Suyama K et al (2007) Asymmetric distribution of Prickle-like 2 reveals an early underlying polarization of vestibular sensory epithelia in the inner ear. J Neurosci 27:3139–3147. doi:10.1523/JNEUROSCI.5151-06.2007

    Article  CAS  PubMed  Google Scholar 

  • Delaune E, Lemaire P, Kodjabachian L (2005) Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132:299–310. doi:10.1242/dev.01582

    Article  CAS  PubMed  Google Scholar 

  • Dick A, Hild M, Bauer H, Imai Y, Maifeld H, Schier AF, Talbot WS, Bouwmeester T, Hammerschmidt M (2000) Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. Development 127:343–354

    CAS  PubMed  Google Scholar 

  • Ding J, Yang L, Yan YT et al (1998) Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 395:702–707. doi:10.1038/27215

    Article  CAS  PubMed  Google Scholar 

  • Dirksen ML, Jamrich M (1992) A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. Genes Dev 6:599–608

    Article  CAS  PubMed  Google Scholar 

  • Djiane A, Riou J, Umbhauer M et al (2000) Role of frizzled 7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 127:3091–3100

    CAS  PubMed  Google Scholar 

  • Dobrowolski R, De Robertis EM (2012) Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nat Rev Mol Cell Biol 13:53–60. doi:10.1038/nrm3244

    CAS  Google Scholar 

  • Doi JY, Niigaki H, Sone K et al (2000) Distribution of dorsal-forming activity in precleavage embryos of the Japanese newt, Cynops pyrrhogaster: effects of deletion of vegetal cytoplasm, UV irradiation, and lithium treatment. Dev Biol 223:154–168. doi:10.1006/dbio.2000.9735

    Article  CAS  PubMed  Google Scholar 

  • Domingos PM, Itasaki N, Jones CM et al (2001) The Wnt/beta-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling. Dev Biol 239:148–160. doi:10.1006/dbio.2001.0431

    Article  CAS  PubMed  Google Scholar 

  • Dorsky RI, Itoh M, Moon RT, Chitnis A (2003) Two tcf3 genes cooperate to pattern the zebrafish brain. Development 130:1937–1947

    Article  CAS  PubMed  Google Scholar 

  • Dougan ST, Warga RM, Kane DA et al (2003) The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 130:1837–1851

    Article  CAS  PubMed  Google Scholar 

  • Du SJ, Purcell SM, Christian JL et al (1995) Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol Cell Biol 15:2625–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufort D, Schwartz L, Harpal K, Rossant J (1998) The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. Development 125:3015–3025

    CAS  PubMed  Google Scholar 

  • Dyson S, Gurdon JB (1998) The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93:557–568

    Article  CAS  PubMed  Google Scholar 

  • Egger-Adam D, Katanaev VL (2010) The trimeric G protein Go inflicts a double impact on axin in the Wnt/frizzled signaling pathway. Dev Dyn 239:168–183. doi:10.1002/dvdy.22060

    Article  CAS  PubMed  Google Scholar 

  • Elinson R, Pasceri P (1989) Two UV-sensitive targets in dorsoanterior specification of frog embryos. Development 106:511–518

    CAS  PubMed  Google Scholar 

  • Elinson RP (1983) Cytoplasmic phases in the first cell cycle of the activated frog egg. Dev Biol 100:440–451

    Article  CAS  PubMed  Google Scholar 

  • Elinson RP, del Pino EM (2011) Developmental diversity of amphibians. WIREs Dev Biol 1:345–369. doi:10.1002/wdev.23

    Article  CAS  Google Scholar 

  • Elinson RP, Holowacz T (1995) Specifying the dorsoanterior axis in frogs: 70 years since Spemann and Mangold. Curr Top Dev Biol 30:253–285

    Article  CAS  PubMed  Google Scholar 

  • Elinson RP, Kezmoh L (2010) Molecular Haeckel. Dev Dyn 239:1905–1918. doi:10.1002/dvdy.22337

    Article  CAS  PubMed  Google Scholar 

  • Elinson RP, Rowning B (1988) A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev Biol 128:185–197

    Article  CAS  PubMed  Google Scholar 

  • Erter CE, Solnica-Krezel L, Wright CV (1998) Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Dev Biol 204:361–372. doi:10.1006/dbio.1998.9097

    Article  CAS  PubMed  Google Scholar 

  • Eyal-Giladi H (1954) Dynamic aspects of neural induction in amphibia. Arch Biol (Liege) 65:179–259

    CAS  Google Scholar 

  • Eyal-Giladi H, Fabian BC (1980) Axis determination in uterine chick blastodiscs under changing spatial positions during the sensitive period for polarity. Dev Biol 77:228–232

    Article  CAS  PubMed  Google Scholar 

  • Eyal-Giladi H, Kochav S (1976) From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick: I. General morphology. Dev Biol 49:321–337

    Article  CAS  PubMed  Google Scholar 

  • Fainsod A, Steinbeisser H, De Robertis E (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J 13:5015–5025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faure S, Lee MA, Keller T et al (2000) Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development 127:2917–2931

    CAS  PubMed  Google Scholar 

  • Fekany K, Yamanaka Y, Leung T, Sirotkin HI, Topczewski J, Gates MA, Hibi M, Renucci A, Stemple D, Radbill A et al (1999) The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures. Development 126:1427–1438

    CAS  PubMed  Google Scholar 

  • Feldman B, Gates MA, Egan ES et al (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395:181–185. doi:10.1038/26013

    Article  CAS  PubMed  Google Scholar 

  • Fiedler M, Sánchez-Barrena MJ, Nekrasov M et al (2008) Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex. Mol Cell 30:507–518. doi:10.1016/j.molcel.2008.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers GP, Topczewska JM, Topczewski J (2012) A zebrafish Notum homolog specifically blocks the Wnt/β-catenin signaling pathway. Development 139:2416–2425. doi:10.1242/dev.063206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley AC, Skromne I, Stern CD (2000) Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast. Development 127:3839–3854

    CAS  PubMed  Google Scholar 

  • Fossat N, Jones V, Khoo P-L et al (2011) Stringent requirement of a proper level of canonical WNT signalling activity for head formation in mouse embryo. Development 138:667–676. doi:10.1242/dev.052803

    Article  CAS  PubMed  Google Scholar 

  • Fraser SE, Stern CD (2004) Early rostrocaudal patterning of the mesoderm and neural plate. In: Stern CD (ed) Gastrulation. CSHL Press, New York, pp 389–401

    Google Scholar 

  • Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457. doi:10.1038/nrm2720

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Jiang M, Mirando AJ et al (2009) Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation. Proc Natl Acad Sci U S A 106:18598–18603. doi:10.1073/pnas.0904894106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentealba LC, Eivers E, Ikeda A et al (2007) Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131:980–993. doi:10.1016/j.cell.2007.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimori T, Kurotaki Y, Miyazaki J-I, Nabeshima Y-I (2003) Analysis of cell lineage in two- and four-cell mouse embryos. Development 130:5113–5122. doi:10.1242/dev.00725

    Article  CAS  PubMed  Google Scholar 

  • Fujisue M, Kobayakawa Y, Yamana K (1993) Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation. Development 118:163–170

    CAS  PubMed  Google Scholar 

  • Fujisue M, Sakai M, Yamana K (1991) Subcortical rotation and specification of the dorsoventral axis in newt eggs. Dev Growth Differ 33:34–51

    Article  Google Scholar 

  • Funayama N, Fagotto F, McCrea P, Gumbiner BM (1995) Embryonic axis induction by the armadillo repeat domain of beta-catenin: evidence for intracellular signaling. J Cell Biol 128:959–968

    Article  CAS  PubMed  Google Scholar 

  • Furushima K, Yamamoto A, Nagano T et al (2007) Mouse homologues of Shisa antagonistic to Wnt and Fgf signalings. Dev Biol 306:480–492. doi:10.1016/j.ydbio.2007.03.028

    Article  CAS  PubMed  Google Scholar 

  • Galceran J, Fariñas I, Depew MJ et al (1999) Wnt3a−/−-like phenotype and limb deficiency in Lef1(−/−)Tcf1(−/−) mice. Genes Dev 13:709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao B, Song H, Bishop K et al (2011) Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell 20:163–176. doi:10.1016/j.devcel.2011.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner RL, Cockroft DL (1998) Complete dissipation of coherent clonal growth occurs before gastrulation in mouse epiblast. Development 125:2397–2402

    CAS  PubMed  Google Scholar 

  • Gawantka V, Delius H, Hirschfeld K et al (1995) Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J 14:6268–6279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ge X, Grotjahn D, Welch E et al (2014) Hecate/Grip2a acts to reorganize the cytoskeleton in the symmetry-breaking event of embryonic axis induction. PLoS Genet 10:e1004422. doi:10.1371/journal.pgen.1004422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerhart J (2004) Symmetry breaking in the egg of Xenopus laevis. 341–351. Cold Spring Harbor, New York: CSHL Press

    Google Scholar 

  • Gerhart J, Danilchik M, Doniach T et al (1989) Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development 107(Suppl):37–51

    PubMed  Google Scholar 

  • Gerhart J, Ubbels G, Black S et al (1981) A reinvestigation of the role of the grey crescent in axis formation in Xenopus laevis. Nature 292:511–516

    Article  CAS  PubMed  Google Scholar 

  • Gerlitz O, Basler K (2002) Wingful, an extracellular feedback inhibitor of Wingless. Genes Dev 16:1055–1059. doi:10.1101/gad.991802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimlich RL (1986) Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo. Dev Biol 115:340–352

    Article  CAS  PubMed  Google Scholar 

  • Gimlich RL, Gerhart JC (1984) Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev Biol 104:117–130

    Article  CAS  PubMed  Google Scholar 

  • Giraldez AJ, Copley RR, Cohen SM (2002) HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient. Dev Cell 2:667–676

    Article  CAS  PubMed  Google Scholar 

  • Glinka A, Delius H, Blumenstock C, Niehrs C (1996) Combinatorial signalling by Xwnt-11 and Xnr3 in the organizer epithelium. Mech Dev 60:221–231

    Article  CAS  PubMed  Google Scholar 

  • Glinka A, Wu W, Delius H et al (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362. doi:10.1038/34848

    Article  CAS  PubMed  Google Scholar 

  • Glinka A, Wu W, Onichtchouk D et al (1997) Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389:517–519. doi:10.1038/39092

    Article  CAS  PubMed  Google Scholar 

  • Godsave SF, Slack JM (1991) Single cell analysis of mesoderm formation in the Xenopus embryo. Development 111:523–530

    CAS  PubMed  Google Scholar 

  • Gore AV, Maegawa S, Cheong A et al (2005) The zebrafish dorsal axis is apparent at the four-cell stage. Nature 438:1030–1035. doi:10.1038/nature04184

    Article  CAS  PubMed  Google Scholar 

  • Goto T, Keller R (2002) The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus. Dev Biol 247:165–181

    Article  CAS  PubMed  Google Scholar 

  • Gradl D, König A, Wedlich D (2002) Functional diversity of Xenopus lymphoid enhancer factor/T-cell factor transcription factors relies on combinations of activating and repressing elements. J Biol Chem 277:14159–14171. doi:10.1074/jbc.M107055200

    Article  CAS  PubMed  Google Scholar 

  • Graff JM, Thies RS, Song JJ et al (1994) Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79:169–179

    Article  CAS  PubMed  Google Scholar 

  • Granier C, Gurchenkov V, Perea-Gomez A et al (2011) Nodal cis-regulatory elements reveal epiblast and primitive endoderm heterogeneity in the peri-implantation mouse embryo. Dev Biol 349:350–362. doi:10.1016/j.ydbio.2010.10.036

    Article  CAS  PubMed  Google Scholar 

  • Gray H (1918) Anatomy of the human body, 20th edn. Lea and Febiger, Philadelphia, PA

    Google Scholar 

  • Gräper L (1929) Die Primitiventwicklung des Hühnchens nach stereokinematographischen Untersuchungen, kontrolliert durch vitale Farbmarkierung und verglichen mit der Entwicklung anderer Wirbeltiere. Wilhelm Roux' Arch Entwicklungsmech 116:382–429. doi:10.1007/BF02145235

    Article  Google Scholar 

  • Green JBA, Sharpe J (2015) Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142:1203–1211. doi:10.1242/dev.114991

    Article  CAS  PubMed  Google Scholar 

  • Gritsman K, Talbot WS, Schier AF (2000) Nodal signaling patterns the organizer. Development 127:921–932

    CAS  PubMed  Google Scholar 

  • Gros J, Feistel K, Viebahn C et al (2009) Cell movements at Hensen’s node establish left/right asymmetric gene expression in the chick. Science 324:941–944. doi:10.1126/science.1172478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross JC, Chaudhary V, Bartscherer K, Boutros M (2012) Active Wnt proteins are secreted on exosomes. Nat Cell Biol 14:1036–1045. doi:10.1038/ncb2574

    Article  CAS  PubMed  Google Scholar 

  • Grunz H (2004) The vertebrate organizer. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Grunz H, Tacke L (1989) Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ Dev 28:211–217

    Article  CAS  PubMed  Google Scholar 

  • Grunz H, Tacke L (1990) Extracellular matrix components prevent neural differentiation of disaggregated Xenopus ectoderm cells. Cell Differ Dev 32:117–123

    Article  CAS  PubMed  Google Scholar 

  • Guger KA, Gumbiner BM (1995) beta-Catenin has Wnt-like activity and mimics the Nieuwkoop signaling center in Xenopus dorsal-ventral patterning. Dev Biol 172:115–125. doi:10.1006/dbio.1995.0009

    Article  CAS  PubMed  Google Scholar 

  • Habas R, Dawid IB, He X (2003) Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev 17:295–309. doi:10.1101/gad.1022203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107:843–854

