Skip to main content

Bioremediation of Isoproturon Herbicide in Agricultural Soils

  • Chapter
  • First Online:
Microbe-Induced Degradation of Pesticides

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Isoproturon is a phenylurea herbicide widely used to control broad leaf weeds in cereal crops. It has been detected beyond the safe concentrations in a number of soil and water samples throughout the world. This review presents an overview of potential toxic effects of isoproturon and its fate in the environment. Moreover, major role of biodegradation as a permissible remedy tool in environmental decontamination to solve the problem of irrational use of this herbicide is highlighted. Recent advances in this area show that the microbial biodegradation of isoproturon can serve as a basis for the development of bioremediation processes in pure cultures and in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AGRITOX AFSSA-DIVE. (2007). Base de données sur les substances actives phytopharmaceutiques (Isoproturon). Site internet, http://www.dive.afssa.fr/agritox, dernier accès octobre 2007.

  • Alletto, L., Coquet, Y., Benoit, P., & Bergheaud, V. (2006). Effects of temperature and water content on degradation of isoproturon in three soil profiles. Chemosphere, 64(7), 1053–1061.

    Article  Google Scholar 

  • Alva, V. A., & Peyton, B. M. (2003). Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: Influence of pH and salinity. Environmental Science and Technology, 37(19), 4397–4402.

    Article  Google Scholar 

  • Amita, B., Anjali, S., Srivastava, A., Bali, R., Srivastava, P., & Govindra, S. (2005). Effect of temperature on adsorption-desorption of isoproturon on a clay soil. Indian Journal of Weed Science, 37(3&4), 247–250.

    Google Scholar 

  • Badawi, N., Ronhede, S., Olsson, S., Kragelund, B. B., Johnsen, A. H., Jacobsen, O. S., et al. (2009). Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environmental Pollution, 157(10), 2806–2812.

    Article  Google Scholar 

  • Beck, A. J., Harris, G. L., Howse, K. R., Johnston, A. E., & Jones, K. C. (1996). Spatial and temporal variation of isoproturon residues and associated sorption/desorption parameters at the field scale. Chemosphere, 33(7), 1283–1295.

    Article  Google Scholar 

  • Behera, B. C., & Bhunya, S. P. (1990). Genotoxic effect of isoproturon (herbicide) as revealed by three mammalian in vivo mutagenic bioassays. Indian Journal of Experimental Biology, 28(9), 862–867.

    Google Scholar 

  • Bending, G. D., Lincoln, S. D., & Edmondson, R. N. (2006). Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environmental Pollution, 139(2), 279–287.

    Article  Google Scholar 

  • Bending, G. D., Lincoln, S. D., Sorensen, S. R., Morgan, J. A. W., Aamand, J., & Walker, A. (2003). In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pH. Applied and Environment Microbiology, 69(2), 827–834.

    Article  Google Scholar 

  • Bending, G. D., & Rodriguez-Cruz, M. S. (2007). Microbial aspects of the interaction between soil depth and biodegradation of the herbicide isoproturon. Chemosphere, 66(4), 664–671.

    Article  Google Scholar 

  • Bending, G. D., Shaw, E., & Walker, A. (2001). Spatial heterogeneity in the metabolism and dynamics of isoproturon degrading microbial communities in soil. Biology and Fertility of Soils, 33(6), 484–489.

    Article  Google Scholar 

  • Berger, B. M. (1999). Factors influencing transformation rates and formation of products of phenylurea herbicides in soil. Journal of Agriculture and Food Chemistry, 47(8), 3389–3396.

    Article  Google Scholar 

  • Bottcher, T., & Schroll, R. (2007). The fate of isoproturon in a freshwater microcosm with Lemna minor as a model organism. Chemosphere, 66(4), 684–689.

    Article  Google Scholar 

  • Caux, P. Y., Kent, R. A., Fan, G. T., & Grande, C. (1998). Canadian water quality guidelines for linuron. Environmental Toxicology and Water Quality, 13(1), 1–41.

    Article  Google Scholar 

  • Chhokar, R. S., & Malik, R. K. (2002). Isoproturon-resistant littleseed canarygrass (Phalaris minor) and its response to alternate herbicides. Weed Technology, 16(1), 116–123.

