Skip to main content

Bacteriophages Functionalized for Gene Delivery and the Targeting of Gene Networks

  • Chapter
  • First Online:
Bacteriophage Applications - Historical Perspective and Future Potential

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

  • 1125 Accesses

Abstract

Bacteriophages (phages) offer many potential and existing applications to biotechnology, including their modification and use as protein/gene carriers. Phages possess many intrinsic physicochemical attributes that make them excellent candidates for use in gene therapy. In this chapter we will explore how phages have been employed in gene delivery as well as their future utility in this exciting medical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon, S. T. (2009). Kinetics of phage-mediated biocontrol of bacteria. Foodborne Pathogens and Disease, 6(7), 807–815.

    Article  Google Scholar 

  • Abedon, S. T., Kuhl, S. J., Blasdel, B. G., & Kutter, E. M. (2011). Phage treatment of human infections. Bacteriophage, 1(2), 66–85.

    Article  Google Scholar 

  • Ahmadvand, D., Rahbarizadeh, F., & Moghimi, S. M. (2011). Biological targeting and innovative therapeutic interventions with phage-displayed peptides and structured nucleic acids (aptamers). Current Opinion in Biotechnology, 22(6), 832–838.

    Article  CAS  Google Scholar 

  • Bakhshinejad, B., Karimi, M., & Sadeghizadeh, M. (2014). Bacteriophages and medical oncology: Targeted gene therapy of cancer. Medical Oncology (Northwood, London, England), 31(8), 110.

    Google Scholar 

  • Bar, H., Yacoby, I., & Benhar, I. (2008). Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnology, 8, 37.

    Article  Google Scholar 

  • Carrera, M. R. A., Kaufmann, G. F., Mee, J. M., Meijler, M. M., Koob, G. F., Janda, K. D. (2004). Treating cocaine addiction with viruses. Proceedings of the National Academy of Sciences of the United States of America, 101(28), 10416–10421. doi: 10.1073/pnas.0403795101

    Google Scholar 

  • Choi, D. S., Jin, H., Yoo, S. Y., & Lee, S. (2014). Cyclic RGD peptide incorporation on phage major coat proteins for improved internalization by HeLa Cells. Bioconjugate Chemistry, 25(2), 216–223.

    Article  CAS  Google Scholar 

  • Chung, Y.-S. A., Sabel, K., Krönke, M., & Klimka, A. (2008). Gene transfer of Hodgkin cell lines via multivalent anti-CD30 scFv displaying bacteriophage. BMC Molecular Biology, 9(1), 37.

    Article  Google Scholar 

  • Clark, J. R., Abedon, S. T., & Hyman, P. (2012). Phages as therapeutic delivery vechicles. In Bacteriophages in health and disease (pp. 86–95). American Society for Microbiology.

    Google Scholar 

  • Clark, J. R., Bartley, K., Jepson, C. D., Craik, V., & March, J. B. (2011). Comparison of a bacteriophage-delivered DNA vaccine and a commercially available recombinant protein vaccine against hepatitis B. FEMS Immunology and Medical Microbiology, 61(2), 197–204.

    Article  CAS  Google Scholar 

  • Clark, J. R., & March, J. B. (2006). Bacteriophages and biotechnology: Vaccines, gene therapy and antibacterials. Trends in Biotechnology, 24(5), 212–218.

    Article  CAS  Google Scholar 

  • Dabrowska, K., SwitaÅ‚a-Jelen, K., Opolski, A., Weber-Dabrowska, B., & Gorski, A. (2005). Bacteriophage penetration in vertebrates. Journal of Applied Microbiology, 98(1), 7–13.

    Article  CAS  Google Scholar 

  • Davidson, B. L., & Breakefield, X. O. (2003). Neurological diseases: Viral vectors for gene delivery to the nervous system. Nature Reviews Neuroscience, 4(5), 353–364.