    Article  CAS  PubMed  Google Scholar 

  • Haegel H, Larue L, Ohsugi M et al (1995) Lack of beta-catenin affects mouse development at gastrulation. Development 121:3529–3537

    CAS  PubMed  Google Scholar 

  • Hainski AM, Moody SA (1992) Xenopus maternal RNAs from a dorsal animal blastomere induce a secondary axis in host embryos. Development 116:347–355

    CAS  PubMed  Google Scholar 

  • Halacheva V, Fuchs M, Dönitz J et al (2011) Planar cell movements and oriented cell division during early primitive streak formation in the mammalian embryo. Dev Dyn 240:1905–1916. doi:10.1002/dvdy.22687

    Article  PubMed  Google Scholar 

  • Hamburger V (1988) The heritage of experimental embryology: Hans Spemann and the organizer. Oxford University Press, USA

    Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:231–272. doi:10.1002/aja.1001950404

    Article  Google Scholar 

  • Hamilton FS, Wheeler GN, Hoppler S (2001) Difference in XTcf-3 dependency accounts for change in response to beta-catenin-mediated Wnt signalling in Xenopus blastula. Development 128:2063–2073

    CAS  PubMed  Google Scholar 

  • Hammerschmidt M, Pelegri F, Mullins MC et al (1996a) Mutations affecting morphogenesis during gastrulation and tail formation in the zebrafish, Danio rerio. Development 123:143–151

    CAS  PubMed  Google Scholar 

  • Hammerschmidt M, Serbedzija GN, McMahon AP (1996b) Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev 10:2452–2461. doi:10.1101/gad.10.19.2452

    Article  CAS  PubMed  Google Scholar 

  • Hansen C, Marion C, Steele K et al (1997) Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3. Development 124:483–492

    CAS  PubMed  Google Scholar 

  • Harland R (2008) Induction into the Hall of Fame: tracing the lineage of Spemann’s organizer. Development 135:3321–3323

    Article  CAS  PubMed  Google Scholar 

  • Harland R, Gerhart J (1997) Formation and function of Spemann’s organizer. Annu Rev Cell Dev Biol 13:611–667

    Article  CAS  PubMed  Google Scholar 

  • Harland RM (1994) Neural induction in Xenopus. Curr Opin Genet Dev 4:543–549

    Article  CAS  PubMed  Google Scholar 

  • Harland RM, Grainger RM (2011) Xenopus research: metamorphosed by genetics and genomics. Trends Genet 27:507–515. doi:10.1016/j.tig.2011.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley KO, Hardcastle Z, Friday RV et al (2001) Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation. Dev Biol 238:168–184. doi:10.1006/dbio.2001.0398

    Article  CAS  PubMed  Google Scholar 

  • Hashiguchi M, Mullins MC (2013) Anteroposterior and dorsoventral patterning are coordinated by an identical patterning clock. Development 140:1970–1980. doi:10.1242/dev.088104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto H, Itoh M, Yamanaka Y, Yamashita S, Shimizu T, Solnica-Krezel L, Hibi M, Hirano T (2000) Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev Biol 217:138–152

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Shinohara K, Wang J et al (2010) Planar polarization of node cells determines the rotational axis of node cilia. Nat Cell Biol 12:170–176. doi:10.1038/ncb2020

    Article  CAS  PubMed  Google Scholar 

  • Hausen P, Riebesell M (1991) The early development of Xenopus laevis: an atlas of the histology. Springer, New York

    Google Scholar 

  • Hayes M, Naito M, Daulat A et al (2013) Ptk7 promotes non-canonical Wnt/PCP-mediated morphogenesis and inhibits Wnt/β-catenin-dependent cell fate decisions during vertebrate development. Development 140(8):1807–1818

    Article  CAS  PubMed  Google Scholar 

  • He X, Saint-Jeannet JP, Wang Y et al (1997) A member of the Frizzled protein family mediating axis induction by Wnt-5A. Science 275:1652–1654

    Article  CAS  PubMed  Google Scholar 

  • He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131:1663–1677. doi:10.1242/dev.01117

    Article  CAS  PubMed  Google Scholar 

  • Heasman J (1997) Patterning the Xenopus blastula. Development 124:4179–4191

    CAS  PubMed  Google Scholar 

  • Heasman J, Crawford A, Goldstone K et al (1994) Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79:791–803

    Article  CAS  PubMed  Google Scholar 

  • Hedge TA, Mason I (2008) Expression of Shisa2, a modulator of both Wnt and Fgf signaling, in the chick embryo. Int J Dev Biol 52:81–85. doi:10.1387/ijdb.072355th

    Article  CAS  PubMed  Google Scholar 

  • Heisenberg CP, Houart C, Take-Uchi M et al (2001) A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev 15:1427–1434. doi:10.1101/gad.194301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heisenberg CP, Tada M, Rauch GJ et al (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405:76–81. doi:10.1038/35011068

    Article  CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Kelly O, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77:283–295

    Article  CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Melton D (1997) Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77:273–281

    Article  CAS  PubMed  Google Scholar 

  • Hernández AR, Klein AM, Kirschner MW (2012) Kinetic responses of β-catenin specify the sites of Wnt control. Science 338:1337–1340. doi:10.1126/science.1228734

    Article  PubMed  CAS  Google Scholar 

  • Hesiod, Evelyn-White HG (1914) Works and days. The Homeric Hymns and Homerica 174–ff

    Google Scholar 

  • Hikasa H, Ezan J, Itoh K et al (2010) Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev Cell 19:521–532. doi:10.1016/j.devcel.2010.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hikasa H, Sokol SY (2013) Wnt signaling in vertebrate axis specification. Cold Spring Harb Perspect Biol 5:a007955. doi:10.1101/cshperspect.a007955

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hild M, Dick A, Rauch GJ et al (1999) The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. Development 126:2149–2159

    CAS  PubMed  Google Scholar 

  • Hillman N, Sherman MI, Graham C (1972) The effect of spatial arrangement on cell determination during mouse development. J Embryol Exp Morphol 28:263–278

    CAS  PubMed  Google Scholar 

  • Hilton E, Rex M, Old R (2003) VegT activation of the early zygotic gene Xnr5 requires lifting of Tcf-mediated repression in the Xenopus blastula. Mech Dev 120:1127–1138

    Article  CAS  PubMed  Google Scholar 

  • Ho C-Y, Houart C, Wilson SW, Stainier DYR (1999) A role for the extraembryonic yolk syncytial layer in patterning the zebrafish embryo suggested by properties of the hex gene. Curr Biol 9:1131–1134. doi:10.1016/S0960-9822(99)80485-0

    Article  CAS  PubMed  Google Scholar 

  • Ho RK (1992) Cell movements and cell fate during zebrafish gastrulation. Dev Suppl 65–73

    Google Scholar 

  • Hoffmans R, Städeli R, Basler K (2005) Pygopus and legless provide essential transcriptional coactivator functions to armadillo/beta-catenin. Curr Biol 15:1207–1211. doi:10.1016/j.cub.2005.05.054

    Article  CAS  PubMed  Google Scholar 

  • Hofmann K (2000) A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem Sci 25:111–112

    Article  CAS  PubMed  Google Scholar 

  • Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10:1580–1594

    Article  CAS  PubMed  Google Scholar 

  • Holland LZ, Onai T (2012) Early development of cephalochordates (amphioxus). WIREs Dev Biol 1:167–183. doi:10.1002/wdev.11

    Article  CAS  Google Scholar 

  • Holowacz T, Elinson RP (1993) Cortical cytoplasm, which induces dorsal axis formation in Xenopus, is inactivated by UV irradiation of the oocyte. Development 119:277–285

    CAS  PubMed  Google Scholar 

  • Holstein TW (2012) The evolution of the Wnt pathway. Cold Spring Harb Perspect Biol 4:a007922. doi:10.1101/cshperspect.a007922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holtfreter J (1944) Neural differentiation of ectoderm through exposure to saline solution. J Exp Zool 95:307–343. doi:10.1002/jez.1400950303

    Article  Google Scholar 

  • Holwill S, Heasman J, Crawley C, Wylie CC (1987) Axis and germ line deficiencies caused by UV irradiation of Xenopus oocytes cultured in vitro. Development 100:735–743

    Google Scholar 

  • Hoodless PA, Pye M, Chazaud C et al (2001) FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse. Genes Dev 15:1257–1271. doi:10.1101/gad.881501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppler S, Brown JD, Moon RT (1996) Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev 10:2805–2817

    Article  CAS  PubMed  Google Scholar 

  • Hoppler S, Moon RT (1998) BMP-2/-4 and Wnt-8 cooperatively pattern the Xenopus mesoderm. Mech Dev 71:119–129

    Article  CAS  PubMed  Google Scholar 

  • Hopwood N (2007) A history of normal plates, tables and stages in vertebrate embryology. Int J Dev Biol 51:1–26. doi:10.1387/ijdb.062189nh

    Article  PubMed  PubMed Central  Google Scholar 

  • Houart C, Caneparo L, Heisenberg C et al (2002) Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 35:255–265

    Article  CAS  PubMed  Google Scholar 

  • Houliston E (1994) Microtubule translocation and polymerisation during cortical rotation in Xenopus eggs. Development 120:1213–1220

    Google Scholar 

  • Houliston E, Elinson RP (1991) Evidence for the involvement of microtubules, ER, and kinesin in the cortical rotation of fertilized frog eggs. J Cell Biol 114:1017–1028

    Article  CAS  PubMed  Google Scholar 

  • Houston DW (2012) Cortical rotation and messenger RNA localization in Xenopus axis formation. WIREs Dev Biol 1:371–388. doi:10.1002/wdev.29

    Article  CAS  Google Scholar 

  • Houston DW (2013) Regulation of cell polarity and RNA localization in vertebrate oocytes. Int Rev Cell Mol Biol 306:127–185. doi:10.1016/B978-0-12-407694-5.00004-3

    Article  CAS  PubMed  Google Scholar 

  • Houston DW, Kofron M, Resnik E et al (2002) Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3. Development 129:4015–4025

    CAS  PubMed  Google Scholar 

  • Hsieh J-C, Lee L, Zhang L et al (2003) Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity. Cell 112:355–367

    Article  CAS  PubMed  Google Scholar 

  • Huelsken J, Vogel R, Brinkmann V et al (2000) Requirement for beta-catenin in anterior-posterior axis formation in mice. J Cell Biol 148:567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hume CR, Dodd J (1993) Cwnt-8C: a novel Wnt gene with a potential role in primitive streak formation and hindbrain organization. Development 119:1147–1160

    CAS  PubMed  Google Scholar 

  • Hunt TE (1929) Hensen’s node as an organiser in the formation of the chick embryo. Anat Rec 42:22

    Google Scholar 

  • Imai Y, Gates MA, Melby AE et al (2001) The homeobox genes vox and vent are redundant repressors of dorsal fates in zebrafish. Development 128:2407–2420

    CAS  PubMed  Google Scholar 

  • Inomata H, Haraguchi T, Sasai Y (2008) Robust stability of the embryonic axial pattern requires a secreted scaffold for chordin degradation. Cell 134:854–865. doi:10.1016/j.cell.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  • Inui M, Montagner M, Ben-Zvi D et al (2012) Self-regulation of the head-inducing properties of the Spemann organizer. Proc Natl Acad Sci U S A 109:15354–15359. doi:10.1073/pnas.1203000109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ip CK, Fossat N, Jones V et al (2014) Head formation: OTX2 regulates Dkk1 and Lhx1 activity in the anterior mesendoderm. Development 141:3859–3867. doi:10.1242/dev.114900

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi H, Matsumura N, Hanafusa H et al (2008) Expression of Siamois and Twin in the blastula Chordin/Noggin signaling center is required for brain formation in Xenopus laevis embryos. Mech Dev 125:58–66. doi:10.1016/j.mod.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  • Ishitani T, Kishida S, Hyodo-Miura J et al (2003) The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol 23:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishitani T, Ninomiya-Tsuji J, Nagai S et al (1999) The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399:798–802

    Article  CAS  PubMed  Google Scholar 

  • Itasaki N, Jones CM, Mercurio S et al (2003) Wise, a context-dependent activator and inhibitor of Wnt signalling. Development 130:4295–4305

    Article  CAS  PubMed  Google Scholar 

  • Iwao Y, Yasumitsu K, Narihira M et al (1997) Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs. Mol Reprod Dev 47:210–221.