    Article  Google Scholar 

  • Coquet, Y., Ribiere, C., & Vachier, P. (2004). Pesticide adsorption in the vadose zone: A case study on Eocene and Quaternary materials in Northern France. Pest Management Science, 60(10), 992–1000.

    Article  Google Scholar 

  • Cox, L., Walker, A., & Welch, S. J. (1996). Evidence for the accelerated degradation of isoproturon in soils. Pesticide Science, 48(3), 253–260.

    Article  Google Scholar 

  • Cullington, J. E., & Walker, A. (1999). Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biology and Biochemistry, 31(5), 677–686.

    Article  Google Scholar 

  • Dosnon-Olette, R., Couderchet, M., Oturan, M. A., Oturan, N., & Eullaffroy, P. (2011). Potential use of Lemna Minor for the phytoremediation of isoproturon and glyphosate. International Journal of Phytoremediation, 13(6), 601–612.

    Article  Google Scholar 

  • Dosnon-Olette, R., Trotel-Aziz, P., Couderchet, M., & Eullaffroy, P. (2010). Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere, 79(2), 117–123.

    Article  Google Scholar 

  • Dwivedi, S., Singh, B. R., Al-Khedhairy, A. A., & Musarrat, J. (2011). Biodegradation of isoproturon using a novel Pseudomonas aeruginosa strain JS-11 as a multi-functional bioinoculant of environmental significance. Journal of Hazardous Materials, 185(2–3), 938–944.

    Article  Google Scholar 

  • Eibisch, N., Schroll, R., & Fub, R. (2014). Effect of pyrochar and hydrochar amendments on the mineralization of the herbicide isoproturon in an agricultural soil. Chemosphere,. doi:10.1016/j.chemosphere.2014.11.074.

    Google Scholar 

  • Eibisch, N., Schroll, R., Fub, R., Mikutta, R., Helfrich, M., & Flessa, H. (2015). Pyrochars and hydrochars differently alter the sorption of the herbicide isoproturon in an agricultural. Chemosphere, 119, 155–162.

    Article  Google Scholar 

  • El-Arfaoui, A., Boudesocque, S., Sayen, S., & Guillon, E. (2010). Terbumeton and isoproturon adsorption by soils: Influence of Ca2+ and K+ cations. Journal of Pest Science, 2, 131–133.

    Article  Google Scholar 

  • El-khattabi, K., Bouhaouss, A., Scrano, L., Lelario, F., & Bufo, S. A. (2007). Influence of humic fractions on retention of isoproturon residues in two Moroccan soils. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 42(7), 851–856.

    Article  Google Scholar 

  • El-Sebai, T., Devers-Lamrani, M., Lagacherie, B., Rouard, N., Soulas, G., & Martin-Laurent, F. (2011). Isoproturon mineralization in an agricultural soil: Impact of temperature and moisture content. Biology and Fertility of Soils, 47(4), 427–435.

    Article  Google Scholar 

  • El-Sebai, T., Lagacherie, B., Cooper, J. F., Soulas, G., & Martin-Laurent, F. (2005). Enhanced isoproturon mineralisation in a clay silt loam agricultural soil. Agronomy for Sustainable Development, 25(2), 271–277.

    Article  Google Scholar 

  • El-Sebai, T., Lagacherie, B., Soulas, G., & Martin-Laurent, F. (2004). Isolation and characterisation of an isoproturon-mineralising Methylopila sp TES from French agricultural soil. FEMS Microbiology Letters, 239(1), 103–110.

    Article  Google Scholar 

  • El-Sebai, T., Lagacherie, B., Soulas, G., & Martin-Laurent, F. (2007). Spatial variability of isoproturon mineralizing activity within an agricultural field: Geostatistical analysis of simple physico-chemical and microbiological soil parameters. Environmental Pollution, 145(3), 680–690.

    Article  Google Scholar 

  • Environment-Agency. (2001). Pesticides 2000: A summary of monitoring of the aquatic environment in England and Wales. Environment Agency. www.environment-agency.gov.uk

  • Ertli, T., Marton, A., & Foldenyi, R. (2004). Effect of pH and the role of organic matter in the adsorption of isoproturon on soils. Chemosphere, 57(8), 771–779.