    Article  CAS  Google Scholar 

  • Dickerson, T. J., Kaufmann, G. F., & Janda, K. D. (2005). Bacteriophage-mediated protein delivery into the central nervous system and its application in immunopharmacotherapy. Peptides, Proteins and Antisense, 5(6), 773–781.

    CAS  Google Scholar 

  • Dor-On, E., & Solomon, B. (2015). Targeting glioblastoma via intranasal administration of Ff bacteriophages. Frontiers in Microbiology, 6, 530.

    Article  Google Scholar 

  • Dunn, I. S. (1996). Mammalian cell binding and transfection mediated by surface-modified bacteriophage lambda. Biochimie, 137(1838), 37.

    Google Scholar 

  • Eguchi, A., Akuta, T., Okuyama, H., Senda, T., Yokoi, H., Inokuchi, H., … Nakanishi, M. (2001). Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. The Journal of Biological Chemistry, 276(28), 26204–26210.

    Google Scholar 

  • Eriksson, F., Culp, W. D., Massey, R., Egevad, L., Garland, D., Persson, M. A. A., et al. (2007). Tumor specific phage particles promote tumor regression in a mouse melanoma model. Cancer Immunology, Immunotherapy: CII, 56(5), 677–687.

    Article  Google Scholar 

  • Eriksson, F., Tsagozis, P., Lundberg, K., Parsa, R., Mangsbo, S. M., Persson, M. A. A., … Pisa, P. (2009). Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. Journal of Immunology (Baltimore, Md. : 1950), 182(5), 3105–3111.

    Google Scholar 

  • Frenkel, D., & Solomon, B. (2002). Filamentous phage as vector-mediated antibody delivery to the brain. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 5675–5679.

    Article  CAS  Google Scholar 

  • Gamage, L. N. A., Ellis, J., & Hayes, S. (2009). Immunogenicity of bacteriophage lambda particles displaying porcine Circovirus 2 (PCV2) capsid protein epitopes. Vaccine, 27(47), 6595–6604.

    Article  CAS  Google Scholar 

  • Haq, I. U., Chaudhry, W. N., Akhtar, M. N., Andleeb, S., & Qadri, I. (2012). Bacteriophages and their implications on future biotechnology: A review. Virology Journal, 9(1), 9.

    Article  Google Scholar 

  • Hart, S. L., Knight, a M., Harbottle, R. P., Mistry, A., Hunger, H. D., Cutler, D. F., … Coutelle, C. (1994). Cell binding and internalization by filamentous phage displaying a cyclic Arg-Gly-Asp-containing peptide. The Journal of Biological Chemistry, 269(17), 12468–12474.

    Google Scholar 

  • Hampl, J. A., Brown, A. B., Rainov, N. G., & Breakefield, X. O. (2000). Methods for gene delivery to neural tissue. In H. R. Chin & S. O. Moldin (Eds.), Methods in genomic neuroscience (pp. 229–266). Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Jepson, C. D., & March, J. B. (2004). Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle. Vaccine, 22(19), 2413–2419.

    Article  CAS  Google Scholar 

  • Kim, K.-P., Cha, J.-D., Jang, E.-H., Klumpp, J., Hagens, S., Hardt, W.-D., … Loessner, M. J. (2008). PEGylation of bacteriophages increases blood circulation time and reduces T-helper type 1 immune response. Microbial Biotechnology, 1(3), 247–257.

    Google Scholar 

  • Lam, A. P., & Dean, D. A. (2010). Progress and prospects: Nuclear import of nonviral vectors. Gene Therapy, 17(4), 439–447.

    Article  CAS  Google Scholar 

  • Lankes, H. A., Zanghi, C. N., Santos, K., Capella, C., Duke, C. M. P., & Dewhurst, S. (2007). In vivo gene delivery and expression by bacteriophage lambda vectors. Journal of Applied Microbiology, 102(5), 1337–1349.

    Article  CAS  Google Scholar 

  • Larocca, D., & Baird, A. (2001). Receptor-mediated gene transfer by phage-display vectors: Applications in functional genomics and gene therapy. Drug Discovery Today, 6(15), 793–801.