    Article  CAS  PubMed  Google Scholar 

  • Izpisúa Belmonte JC, De Robertis EM, Storey KG, Stern CD (1993) The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74:645–659

    Article  PubMed  Google Scholar 

  • Janda CY, Waghray D, Levin AM et al (2012) Structural basis of Wnt recognition by frizzled. Science 337:59–64. doi:10.1126/science.1222879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jernigan KK, Cselenyi CS, Thorne CA et al (2010) Gbetagamma activates GSK3 to promote LRP6-mediated beta-catenin transcriptional activity. Sci Signal 3:ra37. doi:10.1126/scisignal.2000647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jessen JR, Topczewski J, Bingham S et al (2002) Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat Cell Biol 4:610–615. doi:10.1038/ncb828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jesuthasan S, Stähle U (1997) Dynamic microtubules and specification of the zebrafish embryonic axis. Curr Biol 7:31–42

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Struhl G (1998) Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391:493–496

    Article  CAS  PubMed  Google Scholar 

  • Jones C, Lyons K, Lapan P et al (1992) DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 115:639–647

    CAS  PubMed  Google Scholar 

  • Jones CM, Broadbent J, Thomas PQ et al (1999) An anterior signalling centre in Xenopus revealed by the homeobox gene XHex. Curr Biol 9:946–954

    Article  CAS  PubMed  Google Scholar 

  • Jose Maria Carvajal-Gonzalez MM (2014) Mechanisms of planar cell polarity establishment in Drosophila. F1000Prime Reports. doi:10.12703/P6-98

    Google Scholar 

  • Joubin K, Stern CD (1999) Molecular interactions continuously define the organizer during the cell movements of gastrulation. Cell 98:559–571

    Article  CAS  PubMed  Google Scholar 

  • Jullien J, Gurdon JB (2005) Morphogen gradient interpretation by a regulated trafficking step during ligand-receptor transduction. Genes Dev 19:2682–2694. doi:10.1101/gad.341605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadowaki T, Wilder E, Klingensmith J et al (1996) The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev 10:3116–3128

    Article  CAS  PubMed  Google Scholar 

  • Kagermeier-Schenk B, Wehner D, Ozhan-Kizil G et al (2011) Waif1/5 T4 inhibits Wnt/β-catenin signaling and activates noncanonical Wnt pathways by modifying LRP6 subcellular localization. Dev Cell 21:1129–1143. doi:10.1016/j.devcel.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  • Kageura H (1997) Activation of dorsal development by contact between the cortical dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis. Development 124:1543–1551

    CAS  PubMed  Google Scholar 

  • Kageura H (1990) Spatial distribution of the capacity to initiate a secondary embryo in the 32-cell embryo of Xenopus laevis. Dev Biol 142:432–438

    Article  CAS  PubMed  Google Scholar 

  • Kakugawa S, Langton PF, Zebisch M et al (2015) Notum deacylates Wnt proteins to suppress signalling activity. Nature 519:187–192. doi:10.1038/nature14259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalisz M, Winzi M, Bisgaard HC, Serup P (2012) EVEN-SKIPPED HOMEOBOX 1 controls human ES cell differentiation by directly repressing GOOSECOID expression. Dev Biol 362:94–103. doi:10.1016/j.ydbio.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  • Katanaev V, Buestorf S (2009) Frizzled proteins are bona fide G protein-coupled receptors. Nature Precedings 1–19

    Google Scholar 

  • Kato M, Patel MS, Levasseur R et al (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157:303–314. doi:10.1083/jcb.200201089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara A, Wilm T, Solnica-Krezel L, Dawid IB (2000) Antagonistic role of vega1 and bozozok/dharma homeobox genes in organizer formation. Proc Natl Acad Sci U S A 97:12121–12126. doi:10.1073/pnas.97.22.12121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Keller R, Danilchik M (1988) Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103:193–209

    CAS  PubMed  Google Scholar 

  • Keller R, Davidson L, Edlund A et al (2000) Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond B Biol Sci 355:897–922. doi:10.1098/rstb.2000.0626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller R, Shook D (2004) Gastrulation in amphibians. In: Stern CD (ed) Gastrulation: from cells to embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 171–203

    Google Scholar 

  • Keller R, Tibbetts P (1989) Mediolateral cell intercalation in the dorsal, axial mesoderm of Xenopus laevis. Dev Biol 131:539–549

    Article  CAS  PubMed  Google Scholar 

  • Keller RE (1986) The cellular basis of amphibian gastrulation. Dev Biol (NY) 2:241–327

    Google Scholar 

  • Keller RE (1975) Vital dye mapping of the gastrula and neurula of Xenopus laevis: I. Prospective areas and morphogenetic movements of the superficial layer. Dev Biol 42(2):222–241

    Article  CAS  PubMed  Google Scholar 

  • Keller RE, Danilchik M, Gimlich R, Shih J (1985) The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J Embryol Exp Morphol 89(Suppl):185–209

    PubMed  Google Scholar 

  • Kelly C, Chin AJ, Leatherman JL et al (2000) Maternally controlled (beta)-catenin-mediated signaling is required for organizer formation in the zebrafish. Development 127:3899–3911

    CAS  PubMed  Google Scholar 

  • Kelly G, Greenstein P, Erezyilmaz D, Moon R (1995a) Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development 121:1787–1799

    CAS  PubMed  Google Scholar 

  • Kelly GM, Erezyilmaz DF, Moon RT (1995b) Induction of a secondary embryonic axis in zebrafish occurs following the overexpression of beta-catenin. Mech Dev 53:261–273

    Article  CAS  PubMed  Google Scholar 

  • Kelly OG, Pinson KI, Skarnes WC (2004) The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development 131:2803–2815. doi:10.1242/dev.01137

    Article  CAS  PubMed  Google Scholar 

  • Kelly SJ (1977) Studies of the developmental potential of 4- and 8-cell stage mouse blastomeres. J Exp Zool 200:365–376. doi:10.1002/jez.1402000307

    Article  CAS  PubMed  Google Scholar 

  • Kemler R, Hierholzer A, Kanzler B et al (2004) Stabilization of beta-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development 131:5817–5824. doi:10.1242/dev.01458

    Article  CAS  PubMed  Google Scholar 

  • Kemp C, Willems E, Abdo S et al (2005) Expression of all Wnt genes and their secreted antagonists during mouse blastocyst and postimplantation development. Dev Dyn 233:1064–1075. doi:10.1002/dvdy.20408

    Article  CAS  PubMed  Google Scholar 

  • Khokha M, Yeh J, Grammer T, Harland R (2005) Depletion of three BMP antagonists from Spemann’s organizer leads to a catastrophic loss of dorsal structures. Dev Cell 8:401–411

    Article  CAS  PubMed  Google Scholar 

  • Kibar Z, Torban E, McDearmid JR et al (2007) Mutations in VANGL1 associated with neural-tube defects. N Engl J Med 356:1432–1437. doi:10.1056/NEJMoa060651

    Article  CAS  PubMed  Google Scholar 

  • Kibar Z, Vogan KJ, Groulx N et al (2001) Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet 28:251–255. doi:10.1038/90081

    Article  CAS  PubMed  Google Scholar 

  • Kiecker C, Niehrs C (2001) A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128:4189–4201

    CAS  PubMed  Google Scholar 

  • Kikkawa M, Takano K, Shinagawa A (1996) Location and behavior of dorsal determinants during first cell cycle in Xenopus eggs. Development 122:3687–3696

    CAS  PubMed  Google Scholar 

  • Kilian B, Mansukoski H, Barbosa F et al (2003) The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech Dev 120:467–476

    Article  CAS  PubMed  Google Scholar 

  • Kim CH, Oda T, Itoh M et al (2000) Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature 407:913–916. doi:10.1038/35038097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim GH, Her JH, Han JK (2008) Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J Cell Biol 182:1073–1082. doi:10.1083/jcb.200710188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SE, Huang H, Zhao M et al (2013) Wnt stabilization of beta-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 340:867–870. doi:10.1126/science.1232389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimmel CB, Warga RM, Schilling TF (1990) Origin and organization of the zebrafish fate map. Development 108:581–594

    CAS  PubMed  Google Scholar 

  • Kimura C, Yoshinaga K, Tian E et al (2000) Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev Biol 225:304–321. doi:10.1006/dbio.2000.9835

    Article  CAS  PubMed  Google Scholar 

  • Kimura-Yoshida C, Nakano H, Okamura D et al (2005) Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm. Dev Cell 9:639–650. doi:10.1016/j.devcel.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  • Kinder SJ, Tsang TE, Wakamiya M et al (2001) The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. Development 128:3623–3634

    CAS  PubMed  Google Scholar 

  • Kinoshita N, Iioka H, Miyakoshi A, Ueno N (2003) PKC delta is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes Dev 17:1663–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschner M, Gerhart JC, Hara K, Ubbels GA (1980) Initiation of the cell cycle and establishment of bilateral symmetry in Xenopus eggs. Symp Soc Dev Biol 38:187–215

    Google Scholar 

  • Kishimoto Y, Lee KH, Zon L, Hammerschmidt M, Schulte-Merker S (1997) The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124:4457–4466

    CAS  PubMed  Google Scholar 

  • Klein SL, Moody SA (2015) Early neural ectodermal genes are activated by siamois and twin during blastula stages. Genesis 53:308–320. doi:10.1002/dvg.22854

    Article  CAS  PubMed  Google Scholar 

  • Kloc M (2009) Teachings from the egg: new and unexpected functions of RNAs. Mol Reprod Dev 76:922–932. doi:10.1002/mrd.21043

    Article  CAS  PubMed  Google Scholar 

  • Knoetgen H, Viebahn C, Kessel M (1999) Head induction in the chick by primitive endoderm of mammalian, but not avian origin. Development 126:815–825

    CAS  PubMed  Google Scholar 

  • Kochav S, Eyal-Giladi H (1971) Bilateral symmetry in chick embryo determination by gravity. Science 171:1027–1029

    Article  CAS  PubMed  Google Scholar 

  • Kofron M, Birsoy B, Houston D et al (2007) Wnt11/beta-catenin signaling in both oocytes and early embryos acts through LRP6-mediated regulation of axin. Development 134:503–513. doi:10.1242/dev.02739

    Article  CAS  PubMed  Google Scholar 

  • Kohn AD, Moon RT (2005) Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium 38:439–446. doi:10.1016/j.ceca.2005.06.022

    Article  CAS  PubMed  Google Scholar 

  • Koos DS, Ho RK (1999) The nieuwkoid/dharma homeobox gene is essential for bmp2b repression in the zebrafish pregastrula. Dev Biol 215(2):190–207

    Article  CAS  PubMed  Google Scholar 

  • Kozmik Z, Holland LZ, Schubert M et al (2001) Characterization of amphioxusamphivent, an evolutionarily conserved marker for chordate ventral mesoderm. Genesis 29:172–179. doi:10.1002/gene.1021

    Article  CAS  PubMed  Google Scholar 

  • Kraft B, Berger CD, Wallkamm V et al (2012) Wnt-11 and Fz7 reduce cell adhesion in convergent extension by sequestration of PAPC and C-cadherin. J Cell Biol 198:695–709. doi:10.1083/jcb.201110076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramps T, Peter O, Brunner E et al (2002) Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 109:47–60

    Article  CAS  PubMed  Google Scholar 

  • Krasnow R, Adler P (1994) A single frizzled protein has a dual function in tissue polarity. Development 120:1883–1893

    CAS  PubMed  Google Scholar 

  • Kreuger J, Perez L, Giraldez AJ, Cohen SM (2004) Opposing activities of Dally-like glypican at high and low levels of Wingless morphogen activity. Dev Cell 7:503–512. doi:10.1016/j.devcel.2004.08.005

    Article  CAS  PubMed  Google Scholar 

  • Ku M, Melton DA (1993) Xwnt-11: a maternally expressed Xenopus wnt gene. Development 119:1161–1173

    CAS  PubMed  Google Scholar 

  • Kuhl M, Sheldahl LC, Malbon CC, Moon RT (2000) Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem 275:12701–12711

    Article  CAS  PubMed  Google Scholar 

  • Kuroda H, Wessely O, De Robertis EM (2004) Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. PLoS Biol 2:E92. doi:10.1371/journal.pbio.0020092

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurth T, Hausen P (2000) Bottle cell formation in relation to mesodermal patterning in the Xenopus embryo. Mech Dev 97:117–131. doi:10.1016/S0925-4773(00)00428-7

    Article  CAS  PubMed  Google Scholar 

  • Kwon H-J, Bhat N, Sweet EM et al (2010) Identification of early requirements for preplacodal ectoderm and sensory organ development. PLoS Genet 6:e1001133. doi:10.1371/journal.pgen.1001133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ladher R, Mohun TJ, Smith JC, Snape AM (1996) Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. Development 122:2385–2394

    CAS  PubMed  Google Scholar 

  • Lamb TM, Knecht AK, Smith WC et al (1993) Neural induction by the secreted polypeptide noggin. Science 262:713–718

    Article  CAS  PubMed  Google Scholar 

  • Larabell C, Rowning B, Wells J et al (1996) Confocal microscopy analysis of living Xenopus eggs and the mechanism of cortical rotation. Development 122:1281–1289

    CAS  PubMed  Google Scholar 

  • Larsen WJ, Schoenwolf GC, Bleyl SB et al (2009) Larsen’s human embryology. Churchill Livingstone, Philadelphia, PA

    Google Scholar 

  • Lawrence P, Casal J, Struhl G (2002) Towards a model of the organisation of planar polarity and pattern in the Drosophila abdomen. Development 129:2749–2760

    CAS  PubMed  Google Scholar 

  • Lawson KA, Meneses JJ, Pedersen RA (1991) Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113:891–911

    CAS  PubMed  Google Scholar 

  • Lawson KA, Pedersen RA (1992) Clonal analysis of cell fate during gastrulation and early neurulation in the mouse. Ciba Found Symp 165:3–21, discussion 21–26

    CAS  PubMed  Google Scholar 

  • Lee E, Salic A, Kruger R et al (2003) The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 1:E10

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HX, Ambrosio AL, Reversade B, De Robertis EM (2006) Embryonic dorsal-ventral signaling: secreted frizzled-related proteins as inhibitors of tolloid proteinases. Cell 124:147–159. doi:10.1016/j.cell.2005.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MA, Heasman J, Whitman M (2001) Timing of endogenous activin-like signals and regional specification of the Xenopus embryo. Development 128:2939–2952

    CAS  PubMed  Google Scholar 

  • Lekven A, Thorpe C, Waxman J, Moon R (2001) Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev Cell 1:103–114

    Article  CAS  PubMed  Google Scholar 

  • Lele Z, Nowak M, Hammerschmidt M (2001) Zebrafish admp is required to restrict the size of the organizer and to promote posterior and ventral development. Dev Dyn 222:681–687. doi:10.1002/dvdy.1222

    Article  CAS  PubMed  Google Scholar 

  • Lemaire P, Garrett N, Gurdon JB (1995) Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81:85–94

    Article  CAS  PubMed  Google Scholar 

  • Leung T, Bischof J, Söll I et al (2003a) bozozok directly represses bmp2b transcription and mediates the earliest dorsoventral asymmetry of bmp2b expression in zebrafish. Development 130:3639–3649