    Article  Google Scholar 

  • European Commission. (2001). Decision no. 2455/2001/EC of the European Parliament and of the Council of 20 November 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC. European Commission.

    Google Scholar 

  • Fenlon, K. A., Jones, K. C., & Semple, K. T. (2011). The effect of soil: Water ratios on the induction of isoproturon, cypermethrin and diazinon mineralisation. Chemosphere, 82(2), 163–168.

    Article  Google Scholar 

  • Fredrickson, J. K., Balkwill, D. L., Romine, M. F., & Shi, T. (1999). Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp. Journal of Industrial Microbiology and Biotechnology, 23(4–5), 273–283.

    Article  Google Scholar 

  • Gangwar, S. K., & Rafiquee, M. Z. A. (2007a). Kinetics of the acid hydrolysis of isoproturon in the absence and presence of sodium lauryl sulfate micelles. Colloid and Polymer Science, 285(5), 587–592.

    Article  Google Scholar 

  • Gangwar, S. K., & Rafiquee, M. Z. A. (2007b). Kinetics of the alkaline hydrolysis of isoproturon in CTAB and NaLS micelles. International Journal of Chemical Kinetics, 39(1), 39–45.

    Article  Google Scholar 

  • Gerecke, A. C., Scharer, M., Singer, H. P., Muller, S. R., Schwarzenbach, R. P., Sagesser, M., et al. (2002). Sources of pesticides in surface waters in Switzerland: pesticide load through waste water treatment plants-current situation and reduction potential. Chemosphere, 48(3), 307–315.

    Article  Google Scholar 

  • Greulich, K., Hoque, E., & Pflugmacher, S. (2002). Uptake, metabolism, and effects on detoxication enzymes of isoproturon in spawn and tadpoles of amphibians. Ecotoxicology and Environmental Safety, 52(3), 256–266.

    Article  Google Scholar 

  • Grundmann, S., Doerfler, U., Munch, J. C., Ruth, B., & Schroll, R. (2011). Impact of soil water regime on degradation and plant uptake behaviour of the herbicide isoproturon in different soil types. Chemosphere, 82(10), 1461–1467.

    Article  Google Scholar 

  • Gu, T., Zhou, C., Sorensen, S. R., Zhang, J., He, J., Yu, P., et al. (2013). The novel bacterial N-demethylase PdmAB is responsible for the initial step of N, N-dimethyl-substituted phenylurea herbicide degradation. Applied and Environment Microbiology, 79, 7846–7856.

    Article  Google Scholar 

  • Hangler, M., Jensen, B., Ronhede, S., & Sorensen, S. R. (2007). Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans. FEMS Microbiology Letters, 268(2), 254–260.

    Article  Google Scholar 

  • Hassan, N., & Nemat-Alla, M. (2005). Oxidative stress in herbicide-treated broad bean and maize plants. Acta Physiologiae Plantarum, 27(4), 429–438.

    Article  Google Scholar 

  • Hazarika, A., & Sarkar, S. N. (2001). Effect of isoproturon pretreatment on the biochemical toxicodynamics of anilofos in male rats. Toxicology, 165(2–3), 87–95.

    Article  Google Scholar 

  • Hoshiya, T., Hasegawa, R., Hakoi, K., Cui, L., Ogiso, T., Cabral, R., et al. (1993). Enhancement by non-mutagenic pesticides of GST-P positive hepatic foci development initiated with diethylnitrosamine in the rat. Cancer Letters, 72(1–2), 59–64.

    Article  Google Scholar 

  • Hussain, S., Arshad, M., Springael, D., Sorensen, S. R., Bending, G. D., Devers-Lamrani, M., et al. (2015). Abiotic and biotic processes governing the fate of phenylurea herbicides in soil: A review. Critical Reviews in Environment Science and Technology, 45, 1947–1998.

    Article  Google Scholar 

  • Hussain, S., Devers-Lamrani, M., El, Azhari N., & Martin-Laurent, F. (2011). Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil. Biodegradation, 22(3), 637–650.

    Article  Google Scholar 

  • Hussain, S., Devers-Lamrani, M., Spor, A., Rouard, N., Porcherot, M., Beguet, J., et al. (2013). Mapping field spatial distribution patterns of isoproturon-mineralizing activity over a three-year winter wheat/rape seed/barley rotation. Chemosphere, 90, 2499–2511.