    Article  CAS  Google Scholar 

  • Larocca, D., Kassner, P. D., Witte, A., Ladner, R. C., Pierce, G. F., & Baird, A. (1999). Gene transfer to mammalian cells using genetically targeted filamentous bacteriophage. The FASEB Journal, 13, 727–734.

    CAS  Google Scholar 

  • Li, J., Feng, L., Fan, L., Zha, Y., Guo, L., Zhang, Q., … Wen, L. (2011). Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials, 32(21), 4943–450.

    Google Scholar 

  • Merril, C. R., Biswas, B., Carltont, R., Jensen, N. C., Creed, G. J., Zullo, S., et al. (1996). Long-circulating bacteriophage as antibacterial agents. Proceedings of the National Academy of Sciences, 93, 3188–3192.

    Article  CAS  Google Scholar 

  • Miller, A. M., & Dean, D. A. (2009). Tissue-specific and transcription factor-mediated nuclear entry of DNA. Advanced Drug Delivery Reviews, 61(7–8), 603–613.

    Article  CAS  Google Scholar 

  • Molenaar, T. J. M., Michon, I., de Haas, S. A. M., van Berkel, T. J. C., Kuiper, J., & Biessen, E. A. L. (2002). Uptake and processing of modified bacteriophage M13 in mice: Implications for phage display. Virology, 293(1), 182–191.

    Article  CAS  Google Scholar 

  • Nakanishi, M., Eguchi, A., Akuta, T., Nagoshi, E., Fujita, S., Okabe, J., … Hasegawa, M. (2003). Basic peptides as functional components of non-viral gene transfer vehicles. Current Protein and Peptide Science, 4(2), 141–150.

    Google Scholar 

  • Nayak, S., & Herzog, R. W. (2010). Progress and prospects: Immune responses to viral vectors. Gene Therapy, 17(3), 295–304.

    Article  CAS  Google Scholar 

  • Nicastro, J., Sheldon, K., El-Zarkout, F. A., Sokolenko, S., Aucoin, M. G., & Slavcev, R. (2013). Construction and analysis of a genetically tuneable lytic phage display system. Applied Microbiology and Biotechnology, 97(17), 7791–7804.

    Article  CAS  Google Scholar 

  • Nicastro, J., Sheldon, K., & Slavcev, R. A. (2014). Bacteriophage lambda display systems: Developments and applications. Applied Microbiology and Biotechnology, 98(7), 2853–2866.

    Article  CAS  Google Scholar 

  • Piersanti, S., Cherubini, G., Martina, Y., Salone, B., Avitabile, D., Grosso, F., … Saggio, I. (2004). Mammalian cell transduction and internalization properties of lambda phages displaying the full-length adenoviral penton base or its central domain. Journal of Molecular Medicine (Berlin, Germany), 82(7), 467–476. http://doi.org/10.1007/s00109-004-0543-2

    Google Scholar 

  • Poul, M. A., & Marks, J. D. (1999). Targeted gene delivery to mammalian cells by filamentous bacteriophage. Journal of Molecular Biology, 288(2), 203–211.

    Article  CAS  Google Scholar 

  • Prieto, Y., & Sánchez, O. (2007). Self-complementary sequences induce the formation of double-stranded filamentous phages. Biochimica et Biophysica Acta—General Subjects, 1770(8), 1081–1084.

    Article  CAS  Google Scholar 

  • Seow, Y., & Wood, M. J. (2009). Biological gene delivery vehicles: Beyond viral vectors. Molecular Therapy: The Journal of the American Society of Gene Therapy, 17(5), 767–777.

    Article  CAS  Google Scholar 

  • Smith, G. P., & Petrenko, V. A. (1997). Phage display. Chemical Reviews, 2665(96), 391–410.

    Article  Google Scholar 

  • Somia, N., & Verma, I. M. (2000). Gene therapy: Trials and tribulations. Nature Reviews Genetics, 1(2), 91–99.