    Article  CAS  PubMed  Google Scholar 

  • Leung T, Söll I, Arnold SJ et al (2003b) Direct binding of Lef1 to sites in the boz promoter may mediate pre-midblastula-transition activation of boz expression. Dev Dyn 228:424–432. doi:10.1002/dvdy.10408

    Article  CAS  PubMed  Google Scholar 

  • Lewis SL, Khoo P-L, Andrea De Young R et al (2007) Genetic interaction of Gsc and Dkk1 in head morphogenesis of the mouse. Mech Dev 124:157–165. doi:10.1016/j.mod.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  • Lewis SL, Khoo PL, De Young RA et al (2008) Dkk1 and Wnt3 interact to control head morphogenesis in the mouse. Development 135:1791–1801. doi:10.1242/dev.018853

    Article  CAS  PubMed  Google Scholar 

  • Leyns L, Bouwmeester T, Kim SH et al (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88:747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim S, Kumari P, Gilligan P et al (2012) Dorsal activity of maternal squint is mediated by a non-coding function of the RNA. Development 139:2903–2915. doi:10.1242/dev.077081

    Article  CAS  PubMed  Google Scholar 

  • Linker C, Stern CD (2004) Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists. Development 131:5671–5681. doi:10.1242/dev.01445

    Article  CAS  PubMed  Google Scholar 

  • Linnemannstöns K, Ripp C, Honemann-Capito M et al (2014) The PTK7-related transmembrane proteins off-track and off-track 2 are co-receptors for Drosophila Wnt2 required for male fertility. PLoS Genet 10:e1004443. doi:10.1371/journal.pgen.1004443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Little SC, Mullins MC (2006) Extracellular modulation of BMP activity in patterning the dorsoventral axis. Birth Defects Res C Embryo Today 78:224–242. doi:10.1002/bdrc.20079

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Kato Y, Zhang Z et al (1999a) beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci U S A 96:6273–6278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Li Y, Semenov M et al (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847

    Article  CAS  PubMed  Google Scholar 

  • Liu F, van den Broek O, Destrée O, Hoppler S (2005) Distinct roles for Xenopus Tcf/Lef genes in mediating specific responses to Wnt/beta-catenin signalling in mesoderm development. Development 132:5375–5385. doi:10.1242/dev.02152

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Bafico A, Harris VK, Aaronson SA (2003) A novel mechanism for Wnt activation of canonical signaling through the LRP6 receptor. Mol Cell Biol 23:5825–5835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Wakamiya M, Shea MJ et al (1999b) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22:361–365. doi:10.1038/11932

    Article  CAS  PubMed  Google Scholar 

  • Long WL (1983) The role of the yolk syncytial layer in determination of the plane of bilateral symmetry in the rainbow trout, Salmo gairdneri Richardson. J Exp Zool 228:91–97

    Article  Google Scholar 

  • Lu F-I, Thisse C, Thisse B (2011) Identification and mechanism of regulation of the zebrafish dorsal determinant. Proc Natl Acad Sci U S A 108:15876–15880. doi:10.1073/pnas.1106801108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Borchers AGM, Jolicoeur C et al (2004) PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 430:93–98. doi:10.1038/nature02677

    Article  CAS  PubMed  Google Scholar 

  • Lustig KD, Kroll KL, Sun EE, Kirschner MW (1996) Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation. Development 122:4001–4012

    CAS  PubMed  Google Scholar 

  • Luther WH (1935) Entwicklungsphysiologische Untersuchungen am Forellenkeim: die Rolle des Organisationszentrums bei der Entstehung der Embryonalanlage. Biol Zentralbl 55:114–137

    Google Scholar 

  • Lutz H (1949) Sur la production expérimentale de la polyembryone et de la monstruosité double chez les oiseaux. Arch Anat Microsc Morphol Exp 39:79–144

    Google Scholar 

  • Lyman Gingerich J, Westfall TA, Slusarski DC, Pelegri F (2005) hecate, a zebrafish maternal effect gene, affects dorsal organizer induction and intracellular calcium transient frequency. Dev Biol 286:427–439. doi:10.1016/j.ydbio.2005.07.031

    Article  CAS  PubMed  Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26. doi:10.1016/j.devcel.2009.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malacinski GM, Benford H, Chung HM (1975) Association of an ultraviolet irradiation sensitive cytoplasmic localization with the future dorsal side of the amphibian egg. J Exp Zool 191:97–110. doi:10.1002/jez.1401910110

    Article  CAS  PubMed  Google Scholar 

  • Manes ME, Elinson RP (1980) Ultraviolet light inhibits grey crescent formation on the frog egg. Wilhelm Roux's Arch Dev Biol 189:73–76

    Article  Google Scholar 

  • Manes ME, Elinson RP, Barbieri FD (1978) Formation of the amphibian grey crescent: effects of colchicine and cytochalasin B. Wilhelm Roux's Arch Dev Biol 185:99–104

    Article  CAS  Google Scholar 

  • Mao J, Wang J, Liu B et al (2001) Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell 7:801–809

    Article  CAS  PubMed  Google Scholar 

  • Marchal L, Luxardi G, Thomé V, Kodjabachian L (2009) BMP inhibition initiates neural induction via FGF signaling and Zic genes. Proc Natl Acad Sci U S A 106:17437–17442. doi:10.1073/pnas.0906352106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maretto S, Cordenonsi M, Dupont S et al (2003) Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci U S A 100:3299–3304. doi:10.1073/pnas.0434590100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marikawa Y, Elinson RP (1999) Relationship of vegetal cortical dorsal factors in the Xenopus egg with the Wnt/beta-catenin signaling pathway. Mech Dev 89:93–102

    Article  CAS  PubMed  Google Scholar 

  • Marikawa Y, Li Y, Elinson RP (1997) Dorsal determinants in the Xenopus egg are firmly associated with the vegetal cortex and behave like activators of the Wnt pathway. Dev Biol 191:69–79. doi:10.1006/dbio.1997.8710

    Article  CAS  PubMed  Google Scholar 

  • Marlow F, Topczewski J, Sepich D, Solnica-Krezel L (2002) Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr Biol 12:876–884

    Article  CAS  PubMed  Google Scholar 

  • Marrari Y, Clarke EJ, Rouvière C, Houliston E (2003) Analysis of microtubule movement on isolated Xenopus egg cortices provides evidence that the cortical rotation involves dynein as well as Kinesin Related Proteins and is regulated by local microtubule polymerisation. Dev Biol 257:55–70

    Article  CAS  PubMed  Google Scholar 

  • Marrari Y, Rouvière C, Houliston E (2004) Complementary roles for dynein and kinesins in the Xenopus egg cortical rotation. Dev Biol 271:38–48. doi:10.1016/j.ydbio.2004.03.018

    Article  CAS  PubMed  Google Scholar 

  • Marrari Y, Terasaki M, Arrowsmith V, Houliston E (2000) Local inhibition of cortical rotation in Xenopus eggs by an anti-KRP antibody. Dev Biol 224:250–262. doi:10.1006/dbio.2000.9773

    Article  CAS  PubMed  Google Scholar 

  • Martello G, Zacchigna L, Inui M et al (2007) MicroRNA control of Nodal signalling. Nature 449:183–188. doi:10.1038/nature06100

    Article  CAS  PubMed  Google Scholar 

  • Martindale MQ (2005) The evolution of metazoan axial properties. Nat Rev Genet 6:917–927. doi:10.1038/nrg1725

    Article  CAS  PubMed  Google Scholar 

  • Martinez Barbera JP, Clements M, Thomas P et al (2000) The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127:2433–2445

    CAS  PubMed  Google Scholar 

  • Martyn U, Schulte-Merker S (2003) The ventralized ogon mutant phenotype is caused by a mutation in the zebrafish homologue of Sizzled, a secreted Frizzled-related protein. Dev Biol 260:58–67

    Article  CAS  PubMed  Google Scholar 

  • Marvin MJ, Di Rocco G, Gardiner A et al (2001) Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15:316–327. doi:10.1101/gad.855501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maung S, Jenny A (2011) Planar cell polarity in Drosophila. Organogenesis 7(3):165–179

    Article  PubMed  PubMed Central  Google Scholar 

  • McCracken KW, Catá EM, Crawford CM et al (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516:400–404. doi:10.1038/nature13863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrew LL, Hoppler S, Moon RT (1997) Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech Dev 69:105–114

    Article  CAS  PubMed  Google Scholar 

  • McMahon AP, Moon RT (1989) Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58:1075–1084

    Article  CAS  PubMed  Google Scholar 

  • Mei W, Jin Z, Lai F et al (2013) Maternal Dead-End1 is required for vegetal cortical microtubule assembly during Xenopus axis specification. Development 140:2334–2344. doi:10.1242/dev.094748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinhardt H (2012) Turing’s theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition. Interface Focus 2:407–416. doi:10.1098/rsfs.2011.0097

    Article  PubMed  PubMed Central  Google Scholar 

  • Melby AE, Beach C, Mullins M, Kimelman D (2000) Patterning the early zebrafish by the opposing actions of bozozok and vox/vent. Dev Biol 224(2):275–285

    Article  CAS  PubMed  Google Scholar 

  • Melton DA (1987) Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature 328:80–82. doi:10.1038/328080a0

    Article  CAS  PubMed  Google Scholar 

  • Meneghini M, Ishitani T, Carter J et al (1999) MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature 399:793–797

    Article  CAS  PubMed  Google Scholar 

  • Merrill BJ, Pasolli HA, Polak L et al (2004) Tcf3: a transcriptional regulator of axis induction in the early embryo. Development 131:263–274. doi:10.1242/dev.00935

    Article  CAS  PubMed  Google Scholar 

  • Mesnard D, Guzman-Ayala M, Constam DB (2006) Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast before overt axial patterning. Development 133:2497–2505. doi:10.1242/dev.02413

    CAS  PubMed  Google Scholar 

  • Messenger NJ, Kabitschke C, Andrews R et al (2005) Functional specificity of the Xenopus T-domain protein Brachyury is conferred by its ability to interact with Smad1. Dev Cell 8:599–610. doi:10.1016/j.devcel.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe C, Bienz M (2011) Inhibition of GSK3 by Wnt signalling—two contrasting models. J Cell Sci 124:3537–3544. doi:10.1242/jcs.091991

    Article  CAS  PubMed  Google Scholar 

  • Mieszczanek J, de la Roche M, Bienz M (2008) A role of Pygopus as an anti-repressor in facilitating Wnt-dependent transcription. Proc Natl Acad Sci U S A 105:19324–19329. doi:10.1073/pnas.0806098105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4:e115. doi:10.1371/journal.pbio.0040115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller J, Rowning B, Larabell C et al (1999) Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J Cell Biol 146:427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mintz B (1964) Gene expression in the morula stage of mouse embryos, as observed during development of t12/t12 lethal mutants in vitro. J Exp Zool 157:267–272

    Article  CAS  PubMed  Google Scholar 

  • Mintzer KA, Lee MA, Runke G, Trout J, Whitman M, Mullins MC (2001) Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development 128:859–869

    CAS  PubMed  Google Scholar 

  • Miura S, Mishina Y (2007) The DVE changes distal epiblast fate from definitive endoderm to neurectoderm by antagonizing nodal signaling. Dev Dyn 236:1602–1610. doi:10.1002/dvdy.21166

    Article  PubMed  Google Scholar 

  • Mizuno T, Yamaha E, Kuroiwa A, Takeda H (1999) Removal of vegetal yolk causes dorsal deficencies and impairs dorsal-inducing ability of the yolk cell in zebrafish. Mech Dev 81:51–63

    Article  CAS  PubMed  Google Scholar 

  • Mohamed OA, Clarke HJ, Dufort D (2004) Beta-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo. Dev Dyn 231:416–424. doi:10.1002/dvdy.20135

    Article  CAS  PubMed  Google Scholar 

  • Molenaar M, van de Wetering M, Oosterwegel M et al (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399

    Article  CAS  PubMed  Google Scholar 

  • Montcouquiol M, Rachel RA, Lanford PJ et al (2003) Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423:173–177. doi:10.1038/nature01618

    Article  CAS  PubMed  Google Scholar 

  • Montero JA (2005) Shield formation at the onset of zebrafish gastrulation. Development 132:1187–1198. doi:10.1242/dev.01667

    Article  CAS  PubMed  Google Scholar 

  • Moon RT, Campbell RM, Christian JL et al (1993) Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development 119:97–111

    CAS  PubMed  Google Scholar 

  • Moos M, Wang S, Krinks M (1995) Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer. Development 121:4293–4301

    CAS  PubMed  Google Scholar 

  • Morgan TH, Boring AM (1903) The relation of the first plane of cleavage and the grey crescent to the median plane of the embryo of the frog. Wilhelm Roux' Arch Entwicklungsmech 16:680–690. doi:10.1007/BF02301271

    Article  Google Scholar 

  • Morgan TH, Tsuda U (1894) The orientation of the frog’s egg. Q J Microsc Sci 35:373–405

    Google Scholar 

  • Morkel M, Huelsken J, Wakamiya M et al (2003) Beta-catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development 130:6283–6294. doi:10.1242/dev.00859

    Article  CAS  PubMed  Google Scholar 

  • Morris SA, Grewal S, Barrios F et al (2012a) Dynamics of anterior-posterior axis formation in the developing mouse embryo. Nat Commun 3:673. doi:10.1038/ncomms1671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morris SA, Guo Y, Zernicka-Goetz M (2012b) Developmental plasticity is bound by pluripotency and the Fgf and Wnt signaling pathways. Cell Rep 2:756–765. doi:10.1016/j.celrep.2012.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris SA, Teo RTY, Li H et al (2010) Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci U S A 107:6364–6369. doi:10.1073/pnas.0915063107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C et al (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1:423–434

    Article  CAS  PubMed  Google Scholar 

  • Murdoch JN, Doudney K, Paternotte C et al (2001) Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum Mol Genet 10:2593–2601

    Article  CAS  PubMed  Google Scholar 

  • Myers DC, Sepich DS, Solnica-Krezel L (2002) Bmp activity gradient regulates convergent extension during zebrafish gastrulation. Dev Biol 243:81–98. doi:10.1006/dbio.2001.0523

    Article  CAS  PubMed  Google Scholar 

  • Na J, Lykke-Andersen K, Torres-Padilla M-E, Zernicka-Goetz M (2007) Dishevelled proteins regulate cell adhesion in mouse blastocyst and serve to monitor changes in Wnt signaling. Dev Biol 302:40–49. doi:10.1016/j.ydbio.2006.08.036

    Article  CAS  PubMed  Google Scholar 

  • Nagai, H., Sezaki, M., Kakiguchi, K., Nakaya, Y., Lee, H. C., Ladher, R., Sasanami, T., Han, J. Y., Yonemura, S. and Sheng, G. (2015) Cellular analysis of cleavage-stage chick embryos reveals hidden conservation in vertebrate early development. Development 142, 1279–1286.