    Article  Google Scholar 

  • Hussain, S., Sorensen, S. R., Devers-Lamrani, M., El-Sebai, T., & Martin-Laurent, F. (2009). Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil. Chemosphere, 77(8), 1052–1059.

    Article  Google Scholar 

  • INERIS. (2007). Données technico-économiques sur les substances chimiques en France: ISOPROTURON. 27p. http://rsde.ineris.fr/

  • Issa, S., & Wood, M. (2005). Degradation of atrazine and isoproturon in surface and sub-surface soil materials undergoing different moisture and aeration conditions. Pest Management Science, 61(2), 126–132.

    Article  Google Scholar 

  • Johannesen, H., Sorensen, S. R., & Aamand, J. (2003). Mineralization of soil-aged isoproturon and isoproturon metabolites by Sphingomonas sp. strain SRS2. Journal of Environmental Quality, 32(4), 1250–1257.

    Article  Google Scholar 

  • Khadrani, A., Seigle-Murandi, F., Steiman, R., & Vroumsia, T. (1999). Degradation of three phenylurea herbicides (chlortoluron, isoproturon and diuron) by micromycetes isolated from soil. Chemosphere, 38(13), 3041–3050.

    Article  Google Scholar 

  • Knauert, S., Escher, B., Singer, H., Hollender, J., & Knauer, K. (2008). Mixture toxicity of three photosystem II inhibitors (atrazine, isoproturon, and diuron) toward photosynthesis of freshwater phytoplankton studied in outdoor mesocosms. Environmental Science and Technology, 42(17), 6424–6430.

    Article  Google Scholar 

  • Knauert, S., Singer, H., Hollender, J., & Knauer, K. (2010). Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms. Environmental Pollution, 158(1), 167–174.

    Article  Google Scholar 

  • Kristensen, K. E., Jacobsen, C. S., Hansen, L. H., Aamand, J., Morgan, J. A., Sternberg, C., et al. (2006). Genetic labelling and application of the isoproturon-mineralizing Sphingomonas sp. strain SRS2 in soil and rhizosphere. Letters in Applied Microbiology, 43(3), 280–286.

    Article  Google Scholar 

  • Kristensen, G. B., Sorensen, S. R., & Aamand, J. (2001). Mineralization of 2, 4-D, mecoprop, isoproturon and terbuthylazine in a chalk aquifer. Pest Management Science, 57(6), 531–536.

    Article  Google Scholar 

  • Kumar, S. (2010). Effect of 2, 4-D and isoproturon on chromosomal disturbances during mitotic division in root tip cells of Triticum aestivum L. Cytology and Genetics, 44(2), 79–87.

    Article  Google Scholar 

  • Larsen, L., Sorensen, S. R., & Aamand, J. (2000). Mecoprop, isoproturon, and atrazine in and above a sandy aquifer: Vertical distribution of mineralization potential. Environmental Science and Technology, 34(12), 2426–2430.

    Article  Google Scholar 

  • Liang, L., Lu, Y. L., & Yang, H. (2012). Toxicology of isoproturon to the food crop wheat as affected by salicylic acid. Environmental Science and Pollution Research, 19(6), 2044–2054.

    Article  Google Scholar 

  • Lopez-Munoz, M. J., Revilla, A., & Aguado, J. (2013). Heterogeneous photocatalytic degradation of isoproturon in aqueous solution: Experimental design and intermediate products analysis. Catalysis Today, 209, 99–107.

    Article  Google Scholar 

  • Lu, C. Y., Zhang, S., Miao, S. S., Jiang, C., Huang, M. T., Liu, Y., et al. (2015). Enhanced degradation of herbicide isoproturon in wheat rhizosphere by salicylic acid. Journal of Agricultural and Food Chemistry, 63(1), 92–103.

    Article  Google Scholar 

  • Maqbool, Z., Hussain, S., Imran, M., Mahmood, F., Shahzad, T., Ahmed, Z., et al. (2016). Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review. Environmental Science and Pollution Research, http://dx.doi.org/10.1007/s11356-016-7003-8.

  • Mascolo, G., Lopez, A., James, H., & Fielding, M. (2001). By-products formation during degradation of isoproturon in aqueous solution. I: Ozonation. Water Research, 35(7), 1695–1704.