    Article  CAS  Google Scholar 

  • Specthrie, L., Bullitt, E., Horiuchi, K., Model, P., Russel, M., & Makowski, L. (1992). Construction of a microphage variant of filamentous bacteriophage. Journal of Molecular Biology, 228(3), 720–724. http://doi.org/10.1016/0022-2836(92)90858-H

    Google Scholar 

  • Sperinde, J. J., Choi, S. J., & Szoka, F. C. (2001). Phage display selection of a peptide DNase II inhibitor that enhances gene delivery. The Journal of Gene Medicine, 3(2), 101–108.

    Article  CAS  Google Scholar 

  • Tao, P., Mahalingam, M., Marasa, B. S., Zhang, Z., Chopra, A. K., & Rao, V. B. (2013). In vitro and in vivo delivery of genes and proteins using the bacteriophage T4 DNA packaging machine. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 4–9. h.

    Google Scholar 

  • Trabulo, S., Cardoso, A. L., Cardoso, A. M. S., DüzgüneÅŸ, N., Jurado, A. S., & de Lima, M. C. P. (2012). Cell-penetrating peptide-based systems for nucleic acid delivery: A biological and biophysical approach. Methods in Enzymology, 509, 277–300.

    Article  CAS  Google Scholar 

  • Vaccaro, P., Pavoni, E., Monteriù, G., Andrea, P., Felici, F., & Minenkova, O. (2006). Efficient display of scFv antibodies on bacteriophage lambda. Journal of Immunological Methods, 310(1–2), 149–158.

    Article  CAS  Google Scholar 

  • Vilchez, S., & Jacoby, J. (2004). Display of biologically functional insecticidal toxin on the surface of lambda phage. Applied and Environmental, 70(11), 6587–6594.

    Article  CAS  Google Scholar 

  • Wan, X.-M., Chen, Y.-P., Xu, W.-R., Yang, W., & Wen, L.-P. (2009). Identification of nose-to-brain homing peptide through phage display. Peptides, 30(2), 343–350.

    Article  CAS  Google Scholar 

  • Willats, W. G. T. (2002). Phage display: Practicalities and prospects. Plant Molecular Biology, 50, 837–854.

    Article  CAS  Google Scholar 

  • Yacoby, I., Bar, H., & Benhar, I. (2007). Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrobial Agents and Chemotherapy, 51(6), 2156–2163.

    Article  CAS  Google Scholar 

  • Yacoby, I., & Benhar, I. (2008). Targeted filamentous bacteriophages as therapeutic agents. Expert opinion on drug delivery, 5(September), 321–329.

    Article  CAS  Google Scholar 

  • Yacoby, I., Shamis, M., Bar, H., Shabat, D., & Benhar, I. (2006). Targeting antibacterial agents by using drug-carrying filamentous bacteriophages. Antimicrobial Agents and Chemotherapy, 50(6), 2087–2097.

    Article  CAS  Google Scholar 

  • Yokoyamakobayashi, M., & Kato, S. (1993). Recombinant f1 phage particles can transfect monkey COS-7 Cell by DEAE dextran method. Biochemical and Biophysical Research Communications, 192(2), 935–939.

    Article  CAS  Google Scholar 

  • Yokoyamakobayashi, M., & Kato, S. (1994). Recombinant f1 phage-mediated transfection of mammalian cells using lipopolyamine technique. Analytical Biochemistry, 223(1), 130–134.

    Article  CAS  Google Scholar 

  • Zanghi, C. N., Sapinoro, R., Bradel-Tretheway, B., & Dewhurst, S. (2007). A tractable method for simultaneous modifications to the head and tail of bacteriophage lambda and its application to enhancing phage-mediated gene delivery. Nucleic Acids Research, 35(8), e59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Nicastro .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Nicastro, J., Wong, S., Slavcev, R.A. (2016). Bacteriophages Functionalized for Gene Delivery and the Targeting of Gene Networks. In: Bacteriophage Applications - Historical Perspective and Future Potential. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-45791-8_4

Download citation

Publish with us

Policies and ethics