    Google Scholar 

  • Nagel M, Winklbauer R (1999) Establishment of substratum polarity in the blastocoel roof of the Xenopus embryo. Development 126:1975–1984

    CAS  PubMed  Google Scholar 

  • Nakamura T, Mine N, Nakaguchi E et al (2006) Generation of robust left-right asymmetry in the mouse embryo requires a self-enhancement and lateral-inhibition system. Dev Cell 11:495–504. doi:10.1016/j.devcel.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Snyder MA, Grewal SS et al (1998) Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during vertebrate embryonic patterning. Development 125:857–867

    CAS  PubMed  Google Scholar 

  • Newport G (1851) On the impregnation of the Ovum in the Amphibia. (First Series). Philos Trans R Soc Lond B Biol Sci 141:169–242

    Article  Google Scholar 

  • Newport G (1854) Researches on the impregnation of the Ovum in the Amphibia; and on the early stages of development of the Embryo. (Third Series). Philos Trans R Soc Lond B Biol Sci 144:229–244

    Article  Google Scholar 

  • Nguyen VH, Schmid B, Trout J et al (1998) Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev Biol 199:93–110. doi:10.1006/dbio.1998.8927

    Article  CAS  PubMed  Google Scholar 

  • Niehrs C, Keller R, Cho KW, De Robertis EM (1993) The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 72:491–503

    Article  CAS  PubMed  Google Scholar 

  • Nieuwkoop P, Nigtevecht G (1954) Neural activation and transformation in explants of competent ectoderm under the influence of fragments of anterior notochord in Urodeles. J Embryol Exp Morphol 2:175–193

    Google Scholar 

  • Nieuwkoop PD (1999) The neural induction process; its morphogenetic aspects. Int J Dev Biol 43:615–623

    CAS  PubMed  Google Scholar 

  • Nieuwkoop PD (1952) Activation and organization of the central nervous system in amphibians. Part III. Synthesis of a new working hypothesis. J Exp Zool 120:83–108

    Article  Google Scholar 

  • Nieuwkoop PD (1967) The “organization centre”: II. Field phenomena, their origin and significance. Acta Biotheor 17:151–177

    Article  CAS  PubMed  Google Scholar 

  • Nieuwkoop PD, Florschütz PA (1950) Quelques caractères spéciaux de la gastrulation et de la neurulation de l’oeuf de Xenopus laevis, Daud, et de quelques autres Anoures. Arch Biol 61:113–150

    Google Scholar 

  • Nieuwkoop PD, Sutasurya LA (1979) Primordial germ cells in the chordates: embryogenesis and phylogenesis

    Google Scholar 

  • Nikaido M, Tada M, Saji T, Ueno N (1997) Conservation of BMP signaling in zebrafish mesoderm patterning. Mech Dev 61:75–88

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya H, Elinson RP, Winklbauer R (2004) Antero-posterior tissue polarity links mesoderm convergent extension to axial patterning. Nature 430:364–367. doi:10.1038/nature02620

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Honda H, Takeichi M (2012) Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149:1084–1097. doi:10.1016/j.cell.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  • Nojima H, Rothhamel S, Shimizu T et al (2010) Syntabulin, a motor protein linker, controls dorsal determination. Development 137:923–933. doi:10.1242/dev.046425

    Article  CAS  PubMed  Google Scholar 

  • Nojima H, Shimizu T, Kim C-H et al (2004) Genetic evidence for involvement of maternally derived Wnt canonical signaling in dorsal determination in zebrafish. Mech Dev 121:371–386. doi:10.1016/j.mod.2004.02.003

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom U, Jessell T, Edlund T (2002) Progressive induction of caudal neural character by graded Wnt signaling. Nat Neurosci 5:525–532

    Article  PubMed  Google Scholar 

  • Norris DP, Brennan J, Bikoff EK, Robertson EJ (2002) The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. Development 129:3455–3468

    CAS  PubMed  Google Scholar 

  • Nusse R, Varmus H (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109

    Article  CAS  PubMed  Google Scholar 

  • O'Farrell PH, Stumpff J, Su TT (2004) Embryonic cleavage cycles: how is a mouse like a fly? Curr Biol 14:R35–R45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oelgeschläger M, Kuroda H, Reversade B, De Robertis EM (2003) Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Dev Cell 4:219–230

    Article  PubMed  Google Scholar 

  • Ohkawara B, Yamamoto T, Tada M, Ueno N (2003) Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 130:2129–2138

    Article  CAS  PubMed  Google Scholar 

  • Olson DJ, Oh D, Houston DW (2015) The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation. Dev Biol 401:249–263. doi:10.1016/j.ydbio.2015.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onichtchouk D, Chen YG, Dosch R et al (1999) Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 401:480–485. doi:10.1038/46794

    Article  CAS  PubMed  Google Scholar 

  • Onichtchouk D, Gawantka V, Dosch R et al (1996) The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm. Development 122:3045–3053

    CAS  PubMed  Google Scholar 

  • Oppenheimer JM (1934a) Experimental studies on the developing perch (Perca flavescens Mitchill). Exp Biol Med 31:1123–1124. doi:10.3181/00379727-31-7465P

    Article  Google Scholar 

  • Oppenheimer JM (1934b) Experiments on early developing stages of fundulus. Proc Natl Acad Sci U S A 20:536–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osada SI, Saijoh Y, Frisch A et al (2000) Activin/nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. Development 127:2503–2514

    CAS  PubMed  Google Scholar 

  • Ozair MZ, Kintner C, Brivanlou AH (2012) Neural induction and early patterning in vertebrates. WIREs Dev Biol 2:479–498. doi:10.1002/wdev.90

    Article  CAS  Google Scholar 

  • Panáková D, Sprong H, Marois E et al (2005) Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435:58–65. doi:10.1038/nature03504

    Article  PubMed  CAS  Google Scholar 

  • Papanayotou C, Benhaddou A, Camus A et al (2014) A novel nodal enhancer dependent on pluripotency factors and smad2/3 signaling conditions a regulatory switch during epiblast maturation. PLoS Biol 12:e1001890. doi:10.1371/journal.pbio.1001890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papkoff J, Brown A, Varmus H (1987) The int-1 proto-oncogene products are glycoproteins that appear to enter the secretory pathway. Mol Cell Biol 7:3978–3984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parameswaran M, Tam P (1995) Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev Genet 17:16–28

    Article  CAS  PubMed  Google Scholar 

  • Parfitt D-E, Zernicka-Goetz M (2010) Epigenetic modification affecting expression of cell polarity and cell fate genes to regulate lineage specification in the early mouse embryo. Mol Biol Cell 21:2649–2660. doi:10.1091/mbc.E10-01-0053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker D, Jemison J, Cadigan K (2002) Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development 129:2565–2576

    CAS  PubMed  Google Scholar 

  • Pedersen RA, Wu K, Bałakier H (1986) Origin of the inner cell mass in mouse embryos: cell lineage analysis by microinjection. Dev Biol 117:581–595

    Article  CAS  PubMed  Google Scholar 

  • Pelegri F, Maischein HM (1998) Function of zebrafish beta-catenin and TCF-3 in dorsoventral patterning. Mech Dev 77:63–74

    Article  CAS  PubMed  Google Scholar 

  • Pera EM, Ikeda A, Eivers E, De Robertis EM (2003) Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 17:3023–3028. doi:10.1101/gad.1153603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peradziryi H, Kaplan NA, Podleschny M et al (2011) PTK7/Otk interacts with Wnts and inhibits canonical Wnt signalling. EMBO J 30:3729–3740. doi:10.1038/emboj.2011.236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perea-Gomez A, Lawson KA, Rhinn M et al (2001) Otx2 is required for visceral endoderm movement and for the restriction of posterior signals in the epiblast of the mouse embryo. Development 128:753–765

    CAS  PubMed  Google Scholar 

  • Perea-Gomez A, Vella FDJ, Shawlot W et al (2002) Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell 3:745–756

    Article  CAS  PubMed  Google Scholar 

  • Petersen CP, Reddien PW (2011) Polarized notum activation at wounds inhibits Wnt function to promote planarian head regeneration. Science 332:852–855. doi:10.1126/science.1202143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piao S, Lee S-H, Kim H et al (2008) Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRP6 in Wnt/beta-catenin signaling. PLoS One 3:e4046. doi:10.1371/journal.pone.0004046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piccolo S, Agius E, Leyns L et al (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397:707–710. doi:10.1038/17820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piepenburg O, Grimmer D, Williams PH, Smith JC (2004) Activin redux: specification of mesodermal pattern in Xenopus by graded concentrations of endogenous activin B. Development 131:4977–4986. doi:10.1242/dev.01323

    Article  CAS  PubMed  Google Scholar 

  • Pinho S, Simonsson PR, Trevers KE et al (2011) Distinct steps of neural induction revealed by Asterix, Obelix and TrkC, genes induced by different signals from the organizer. PLoS One 6:e19157. doi:10.1371/journal.pone.0019157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piotrowska-Nitsche K, Perea-Gomez A, Haraguchi S, Zernicka-Goetz M (2005) Four-cell stage mouse blastomeres have different developmental properties. Development 132:479–490. doi:10.1242/dev.01602

    Article  CAS  PubMed  Google Scholar 

  • Plachta N, Bollenbach T, Pease S, Fraser SE (2011) Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat Cell Biol 13:117–123

    Article  CAS  PubMed  Google Scholar 

  • Plouhinec J-L, Zakin L, Moriyama Y, De Robertis EM (2013) Chordin forms a self-organizing morphogen gradient in the extracellular space between ectoderm and mesoderm in the Xenopus embryo. Proc Natl Acad Sci U S A 110:20372–20379. doi:10.1073/pnas.1319745110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pukrop T, Gradl D, Henningfeld KA et al (2001) Identification of two regulatory elements within the high mobility group box transcription factor XTCF-4. J Biol Chem 276:8968–8978. doi:10.1074/jbc.M007533200

    Article  CAS  PubMed  Google Scholar 

  • Rankin SA, Kormish J, Kofron M et al (2011) A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. Dev Biol 351:297–310. doi:10.1016/j.ydbio.2010.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauch G, Hammerschmidt M, Blader P et al (1997) Wnt5 is required for tail formation in the zebrafish embryo. Cold Spring Harb Symp Quant Biol 62:227–234

    Article  CAS  PubMed  Google Scholar 

  • Rawat VPS, Arseni N, Ahmed F et al (2010) The vent-like homeobox gene VENTX promotes human myeloid differentiation and is highly expressed in acute myeloid leukemia. Proc Natl Acad Sci U S A 107:16946–16951. doi:10.1073/pnas.1001878107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebagliati MR, Toyama R, Haffter P, Dawid IB (1998) cyclops encodes a nodal-related factor involved in midline signaling. Proc Natl Acad Sci U S A 95:9932–9937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebagliati MR, Weeks DL, Harvey RP, Melton DA (1985) Identification and cloning of localized maternal RNAs from Xenopus eggs. Cell 42:769–777

    Article  CAS  PubMed  Google Scholar 

  • Reversade B, De Robertis EM (2005) Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123:1147–1160. doi:10.1016/j.cell.2005.08.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reversade B, Kuroda H, Lee H et al (2005) Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. Development 132:3381–3392. doi:10.1242/dev.01901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rex M, Hilton E, Old R (2002) Multiple interactions between maternally-activated signalling pathways control Xenopus nodal-related genes. Int J Dev Biol 46:217–226

    CAS  PubMed  Google Scholar 

  • Rhinn M, Dierich A, Shawlot W et al (1998) Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development 125:845–856

    CAS  PubMed  Google Scholar 

  • Rivera-Pérez JA, Mager J, Magnuson T (2003) Dynamic morphogenetic events characterize the mouse visceral endoderm. Dev Biol 261:470–487

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez TA (2005) Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm. Development 132:2513–2520. doi:10.1242/dev.01847

    Article  CAS  PubMed  Google Scholar 

  • Roël G, Hamilton FS, Gent Y et al (2002) Lef-1 and Tcf-3 transcription factors mediate tissue-specific Wnt signaling during Xenopus development. Curr Biol 12:1941–1945

    Article  PubMed  Google Scholar 

  • Roose J, Molenaar M, Peterson J et al (1998) The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395:608–612

    Article  CAS  PubMed  Google Scholar 

  • Rosenquist TA, Martin GR (1995) Visceral endoderm-1 (VE-1): an antigen marker that distinguishes anterior from posterior embryonic visceral endoderm in the early post-implantation mouse embryo. Mech Dev 49:117–121

    Article  CAS  PubMed  Google Scholar 

  • Rothbächer U, Laurent MN, Deardorff MA et al (2000) Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J 19:1010–1022. doi:10.1093/emboj/19.5.1010