    Article  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410.

    Article  Google Scholar 

  • Mosleh, Y. Y. (2009). Assessing the toxicity of herbicide isoproturon on Aporrectodea caliginosa (oligochaeta) and its fate in soil ecosystem. Environmental Toxicology, 24(4), 396–403.

    Article  Google Scholar 

  • Mosleh, Y. Y., Paris-Palacios, S., Couderchet, M., Biagianti-Risbourg, S., & Vernet, G. (2005). Effects of the herbicide isoproturon on metallothioneins, growth, and antioxidative defenses in the aquatic worm Tubifex tubifex (Oligochaeta, Tubificidae). Ecotoxicology, 14(5), 559–571.

    Article  Google Scholar 

  • Muller, K., Bach, M., Hartmann, H., Spiteller, M., & Frede, H. G. (2002). Point- and nonpoint-source pesticide contamination in the Zwester Ohm catchment, Germany. Journal of Environmental Quality, 31(1), 309–318.

    Article  Google Scholar 

  • Navarro, S., Bermejo, S., Vela, N., & Hernandez, J. (2009). Rate of loss of simazine, terbuthylazine, isoproturon, and methabenzthiazuron during soil solarization. Journal of Agriculture and Food Chemistry, 57(14), 6375–6382.

    Article  Google Scholar 

  • Nayak, A. S., Veeranagouda, Y., Lee, K., & Karegoudar, T. B. (2009). Metabolism of acenaphthylene via 1, 2-dihydroxynaphthalene and catechol by Stenotrophomonas sp RMSK. Biodegradation, 20(6), 837–843.

    Article  Google Scholar 

  • Nemat-Alla, M., & Hassan, N. (2007). Changes of antioxidants and GSH-associated enzymes in isoproturon-treated maize. Acta Physiologiae Plantarum, 29(3), 247–258.

    Article  Google Scholar 

  • Nitschke, L., Wilk, A., Schussler, W., Metzner, G., & Lind, G. (1999). Biodegradation in laboratory activated sludge plants and aquatic toxicity of herbicides. Chemosphere, 39(13), 2313–2323.

    Article  Google Scholar 

  • Orton, F., Lutz, I., Kloas, W., & Routledge, E. J. (2009). Endocrine disrupting effects of herbicides and: In vitro and in vivo evidence. Environmental Science and Technology, 43(6), 2144–2150.

    Article  Google Scholar 

  • Paris-Palacios, S., Mosleh, Y. Y., Almohamad, M., Delahaut, L., Conrad, A., Arnoult, F., et al. (2010). Toxic effects and bioaccumulation of the herbicide isoproturon in Tubifex tubifex (Oligocheate, Tubificidae): A study of significance of autotomy and its utility as a biomarker. Aquatic Toxicology, 98(1), 8–14.

    Article  Google Scholar 

  • Parra, S., Sarria, V., Malato, S., Péringer, P., & Pulgarin, C. (2000). Photochemical versus coupled photochemical-biological flow system for the treatment of two biorecalcitrant herbicides: metobromuron and isoproturon. Applied Catalysis B: Environmental, 27(3), 153–168.

    Article  Google Scholar 

  • Parris, G. E. (1980). Environmental and metabolic transformations of primary aromatic amines and related compounds. Residue Reviews, 76, 1–30.

    Google Scholar 

  • Pérés, F., Florin, D., Grollier, T., FeurtetMazel, A., Coste, M., Ribeyre, F., et al. (1996). Effects of the phenylurea herbicide isoproturon on periphytic diatom communities in freshwater indoor microcosms. Environmental Pollution, 94(2), 141–152.

    Article  Google Scholar 

  • Perrin-Ganier, C., Schiavon, F., Morel, J. L., & Schiavon, M. (2001). Effect of sludge-amendment or nutrient addition on the biodegradation of the herbicide isoproturon in soil. Chemosphere, 44(4), 887–892.

    Article  Google Scholar 

  • Perrin-Ganier, C., Schiavon, M., Portal, J. M., & Babut, M. (1995). Dégradation de l’isoproturon et disponibilité de ses résidus dans le sol. Weed Research, 35(4), 257–263.

    Article  Google Scholar 

  • Pieuchot, M., Perrin Ganier, C., Portal, J. M., & Schiavon, M. (1996). Study on the mineralization and degradation of isoproturon in three soils. Chemosphere, 33(3), 467–478.

    Article  Google Scholar 

  • Racke, K. D., & Coats, J. R. E. (1990). Enhanced biodegradation of pesticides in the environment. Washington, DC: American Chemical Society.

    Book  Google Scholar 

  • Reddy, P. A. K., Reddy, P. V. L., Sharma, V. M., Kumari, V. D., & Subrahmanyam, M. (2010). Photocatalytic degradation of isoproturon pesticide on C, N and S doped TiO2. Journal of Water Resource and Protection, 2(3), 235–244.

    Article  Google Scholar 

  • Reddy, P. A. K., Srinivas, B., Durgakumari, V., & Subrahmanyam, M. (2012). Solar photocatalytic degradation of the herbicide isoproturon on a Bi-TiO2/zeolite photocatalyst. Toxicological and Environmental Chemistry, 94, 512–524.

    Article  Google Scholar 

  • Reddy, P. A. K., Srinivas, B., Kala, P., Kumari, V. D., & Subrahmanyam, M. (2011). Preparation and characterization of Bi-doped TiO2 and its solar photocatalytic activity for the degradation of isoproturon herbicide. Materials Research Bulletin, 46, 1766–1771.

    Article  Google Scholar 

  • Reid, B. J., Papanikolaou, N. D., & Wilcox, R. K. (2005). Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use. Environmental Pollution, 133(3), 447–454.

    Article  Google Scholar 

  • Reid, B. J., Pickering, F. L., Freddo, A., Whelan, M. J., & Coulon, F. (2013). Influence of biochar on isoproturon partitioning and bioaccessibility in soil. Environmental Pollution, 181, 44–50.

    Article  Google Scholar 

  • Rigaud, J. P., Lebreton, J. C. (2004). Points de repère - Blé: désherbage de post-levée. Chambre d’Agriculture de Mayenne. http://www.mayenne.chambagri.fr/services/documentation/ble_desherbage_post_levee.pdf, denier accès octobre 2007.

  • Roberts, S. J., Walker, A., Cox, L., & Welch, S. J. (1998). Isolation of isoproturon-degrading bacteria from treated soil via three different routes. Journal of Applied Microbiology, 85(2), 309–316.

    Article  Google Scholar 

  • Rodriguez-Cruz, M. S., Jones, J. E., & Bending, G. D. (2006). Field-scale study of the variability in pesticide biodegradation with soil depth and its relationship with soil characteristics. Soil Biology and Biochemistry, 38(9), 2910–2918.

    Article  Google Scholar 

  • Ronhede, S., Jensen, B., Rosendahl, S., Kragelund, B. B., Juhler, R. K., & Aamand, J. (2005). Hydroxylation of the herbicide isoproturon by fungi isolated from agricultural soil. Applied and Environment Microbiology, 71(12), 7927–7932.

    Article  Google Scholar 

  • Ronhede, S., Sorensen, S. R., Jensen, B., & Aamand, J. (2007). Mineralization of hydroxylated isoproturon metabolites produced by fung. Soil Biology and Biochemistry, 39(7), 1751–1758. doi:10.1016/j.soilbio.2007.01.037.

    Article  Google Scholar 

  • Rubio, M. I. M., Gernjak, W., Alberola, O., Galvez, J. B., Fernandez-Ibanez, P., & Rodriguez, S. (2006). Photo-Fenton degradation of alachlor, atrazine, chlorfenvinphos, diuron, isoproturon and pentachlorophenol at solar pilot plant. International Journal of Environment and Pollution, 27(1–3), 135–146.

    Article  Google Scholar 

  • Scheunert, I., & Reuter, S. (2000). Formation and release of residues of the C-14-labelled herbicide isoproturon and its metabolites bound in model polymers and in soil. Environmental Pollution, 108(1), 61–68.

    Article  Google Scholar 

  • Schmitt-Jansen, M., & Altenburger, R. (2005). Toxic effects of isoproturon on periphyton communities - a microcosm study. Estuarine, Coastal and Shelf Science, 62(3), 539–545.