    Article  PubMed  PubMed Central  Google Scholar 

  • Roux W (1888) Beiträge zur Entwickelungsmechanik des Embryo. V. Virchows Arch Pathol Anat 114:113–153

    Article  Google Scholar 

  • Roux W (1885) Ueber die bestimmung der hauptrichtungen des froschembryo im ei und über die erste theilung des froscheies. Zeitschrift 20:1–54

    Google Scholar 

  • Roux W (1887) Beiträge zur Entwickelungsmechanik des Embryo. Arch Mikrosk Anat 29:157–211

    Article  Google Scholar 

  • Roux W (1903) Über die Ursachen der Bestimmung der Hauptrichtungen des Embryo im Froschei. Anat Anz 23:65–183

    Google Scholar 

  • Rowning BA, Wells J, Wu M et al (1997) Microtubule-mediated transport of organelles and localization of beta-catenin to the future dorsal side of Xenopus eggs. Proc Natl Acad Sci U S A 94:1224–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rugh R (1951) The frog, its reproduction and development. The Blakiston Co., Philadelphia, PA

    Book  Google Scholar 

  • Ruiz i Altaba A, Choi T, Melton DA (1991) Expression of the Xhox3 homeobox protein in Xenopus embryos: blocking its early function suggests the requirement of Xhox3 for normal posterior development (axial pattern/central nervous system/embryonic mesoderm/homeobox gene/Xenopus laevis). Dev Growth Differ 33:651–669. doi:10.1111/j.1440-169X.1991.00651.x

    Article  CAS  Google Scholar 

  • Saint-Jeannet JP, Huang S, Duprat AM (1990) Modulation of neural commitment by changes in target cell contacts in Pleurodeles waltl. Dev Biol 141:93–103

    Article  CAS  PubMed  Google Scholar 

  • Sala M (1955) Distribution of activating and transforming influences in the archenteron roof during the induction of the nervous system in amphibians. PNAS 58:635–647

    Google Scholar 

  • Salic AN, Kroll KL, Evans LM, Kirschner MW (1997) Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos. Development 124:4739–4748

    CAS  PubMed  Google Scholar 

  • Sampath K, Rubinstein AL, Cheng AM et al (1998) Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395:185–189. doi:10.1038/26020

    Article  CAS  PubMed  Google Scholar 

  • Sander V, Reversade B, De Robertis EM (2007) The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. EMBO J 26:2955–2965. doi:10.1038/sj.emboj.7601705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saneyoshi T, Kume S, Amasaki Y, Mikoshiba K (2002) The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature 417:295–299. doi:10.1038/417295a

    Article  CAS  PubMed  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, De Robertis EM (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376:333–336. doi:10.1038/376333a0

    Article  CAS  PubMed  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H et al (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scerbo P, Girardot F, Vivien C et al (2012) Ventx factors function as nanog-like guardians of developmental potential in Xenopus. PLoS One 7:e36855. doi:10.1371/journal.pone.0036855.s008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scerbo P, Markov GV, Vivien C et al (2014) On the origin and evolutionary history of NANOG. PLoS One 9:e85104. doi:10.1371/journal.pone.0085104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schambony A, Wedlich D (2007) Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev Cell 12:779–792. doi:10.1016/j.devcel.2007.02.016

    Article  CAS  PubMed  Google Scholar 

  • Scharf SR, Gerhart JC (1983) Axis determination in eggs of Xenopus laevis: a critical period before first cleavage, identified by the common effects of cold, pressure and ultraviolet irradiation. Dev Biol 99:75–87

    Article  CAS  PubMed  Google Scholar 

  • Scharf SR, Gerhart JC (1980) Determination of the dorsal-ventral axis in eggs of Xenopus laevis: complete rescue of uv-impaired eggs by oblique orientation before first cleavage. Dev Biol 79:181–198

    Article  CAS  PubMed  Google Scholar 

  • Scharf SR, Rowning B, Wu M, Gerhart JC (1989) Hyperdorsoanterior embryos from Xenopus eggs treated with D2O. Dev Biol 134:175–188

    Article  CAS  PubMed  Google Scholar 

  • Schmid B, Fürthauer M, Connors SA et al (2000) Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 127:957–967

    CAS  PubMed  Google Scholar 

  • Schmidt JE, von Dassow G, Kimelman D (1996) Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. Development 122:1711–1721

    CAS  PubMed  Google Scholar 

  • Schneider S, Steinbeisser H, Warga RM, Hausen P (1996) Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57:191–198

    Article  CAS  PubMed  Google Scholar 

  • Schohl A, Fagotto F (2002) Beta-catenin, MAPK and Smad signaling during early Xenopus development. Development 129:37–52

    CAS  PubMed  Google Scholar 

  • Schroeder KE, Condic ML, Eisenberg LM, Yost HJ (1999) Spatially regulated translation in embryos: asymmetric expression of maternal Wnt-11 along the dorsal-ventral axis in Xenopus. Dev Biol 214:288–297. doi:10.1006/dbio.1999.9426

    Article  CAS  PubMed  Google Scholar 

  • Schroeder MM, Gard DL (1992) Organization and regulation of cortical microtubules during the first cell cycle of Xenopus eggs. Development 114:699–709

    CAS  PubMed  Google Scholar 

  • Schultze O (1899) Ueber das erste auftreten der bilateralen symmetrie im verlauf der entwicklung. Arch Mikrosk Anat 55:171–201

    Article  Google Scholar 

  • Seidel F (1956) Nachweis eines Zentrums zur Bildung der Keimscheibe im Säugetierei. Naturwissenschaften 43:306–307

    Article  Google Scholar 

  • Seleiro EA, Connolly DJ, Cooke J (1996) Early developmental expression and experimental axis determination by the chicken Vg1 gene. Curr Biol 6:1476–1486

    Article  CAS  PubMed  Google Scholar 

  • Seoane J, Lagna G, Montalvo E, Hemmati-Brivanlou A (2000) OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100(2):229–240

    Article  PubMed  Google Scholar 

  • Shah SB, Skromne I, Hume CR, Kessler DS, Lee KJ, Stern CD, Dodd J (1997) Misexpression of chick Vg1 in the marginal zone induces primitive streak formation. Development 124:5127–5138

    CAS  PubMed  Google Scholar 

  • Shawlot W, Wakamiya M, Kwan KM et al (1999) Lim1 is required in both primitive streak-derived tissues and visceral endoderm for head formation in the mouse. Development 126:4925–4932

    CAS  PubMed  Google Scholar 

  • Sheldahl L, Park M, Malbon C, Moon R (1999) Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol 9:695–698

    Article  CAS  PubMed  Google Scholar 

  • Sheldahl L, Slusarski D, Pandur P et al (2003) Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J Cell Biol 161:769–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng G, dos Reis M, Stern CD (2003) Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation. Cell 115:603–613

    Article  CAS  PubMed  Google Scholar 

  • Shih J, Keller R (1992a) The epithelium of the dorsal marginal zone of Xenopus has organizer properties. Development 116:887–899

    CAS  PubMed  Google Scholar 

  • Shih J, Keller R (1992b) Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis. Development 116:915–930

    CAS  PubMed  Google Scholar 

  • Shimizu K, Gurdon JB (1999) A quantitative analysis of signal transduction from activin receptor to nucleus and its relevance to morphogen gradient interpretation. Proc Natl Acad Sci U S A 96:6791–6796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinya M, Eschbach C, Clark M et al (2000) Zebrafish Dkk1, induced by the pre-MBT Wnt signaling, is secreted from the prechordal plate and patterns the anterior neural plate. Mech Dev 98:3–17

    Article  CAS  PubMed  Google Scholar 

  • Shook DR, Keller R (2008) Epithelial type, ingression, blastopore architecture and the evolution of chordate mesoderm morphogenesis. J Exp Zool B Mol Dev Evol 310:85–110. doi:10.1002/jez.b.21198

    Article  PubMed  Google Scholar 

  • Shook DR, Majer C, Keller R (2002) Urodeles remove mesoderm from the superficial layer by subduction through a bilateral primitive streak. Dev Biol 248:220–239. doi:10.1006/dbio.2002.0718

    Article  CAS  PubMed  Google Scholar 

  • Shy BR, Wu C-I, Khramtsova GF et al (2013) Regulation of Tcf7l1 DNA binding and protein stability as principal mechanisms of Wnt/β-catenin signaling. Cell Rep 4:1–9. doi:10.1016/j.celrep.2013.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sick S, Reinker S, Timmer J, Schlake T (2006) WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314:1447–1450. doi:10.1126/science.1130088

    Article  CAS  PubMed  Google Scholar 

  • Siegfried E, Chou T, Perrimon N (1992) wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 71:1167–1179

    Article  CAS  PubMed  Google Scholar 

  • Siegfried E, Wilder E, Perrimon N (1994) Components of wingless signalling in Drosophila. Nature 367:76–80

    Article  CAS  PubMed  Google Scholar 

  • Simeoni I, Gurdon JB (2007) Interpretation of BMP signaling in early Xenopus development. Dev Biol 308:82–92. doi:10.1016/j.ydbio.2007.05.010

    Article  CAS  PubMed  Google Scholar 

  • Sivak J, Petersen L, Amaya E (2005) FGF signal interpretation is directed by sprouty and spred proteins during mesoderm formation. Dev Cell 8:689–701. doi:10.1016/j.devcel.2005.02.011

    Article  CAS  PubMed  Google Scholar 

  • Skirkanich J, Luxardi G, Yang J et al (2011) An essential role for transcription before the MBT in Xenopus laevis. Dev Biol 357:478–491. doi:10.1016/j.ydbio.2011.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skromne I, Stern CD (2001) Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo. Development 128:2915–2927

    CAS  PubMed  Google Scholar 

  • Skromne I, Stern CD (2002) A hierarchy of gene expression accompanying induction of the primitive streak by Vg1 in the chick embryo. Mech Dev 114:115–118

    Article  CAS  PubMed  Google Scholar 

  • Slack JMW (1991) From egg to embryo: regional specification in early development. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Slusarski D, Yang-Snyder JA, Busa W, Moon R (1997a) Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev Biol 182:114–120

    Article  CAS  PubMed  Google Scholar 

  • Slusarski DC, Corces VG, Moon RT (1997b) Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390:410–413. doi:10.1038/37138

    Article  CAS  PubMed  Google Scholar 

  • Smith JC (1989) Mesoderm induction and mesoderm-inducing factors in early amphibian development. Development 105:665–677

    CAS  PubMed  Google Scholar 

  • Smith JC, Dale L, Slack JM (1985) Cell lineage labels and region-specific markers in the analysis of inductive interactions. J Embryol Exp Morphol 89(Suppl):317–331

    PubMed  Google Scholar 

  • Smith W, Harland R (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70:829–840

    Article  CAS  PubMed  Google Scholar 

  • Smith WC, Harland RM (1991) Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67:753–765

    Article  CAS  PubMed  Google Scholar 

  • Smith WC, McKendry R, Ribisi S, Harland RM (1995) A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82:37–46

    Article  CAS  PubMed  Google Scholar 

  • Snow M (1977) Gastrulation in the mouse: growth and regionalization of the epiblast. Development 42:293–303

    Google Scholar 

  • Sokol S (1996) Analysis of Dishevelled signalling pathways during Xenopus development. Curr Biol 6:1456–1467

    Article  CAS  PubMed  Google Scholar 

  • Sokol S, Christian JL, Moon RT, Melton DA (1991) Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell 67:741–752

    Article  CAS  PubMed  Google Scholar 

  • Solnica-Krezel L (2005) Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 15:R213–R228. doi:10.1016/j.cub.2005.03.016

    Article  CAS  PubMed  Google Scholar 

  • Solnica-Krezel L, Driever W (1994) Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development 120:2443–2455

    CAS  PubMed  Google Scholar 

  • Solnica-Krezel L, Sepich DS (2012) Gastrulation: making and shaping germ layers. Annu Rev Cell Dev Biol 28:687–717. doi:10.1146/annurev-cellbio-092910-154043

    Article  CAS  PubMed  Google Scholar 

  • Spemann H (1938) Embryo development and induction. Yale University Press, New Haven

    Google Scholar 

  • Spemann H (1931) Über den Anteil von Implantat und Wirtskeim an der Orientierung und Beschaffenheit der induzierten Embryonalanlage. Wilhelm Roux' Arch Entwicklungsmech 123:389–517. doi:10.1007/BF01380646

    Article  Google Scholar 

  • Spemann H (1918) Über die Determination der ersten Organanlagen des Amphibienembryo I–VI. Wilhelm Roux' Arch Entwicklungsmech 43:448–555. doi:10.1007/BF02267308

    Article  Google Scholar 

  • Spemann H (1921) Die Erzeugung tierischer Chimären durch heteroplastische embryonale Transplantation zwischen Triton cristatus und taeniatus. Wilhelm Roux' Arch Entwicklungsmech 48:533–570. doi:10.1007/BF02554578

    Article  Google Scholar 

  • Spemann H (1903) Entwickelungsphysiologische Studien am Triton-Ei. Wilhelm Roux' Arch Entwicklungsmech 16:551–631. doi:10.1007/BF02301267

    Article  Google Scholar 

  • Spemann H, Mangold (1924) Über Induktion von Embryonenanlagen durch Implantation artfremder Organisatoren. Wilhelm Roux' Arch EntwMech Org 100:599–638

    Google Scholar 

  • Spratt NT, Haas H (1960) Integrative mechanisms in development of the early chick blastoderm. I. Regulative potentiality of separated parts. J Exp Zool 145:97–137

    Article  Google Scholar 

  • Srinivas S, Rodriguez T, Clements M et al (2004) Active cell migration drives the unilateral movements of the anterior visceral endoderm. Development 131:1157–1164. doi:10.1242/dev.01005

    Article  CAS  PubMed  Google Scholar 

  • Standley HJ, Gurdon JB (2004) The community effect in Xenopus development. In: H. Grunz (Ed.) The vertebrate organizer. Springer, Berlin, Heidelberg, pp 73–91

    Google Scholar 

  • Stern CD (1990) The marginal zone and its contribution to the hypoblast and primitive streak of the chick embryo. Development 109:667–682

    CAS  PubMed  Google Scholar 

  • Stern CD (2004) Gastrulation in the chick. From Cells to Embryo, Gastrulation

    Google Scholar 

  • Stern CD (2006) Neural induction: 10 years on since the “default model”. Curr Opin Cell Biol 18:692–697. doi:10.1016/j.ceb.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  • Stern CD (2005) Neural induction: old problem, new findings, yet more questions. Development 132:2007–2021. doi:10.1242/dev.01794

    Article  CAS  PubMed  Google Scholar 

  • Stern CD, Downs KM (2012) The hypoblast (visceral endoderm): an evo-devo perspective. Development 139:1059–1069. doi:10.1242/dev.070730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strähle U, Jesuthasan S (1993) Ultraviolet irradiation impairs epiboly in zebrafish embryos: evidence for a microtubule-dependent mechanism of epiboly. Development 119:909–919

    PubMed  Google Scholar 

  • Streit A, Lee KJ, Woo I et al (1998) Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125:507–519

    CAS  PubMed  Google Scholar 

  • Streit A, Stern CD (1999) Establishment and maintenance of the border of the neural plate in the chick: involvement of FGF and BMP activity. Mech Dev 82:51–66

    Article  CAS  PubMed  Google Scholar 

  • Strutt D (2001) Asymmetric localization of frizzled and the establishment of cell polarity in the Drosophila wing. Mol Cell 7:367–375

    Article  CAS  PubMed  Google Scholar 

  • Stuckey DW, Clements M, Di-Gregorio A et al (2011) Coordination of cell proliferation and anterior-posterior axis establishment in the mouse embryo. Development 138:1521–1530. doi:10.1242/dev.063537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudou N, Yamamoto S, Ogino H, Taira M (2012) Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. Development 139:1651–1661. doi:10.1242/dev.068395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suriben R, Kivimäe S, Fisher DAC et al (2009) Posterior malformations in Dact1 mutant mice arise through misregulated Vangl2 at the primitive streak. Nat Genet 41:977–985. doi:10.1038/ng.435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Thies R, Yamaji N et al (1994) A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc Natl Acad Sci U S A 91:10255–10259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Ueno N, Hemmati-Brivanlou A (1997) Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development 124:3037–3044

    CAS  PubMed  Google Scholar 

  • Tabansky I, Lenarcic A, Draft RW et al (2013) Developmental bias in cleavage-stage mouse blastomeres. Curr Biol 23:21–31. doi:10.1016/j.cub.2012.10.054

    Article  CAS  PubMed  Google Scholar 

  • Tada M, Smith J (2000) Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127:2227–2238

    CAS  PubMed  Google Scholar 

  • Taelman VF, Dobrowolski R, Plouhinec J-L et al (2010) Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143:1136–1148. doi:10.1016/j.cell.2010.11.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahinci E, Symes K (2003) Distinct functions of Rho and Rac are required for convergent extension during Xenopus gastrulation. Dev Biol 259:318–335

    Article  CAS  PubMed  Google Scholar 

  • Taira M, Jamrich M, Good PJ, Dawid IB (1992) The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev 6:356–366

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Yokota C, Takano K et al (2000) Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127:5319–5329

    CAS  PubMed  Google Scholar 

  • Takaoka K, Hamada H (2012) Cell fate decisions and axis determination in the early mouse embryo. Development 139:3–14. doi:10.1242/dev.060095

    Article  CAS  PubMed  Google Scholar 

  • Takaoka K, Yamamoto M, Hamada H (2011) Origin and role of distal visceral endoderm, a group of cells that determines anterior-posterior polarity of the mouse embryo. Nat Cell Biol 13:743–752. doi:10.1038/ncb2251

    Article  CAS  PubMed  Google Scholar 

  • Takaoka K, Yamamoto M, Shiratori H et al (2006) The mouse embryo autonomously acquires anterior-posterior polarity at implantation. Dev Cell 10:451–459. doi:10.1016/j.devcel.2006.02.017

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Nakabayashi J, Sakaguchi T et al (2003) The Prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr Biol 13:674–679

    Article  CAS  PubMed  Google Scholar 

  • Tam PP, Loebel DA, Tanaka SS (2006) Building the mouse gastrula: signals, asymmetry and lineages. Curr Opin Genet Dev 16:419–425. doi:10.1016/j.gde.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  • Tam PP, Steiner KA (1999) Anterior patterning by synergistic activity of the early gastrula organizer and the anterior germ layer tissues of the mouse embryo. Development 126:5171–5179

    CAS  PubMed  Google Scholar 

  • Tamai K, Semenov M, Kato Y et al (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530–535

    Article  CAS  PubMed  Google Scholar 

  • Tamai K, Zeng X, Liu C et al (2004) A mechanism for Wnt coreceptor activation. Mol Cell 13:149–156

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Okabayashi K, Asashima M et al (2000) The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur J Biochem 267:4300–4311

    Article  CAS  PubMed  Google Scholar 

  • Tao Q, Yokota C, Puck H et al (2005) Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120:857–871. doi:10.1016/j.cell.2005.01.013

    Article  CAS  PubMed  Google Scholar 

  • Tarbashevich K, Koebernick K, Pieler T (2007) XGRIP2.1 is encoded by a vegetally localizing, maternal mRNA and functions in germ cell development and anteroposterior PGC positioning in Xenopus laevis. Dev Biol 311:554–565. doi:10.1016/j.ydbio.2007.09.012

    Article  CAS  PubMed  Google Scholar 

  • Tarkowski AK (1959) Experiments on the development of isolated blastomeres of mouse eggs. Nature 184:1286–1287. doi:10.1038/1841286a0

    Article  CAS  PubMed  Google Scholar 

  • Tarkowski AK (1961) Mouse chimaeras developed from fused eggs. Nature 190:857–860

    Article  CAS  PubMed  Google Scholar 

  • Tarkowski AK, Wróblewska J (1967) Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol 18:155–180

    CAS  PubMed  Google Scholar 

  • Terasaki M, Chen LB, Fujiwara K (1986) Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol 103:1557–1568

    Article  CAS  PubMed  Google Scholar 

  • Thisse B, Wright CV, Thisse C (2000) Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403:425–428. doi:10.1038/35000200

    Article  CAS  PubMed  Google Scholar 

  • Thomas P, Beddington R (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6:1487–1496

    Article  CAS  PubMed  Google Scholar 

  • Thomas PQ, Brown A, Beddington RS (1998) Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125:85–94

    CAS  PubMed  Google Scholar 

  • Tolwinski NS, Wehrli M, Rives A et al (2003) Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3beta activity. Dev Cell 4:407–418

    Article  CAS  PubMed  Google Scholar 

  • Topczewski J, Sepich DS, Myers DC et al (2001) The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev Cell 1:251–264

    Article  CAS  PubMed  Google Scholar 

  • Topol L, Jiang X, Choi H et al (2003) Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 162:899–908. doi:10.1083/jcb.200303158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torban E, Patenaude A-M, Leclerc S et al (2008) Genetic interaction between members of the Vangl family causes neural tube defects in mice. Proc Natl Acad Sci U S A 105:3449–3454. doi:10.1073/pnas.0712126105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torlopp A, Khan MAF, Oliveira NMM et al (2014) The transcription factor Pitx2 positions the embryonic axis and regulates twinning. eLife Sci 3:e03743. doi:10.7554/eLife.03743

    Google Scholar 

  • Torres MA, Yang-Snyder JA, Purcell SM et al (1996) Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J Cell Biol 133:1123–1137

    Article  CAS  PubMed  Google Scholar 

  • Torres-Padilla M-E, Parfitt D-E, Kouzarides T, Zernicka-Goetz M (2007a) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445:214–218. doi:10.1038/nature05458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres-Padilla M-E, Richardson L, Kolasinska P et al (2007b) The anterior visceral endoderm of the mouse embryo is established from both preimplantation precursor cells and by de novo gene expression after implantation. Dev Biol 309:97–112. doi:10.1016/j.ydbio.2007.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tortelote GG, Hernández-Hernández JM, Quaresma AJC et al (2013) Wnt3 function in the epiblast is required for the maintenance but not the initiation of gastrulation in mice. Dev Biol 374:164–173. doi:10.1016/j.ydbio.2012.10.013

    Article  CAS  PubMed  Google Scholar 

  • Tran LD, Hino H, Quach H et al (2012) Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish. Development 139:3644–3652. doi:10.1242/dev.082362

    Article  CAS  PubMed  Google Scholar 

  • Trindade M, Tada M, Smith JC (1999) DNA-binding specificity and embryological function of Xom (Xvent-2). Dev Biol 216:442–456. doi:10.1006/dbio.1999.9507

    Article  CAS  PubMed  Google Scholar 

  • Tropepe V, Hitoshi S, Sirard C et al (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30:65–78

    Article  CAS  PubMed  Google Scholar 

  • Tsunekawa N, Naito M, Sakai Y et al (2000) Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development 127:2741–2750

    CAS  PubMed  Google Scholar 

  • Tucker JA, Mintzer KA, Mullins MC (2008) The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev Cell 14:108. doi:10.1016/j.devcel.2007.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tung TC, Wu SC, Tung Y (1962) Experimental studies on neural induction in Amphioxus. Sci Sin 11:805

    Google Scholar 

  • Tzika A, Milinkovitch MC (2008) A pragmatic approach for selecting evo-devomodel species in amniotes. In: Minelli A, Fusco G (eds) Evolving pathways; key themes in evolutionary developmental biology. Cambridge University Press, Cambridge, pp 119–140

    Google Scholar 

  • Ulrich F, Concha M, Heid P et al (2003) Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development 130:5375–5384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallier L, Mendjan S, Brown S et al (2009) Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 136:1339–1349. doi:10.1242/dev.033951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Amerongen R, Fuerer C, Mizutani M, Nusse R (2012) Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Dev Biol 369:101–114. doi:10.1016/j.ydbio.2012.06.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Heuvel M, Harryman-Samos C, Klingensmith J et al (1993) Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J 12:5293–5302

    PubMed  PubMed Central  Google Scholar 

  • Varelas X, Miller BW, Sopko R et al (2010) The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell 18:579–591. doi:10.1016/j.devcel.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  • Vaughan RB, Trinkaus JP (1966) Movements of epithelial cell sheets in vitro. J Cell Sci 1:407–413

    CAS  PubMed  Google Scholar 

  • Veeman M, Axelrod JD, Moon R (2003a) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5:367–377

    Article  CAS  PubMed  Google Scholar 

  • Veeman MT, Slusarski DC, Kaykas A et al (2003b) Zebrafish Prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 13:680–685. doi:10.1016/S0960-9822(03)00240-9

    Article  CAS  PubMed  Google Scholar 

  • VerMilyea MD, Maneck M, Yoshida N et al (2011) Transcriptome asymmetry within mouse zygotes but not between early embryonic sister blastomeres. EMBO J 30:1841–1851. doi:10.1038/emboj.2011.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viebahn C (2001) Hensen’s node. Genesis 29:96–103

    Article  CAS  PubMed  Google Scholar 

  • Viebahn C, Mayer B, Hrabé de Angelis M (1995) Signs of the principle body axes prior to primitive streak formation in the rabbit embryo. Anat Embryol 192:159–169

    Article  CAS  PubMed  Google Scholar 

  • Vincent J, Oster G, Gerhart J (1986) Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface. Dev Biol 113:484–500

    Article  CAS  PubMed  Google Scholar 

  • Vincent JP, Gerhart JC (1987) Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev Biol 123:526–539

    Article  CAS  PubMed  Google Scholar 

  • Vincent SD, Dunn NR, Hayashi S et al (2003) Cell fate decisions within the mouse organizer are governed by graded Nodal signals. Genes Dev 17:1646–1662. doi:10.1101/gad.1100503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinson CR, Adler PN (1987) Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 329:549–551. doi:10.1038/329549a0

    Article  CAS  PubMed  Google Scholar 

  • Vintemberger P, Clavert J (1959) On the determinism of bilateral symmetry in birds: XI. The moment of embryonic axis determination, according to the results of our experiences in rotation of the chicken egg in the uterus. C R Seances Soc Biol Fil 153:661–665

    CAS  PubMed  Google Scholar 

  • Vogt W (1929) Gestaltungsanalyse am Amphibienkeim mit Örtlicher Vitalfärbung. Wilhelm Roux' Arch Entwicklungsmech 120:384–706. doi:10.1007/BF02109667

    Article  Google Scholar 

  • Voiculescu O, Bertocchini F, Wolpert L et al (2007) The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449:1049–1052. doi:10.1038/nature06211

    Article  CAS  PubMed  Google Scholar 

  • Voiculescu O, Bodenstein L, Lau I-J, Stern CD (2014) Local cell interactions and self-amplifying individual cell ingression drive amniote gastrulation. eLife Sci 3:e01817

    Google Scholar 

  • Wacker S, Grimm K, Joos T, Winklbauer R (2000) Development and control of tissue separation at gastrulation in Xenopus. Dev Biol 224:428–439. doi:10.1006/dbio.2000.9794

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1940) Organisers and genes. Cambridge University Press, Cambridge UK

    Google Scholar 

  • Waddington CH (1956) Principles of embryology. The Macmillian Company, New York

    Google Scholar 

  • Waddington CH (1930) Developmental mechanics of chicken and duck embryos. Nature 125:924–925. doi:10.1038/125924b0

    Article  Google Scholar 

  • Waddington CH (1934) Experiments on Embryonic induction. III. A note on inductions by chick primitive streak transplanted to the rabbit Embryo. J Exp Biol 11:224–227