    Article  Google Scholar 

  • Schroll, R., Becher, H. H., Dorfler, U., Gayler, S., Hartmann, H. P., & Ruoss, J. (2006). Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environmental Science and Technology, 40(10), 3305–3312.

    Article  Google Scholar 

  • Sharma, M. V. P., Durgakumari, V., & Subrahmanyam, M. (2008a). Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems. Journal of Hazardous Materials, 160(2–3), 568–575.

    Article  Google Scholar 

  • Sharma, M. V. P., Kumari, V. D., & Subrahmanyam, A. (2008b). Photocatalytic degradation of isoproturon herbicide over TiO2/Al-MCM-41 composite systems using solar light. Chemosphere, 72(4), 644–651.

    Article  Google Scholar 

  • Sharma, M. V. P., Kumari, V. D., & Subrahmanyam, M. (2010). TiO2 supported over porous silica photocatalysts for pesticide degradation using solar light: Part 2. Silica prepared using acrylic acid emulsion. Journal of Hazardous Materials, 175(1–3), 1101–1105.

    Article  Google Scholar 

  • Sharma, M. V. P., Lalitha, K., Durgakumari, V., & Subrahmanyam, M. (2008c). Solar photocatalytic mineralization of. isoproturon over TiO2/HY composite systems. Solar Energy Mater. Solar Cells, 92(8), 992.

    Article  Google Scholar 

  • Sharma, P. M. V., Sadanandam, G., Ratnamala, A., Durga Kumari, V., & Subrahmanyam, M. (2009). An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light. Journal of Hazardous Materials, 171(1–3), 626–633.

    Article  Google Scholar 

  • Shi, S. J., & Bending, G. D. (2007). Changes to the structure of Sphingomonas spp. communities associated with biodegradation of the herbicide isoproturon in soil. FEMS Microbiology Letters, 269(1), 110–116.

    Article  Google Scholar 

  • Si, Y., Wang, M., Tian, C., Zhou, J., & Zhou, D. (2011). Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils. Journal of Contaminant Hydrology, 123(1–2), 75–81.

    Article  Google Scholar 

  • Si, Y. B., Zhang, J., Wang, S. Q., Zhang, L. G., & Zhou, D. M. (2006). Influence of organic amendment on the adsorption and leaching of ethametsulfuron-methyl in acidic soils in China. Geoderma, 130(1–2), 66–76.

    Article  Google Scholar 

  • Sorensen, S. R., & Aamand, J. (2003). Rapid mineralisation of the herbicide isoproturon in soil from a previously treated Danish agricultural field. Pest Management Science, 59(10), 1118–1124.

    Article  Google Scholar 

  • Sorensen, S. R., Bending, G. D., Jacobsen, C. S., Walker, A., & Aamand, J. (2003). Microbial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields. FEMS Microbiology Ecology, 45(1), 1–11.

    Article  Google Scholar 

  • Sorensen, S. R., Ronen, Z., & Aamand, J. (2001). Isolation from agricultural soil and characterization of a Sphingomonas sp able to mineralize the phenylurea herbicide isoproturon. Applied and Environment Microbiology, 67(12), 5403–5409.

    Article  Google Scholar 

  • Sorensen, S. R., Ronen, Z., & Aamand, J. (2002). Growth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp strain SRS2. Applied and Environment Microbiology, 68(7), 3478–3485.

    Article  Google Scholar 

  • Soulas, G. (1993). Evidence for the existence of different physiological groups in the microbial community responsible for 2, 4-D mineralization in soil. Soil Biology and Biochemistry, 25(4), 443–449.

    Article  Google Scholar 

  • Steiman R, Seigle-Murandi F, Benoit-Guyod JL, Merlin G, Khadri M (1994) Assessment of isoproturon degradation by fungi. In Proceedings of 5th International Workshop, Brussels (pp. 229–235).

    Google Scholar 

  • Sun, J. Q., Huang, X., Chen, Q. L., Liang, B., Qiu, J. G., Ali, S. W., et al. (2009). Isolation and characterization of three Sphingobium sp. strains capable of degrading isoproturon and cloning of the catechol 1, 2-dioxygenase gene from these strains. World Journal of Microbiology and Biotechnology, 25(2), 259–268.

    Article  Google Scholar 

  • Tian, C., M-d, Wang, & Y-b, Si. (2010). Influences of charcoal amendment on adsorption-desorption of isoproturon in soils. Agricultural Sciences in China, 9(2), 257–265.

    Article  Google Scholar 

  • Tixier, C., Sancelme, M., Ait-Aissa, S., Widehem, P., Bonnemoy, F., Cuer, A., et al. (2002). Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere, 46(4), 519–526.

    Article  Google Scholar 

  • Turnbull, G. A., Ousley, M., Walker, A., Shaw, E., & Morgan, J. A. W. (2001). Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA. Applied and Environment Microbiology, 67(5), 2270–2275.

    Article  Google Scholar 

  • Vallotton, N., Eggen, R. I. L., & Chevre, N. (2009). Effect of sequential isoproturon pulse exposure on Scenedesmus vacuolatus. Archives of Environmental Contamination and Toxicology, 56(3), 442–449.

    Article  Google Scholar 

  • Vieublé-Gonod, L., Benoit, P., Cohen, N., & Houot, S. (2009). Spatial and temporal heterogeneity of soil microorganisms and isoproturon degrading activity in a tilled soil amended with urban waste composts. Soil Biology and Biochemistry, 41(12), 2558–2567.

    Article  Google Scholar 

  • Vrielynck, L., Dupuy, N., Kister, J., & Nowogrocki, G. (2006). Molecular structure and vibrational spectroscopy of isoproturon. Journal of Molecular Structure, 788(1–3), 232–237.

    Article  Google Scholar 

  • Vroumsia, T., Steiman, R., SeigleMurandi, F., BenoitGuyod, J. L., & Khadrani, A. (1996). Biodegradation of three substituted phenylurea herbicides (chlorotoluron, diuron, and isoproturon) by soil fungi. A comparative study. Chemosphere, 33(10), 2045–2056.

    Article  Google Scholar 

  • Walker, A., Bromilow, R. H., Nicholls, P. H., Evans, A. A., & Smith, V. J. R. (2002). Spatial variability in the degradation rates of isoproturon and chlorotoluron in a clay soil. Weed Research, 42(1), 39–44.

    Article  Google Scholar 

  • Walker, A., & Welch, S. J. (1991). Enhanced degradation of some soil-applied herbicides. Weed Research, 31(1), 49–57.

    Article  Google Scholar 

  • White, D. C., Sutton, S. D., & Ringelberg, D. B. (1996). The genus Sphingomonas: Physiology and ecology. Current Opinion in Biotechnology, 7(3), 301–306.

    Article  Google Scholar 

  • Widenfalk, A., Bertilsson, S., Sundh, I., & Goedkoop, W. (2008). Effects of pesticides on community composition and activity of sediment microbes—responses at various levels of microbial community organization. Environmental Pollution, 152(3), 576–584.

    Article  Google Scholar 

  • Widenfalk, A., Svensson, J. M., & Goedkoop, W. (2004). Effects of the pesticides captan, deltamethrin, isoproturon, and pirimicarb on the microbial community of a freshwater sediment. Environmental Toxicology and Chemistry, 23(8), 1920–1927.

    Article  Google Scholar 

  • Yin, X. L., Jiang, L., Song, N. H., & Yang, H. (2008). Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. Journal of Agriculture and Food Chemistry, 56(12), 4825–4831.

    Article  Google Scholar 

  • Yu, P., Tan, Z. C., Meng, S. H., Lu, S. W., Lan, X. Z., Sun, L. X., et al. (2003). Low-temperature heat capacities and thermodynamic properties of crystalline isoproturon. Journal of Thermal Analysis and Calorimetry, 74(3), 867–874.

    Article  Google Scholar 

  • Zhang, J., Hong, Q., Li, Q., Li, C., Cao, L., Sun, J. Q., et al. (2012). Characterization of isoproturon biodegradation pathway in Sphingobium sp. YBL2. International Biodeterioration and Biodegradation, 70, 8–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azeem Khalid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hussain, S., Shahzad, T., Imran, M., Khalid, A., Arshad, M. (2017). Bioremediation of Isoproturon Herbicide in Agricultural Soils. In: Singh, S. (eds) Microbe-Induced Degradation of Pesticides. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-45156-5_4

Download citation

Publish with us

Policies and ethics