    Google Scholar 

  • Waddington CH (1936) Organizers in mammalian development: Abstract. Nature

    Google Scholar 

  • Waddington CH (1937) Experiments on determination in the rabbit embryo. Arch Biol 48:273–290

    Google Scholar 

  • Waddington CH (1933) Induction by the endoderm in birds. Wilhelm Roux' Arch Entwicklungsmech 128:502–521. doi:10.1007/BF00649862

    Article  Google Scholar 

  • Waldrip WR, Bikoff EK, Hoodless PA et al (1998) Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 92:797–808

    Article  CAS  PubMed  Google Scholar 

  • Wallingford JB, Goto T, Keller R, Harland RM (2002) Cloning and expression of Xenopus Prickle, an orthologue of a Drosophila planar cell polarity gene. Mech Dev 116:183–186

    Article  CAS  PubMed  Google Scholar 

  • Wallingford JB, Rowning BA, Vogeli KM et al (2000) Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405:81–85. doi:10.1038/35011077

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hamblet NS, Mark S et al (2006) Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 133:1767–1778. doi:10.1242/dev.02347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Krinks M, Lin K et al (1997) Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88:757–766

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Nathans J (2007) Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134:647–658. doi:10.1242/dev.02772

    Article  CAS  PubMed  Google Scholar 

  • Wawersik S, Evola C, Whitman M (2005) Conditional BMP inhibition in Xenopus reveals stage-specific roles for BMPs in neural and neural crest induction. Dev Biol 277:425–442. doi:10.1016/j.ydbio.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  • Weaver C, Farr GH, Pan W et al (2003) GBP binds kinesin light chain and translocates during cortical rotation in Xenopus eggs. Development 130:5425–5436. doi:10.1242/dev.00737

    Article  CAS  PubMed  Google Scholar 

  • Weaver C, Kimelman D (2004) Move it or lose it: axis specification in Xenopus. Development 131:3491–3499. doi:10.1242/dev.01284

    Article  CAS  PubMed  Google Scholar 

  • Weber RJ, Pedersen RA, Wianny F et al (1999) Polarity of the mouse embryo is anticipated before implantation. Development 126:5591–5598

    CAS  PubMed  Google Scholar 

  • Weber GF, Bjerke MA, DeSimone DW (2012) A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell 22:104–115. doi:10.1016/j.devcel.2011.10.013

    Article  CAS  PubMed  Google Scholar 

  • Weeks DL, Melton DA (1987) A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-beta. Cell 51:861–867

    Article  CAS  PubMed  Google Scholar 

  • Weidinger G, Stebler J, Slanchev K et al (2003) dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol 13:1429–1434

    Article  CAS  PubMed  Google Scholar 

  • Weise A, Bruser K, Elfert S et al (2010) Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/beta-catenin targets. Nucleic Acids Res 38:1964–1981. doi:10.1093/nar/gkp1197

    Article  CAS  PubMed  Google Scholar 

  • Weiss PA (1926) Morphodynamik: Ein Einblick in die Gesetzte der organischen Gestaltung an Hand von experimentellen Ergebnissen. In: Schaxel J (ed) Abhandlungen zur theoretischen Biologie, vol 23. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Wessely O, Agius E, Oelgeschlager M et al (2001) Neural induction in the absence of mesoderm: beta-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Dev Biol 234:161–173. doi:10.1006/dbio.2001.0258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westfall T, Brimeyer R, Twedt J et al (2003) Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/beta-catenin activity. J Cell Biol 162:889–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wetzel R (1929) Untersuchungen am Hühnchen. Die Entwicklung des Keims Während der Ersten Beiden Bruttage. In: Untersuchungen am Hühnchen. Springer, Berlin, Heidelberg, pp 188–321

    Google Scholar 

  • Willert K, Brown J, Danenberg E et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452

    Article  CAS  PubMed  Google Scholar 

  • Williams M, Burdsal C, Periasamy A et al (2011) Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn 241:270–283. doi:10.1002/dvdy.23711

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams M, Yen W, Lu X, Sutherland A (2014) Distinct apical and basolateral mechanisms drive planar cell polarity-dependent convergent extension of the mouse neural plate. Dev Cell 29:34–46. doi:10.1016/j.devcel.2014.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wills AE, Choi VM, Bennett MJ et al (2010) BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus. Dev Biol 337:335–350. doi:10.1016/j.ydbio.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  • Wilson E (1928) The cell in development and heredity, 3rd edn. The Macmillian Company, New York

    Google Scholar 

  • Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376:331–333. doi:10.1038/376331a0

    Article  CAS  PubMed  Google Scholar 

  • Wilson SI, Rydstrom A, Trimborn T et al (2001) The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411:325–330. doi:10.1038/35077115

    Article  CAS  PubMed  Google Scholar 

  • Wilson V, Olivera-Martinez I, Storey KG (2009) Stem cells, signals and vertebrate body axis extension. Development 136:1591–1604. doi:10.1242/dev.021246

    Article  CAS  PubMed  Google Scholar 

  • Winklbauer R, Nagel M (1991) Directional mesoderm cell migration in the Xenopus gastrula. Dev Biol 148:573–589

    Article  CAS  PubMed  Google Scholar 

  • Winklbauer R, Selchow A, Nagel M, Angres B (1992) Cell interaction and its role in mesoderm cell migration during Xenopus gastrulation. Dev Dyn 195:290–302

    Article  CAS  PubMed  Google Scholar 

  • Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–2116

    Article  CAS  PubMed  Google Scholar 

  • Witschi E (1956) Proposals for an international agreement on normal stages in vertebrate embryology. In: XIV international congress of zoology, Copenhagen, pp 260–262

    Google Scholar 

  • Wolda SL, Moody CJ, Moon RT (1993) Overlapping expression of Xwnt-3A and Xwnt-1 in neural tissue of Xenopus laevis embryos. Dev Biol 155:46–57. doi:10.1006/dbio.1993.1005

    Article  CAS  PubMed  Google Scholar 

  • Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47

    Article  CAS  PubMed  Google Scholar 

  • Wolpert L (1971) Positional information and pattern formation. Curr Top Dev Biol 6:183–224

    Article  CAS  PubMed  Google Scholar 

  • Wöhrle S, Wallmen B, Hecht A (2007) Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors. Mol Cell Biol 27:8164–8177. doi:10.1128/MCB.00555-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu C-I, Hoffman JA, Shy BR et al (2012a) Function of Wnt/β-catenin in counteracting Tcf3 repression through the Tcf3-β-catenin interaction. Development 139:2118–2129. doi:10.1242/dev.076067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Huang H, Garcia Abreu J, He X (2009) Inhibition of GSK3 phosphorylation of beta-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS One 4:e4926. doi:10.1371/journal.pone.0004926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu S-Y, Shin J, Sepich DS, Solnica-Krezel L (2012b) Chemokine GPCR signaling inhibits β-catenin during zebrafish axis formation. PLoS Biol 10:e1001403. doi:10.1371/journal.pbio.1001403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wylie CC, Kofron M, Payne C et al (1996) Maternal beta-catenin establishes a “dorsal signal” in early Xenopus embryos. Development 122:2987–2996

    CAS  PubMed  Google Scholar 

  • Wynn ML, Kulesa PM, Schnell S (2012) Computational modelling of cell chain migration reveals mechanisms that sustain follow-the-leader behaviour. J R Soc Interface 9:1576–1588. doi:10.1002/dvdy.22612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xanthos JB, Kofron M, Tao Q et al (2002) The roles of three signaling pathways in the formation and function of the Spemann Organizer. Development 129:4027–4043

    CAS  PubMed  Google Scholar 

  • Xu PF, Houssin N, Ferri-Lagneau KF et al (2014) Construction of a vertebrate embryo from two opposing morphogen gradients. Science 344:87–89. doi:10.1126/science.1248252

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Zheng X, Huang L, et al. (2014) Organizer-derived Bmp2 is required for the formation of a correct Bmp activity gradient during embryonic development. Nat Commun. doi:10.1038/ncomms4766

    Google Scholar 

  • Yabe T, Shimizu T, Muraoka O, Bae YK, Hirata T, Nojima H, Kawakami A, Hirano T, Hibi M (2003) Ogon/secreted frizzled functions as a negative feedback regulator of Bmp signaling. Development 130:2705–2716

    Article  CAS  PubMed  Google Scholar 

  • Yamada T (1938) Induktion der sekundaren Embryonalanlage im Neunaugenkeim. Okajimas Folia Anatomica Japonica

    Google Scholar 

  • Yamaguchi N, Mizutani T, Kawabata K, Haga H (2015) Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K. Sci Rep 5:7656. doi:10.1038/srep07656

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Nagano T, Takehara S et al (2005) Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. Cell 120:223–235. doi:10.1016/j.cell.2004.11.051

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H (1999) Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem 274:10681–10684. doi:10.1074/jbc.274.16.10681

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Beppu H, Takaoka K et al (2009) Antagonism between Smad1 and Smad2 signaling determines the site of distal visceral endoderm formation in the mouse embryo. J Cell Biol 184:323–334. doi:10.1038/361543a0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Meno C, Sakai Y et al (2001) The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior-posterior patterning and node formation in the mouse. Genes Dev 15:1242–1256. doi:10.1101/gad.883901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Saijoh Y, Perea-Gomez A et al (2004) Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428:387–392. doi:10.1038/nature02418

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Tan C, Darken RS et al (2002) Beta-catenin/Tcf-regulated transcription prior to the midblastula transition. Development 129:5743–5752

    Article  CAS  PubMed  Google Scholar 

  • Yao L-C, Blitz IL, Peiffer DA et al (2006) Schnurri transcription factors from Drosophila and vertebrates can mediate Bmp signaling through a phylogenetically conserved mechanism. Development 133:4025–4034. doi:10.1242/dev.02561

    Article  CAS  PubMed  Google Scholar 

  • Ybot-Gonzalez P, Savery D, Gerrelli D et al (2007) Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134:789–799. doi:10.1242/dev.000380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen WW, Williams M, Periasamy A et al (2009) PTK7 is essential for polarized cell motility and convergent extension during mouse gastrulation. Development 136:2039–2048. doi:10.1242/dev.030601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo C, Whitman M (2001) Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol Cell 7:949–957

    Article  CAS  PubMed  Google Scholar 

  • Yi F, Pereira L, Hoffman JA et al (2011) Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nat Cell Biol 13:762–770. doi:10.1038/ncb2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi F, Pereira L, Merrill BJ (2008) Tcf3 functions as a steady-state limiter of transcriptional programs of mouse embryonic stem cell self-renewal. Stem Cells 26:1951–1960. doi:10.1634/stemcells.2008-0229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin C, Kiskowski M, Pouille PA et al (2008) Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation. J Cell Biol 180:221–232. doi:10.1016/S1534-5807(04)00060-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota C, Kofron M, Zuck M et al (2003) A novel role for a nodal-related protein; Xnr3 regulates convergent extension movements via the FGF receptor. Development 130:2199–2212

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa S, McKinnon R, Kokel M, Thomas J (2003) Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422:583–588

    Article  CAS  PubMed  Google Scholar 

  • Yu J-K, Satou Y, Holland ND et al (2007) Axial patterning in cephalochordates and the evolution of the organizer. Nature 445:613–617. doi:10.1038/nature05472

    Article  CAS  PubMed  Google Scholar 

  • Yuge M, Kobayakawa Y, Fujisue M, Yamana K (1990) A cytoplasmic determinant for dorsal axis formation in an early embryo of Xenopus laevis. Development 110:1051–1056

    CAS  PubMed  Google Scholar 

  • Zecca M, Basler K, Struhl G (1996) Direct and long-range action of a wingless morphogen gradient. Cell 87:833–844

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Huang H, Tamai K et al (2008) Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 135:367–375. doi:10.1242/dev.013540

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Tamai K, Doble B et al (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438:873–877. doi:10.1038/nature04185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zernicka-Goetz M (1998) Fertile offspring derived from mammalian eggs lacking either animal or vegetal poles. Development 125:4803–4808

    CAS  PubMed  Google Scholar 

  • Zernicka-Goetz M (2013) Development: do mouse embryos play dice? Curr Biol 23:R15–R17. doi:10.1016/j.cub.2012.10.032

    Article  CAS  PubMed  Google Scholar 

  • Zernicka-Goetz M, Morris SA, Bruce AW (2009) Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 10:467–477. doi:10.1038/nrg2564

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Houston DW, King ML et al (1998) The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94:515–524

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Holland ND, Holland LZ (1997) Topographic changes in nascent and early mesoderm in amphioxus embryos studied by DiI labeling and by in situ hybridization for a Brachyury gene. Dev Genes Evol 206:532. doi:10.1007/s004270050083

    Article  PubMed  Google Scholar 

  • Zhang X, Abreu JG, Yokota C et al (2012) Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation. Cell 149:1565–1577. doi:10.1016/j.cell.2012.04.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Cheong S-M, Amado NG et al (2015) Notum is required for neural and head induction via wnt deacylation, oxidation, and inactivation. Dev Cell 32:719–730. doi:10.1016/j.devcel.2015.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman LB, De Jesus-Escobar J, Harland R (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606

    Article  CAS  PubMed  Google Scholar 

  • Ziomek CA, Johnson MH (1980) Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell 21:935–942

    Article  CAS  PubMed  Google Scholar 

  • Zisckind N, Elinson R (1990) Gravity and microtubules in dorsoventral polarization of the Xenopus egg. Dev Growth Differ 32:575–581

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank B. Fritzsch for assistance with German translations. This work was supported by the University of Iowa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas W. Houston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Houston, D.W. (2017). Vertebrate Axial Patterning: From Egg to Asymmetry. In: Pelegri, F., Danilchik, M., Sutherland, A. (eds) Vertebrate Development. Advances in Experimental Medicine and Biology, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-319-46095-6_6

Download citation

Publish with us

Policies and ethics