Skip to main content

Herbicide Resistance in Setaria

  • Chapter
  • First Online:
Genetics and Genomics of Setaria

Abstract

The four documented cases of field selection for herbicide resistance in weedy Setaria are described in this chapter. In each case, weed control failure was observed in practice in the field. In all cases, resistance was target-site-based resistance and was due to single nucleotide mutations causing amino-acid substitutions at codon 264 of psbA (photosystem II inhibitors), codons 136 and 239 of α2-tubulin (tubulin polymerization inhibitors), codon 1781 of acetyl-CoA carboxylase (acetyl-CoA carboxylase inhibitors), or codons 653 or 654 of acetolactate-synthase (acetolactate-synthase inhibitors). The heredity of resistance in these cases was maternal, nuclear recessive, nuclear dominant, or partially dominant, respectively. Pleiotropic effects of the mutant alleles were observed on seed production for the herbicide-resistant alleles Gly-264 of psbA and Ile-239 of α2-tubulin (22 % yield reduction for both alleles), but not for the Leu-1781 acetyl-CoA carboxylase allele. These alleles were introgressed in foxtail millet (S. italica) to develop herbicide-resistant genetic resources and germplasm with the aim to produce and release elite varieties of foxtail millet. This material was also used to study pollen dispersal and possible gene flow between weedy Setaria and cultivated foxtail millet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews TS, Morrison IN. The persistence of trifluralin resistance in green foxtail (Setaria viridis) populations. Weed Technol. 1997;11:369–72.

    CAS  Google Scholar 

  • Arntz AM, De Lucia EH, Jordan N. From fluorescence to fitness: variation in photosynthetic rate affects fecundity and survivorship. Ecology. 2000;81:2567–76.

    Article  Google Scholar 

  • Baeva G. Resistance study of Setaria glauca PB to the herbicide acetochlor. In: Proceedings of the 14th EWRS symposium, Hamar, Norway; 17–21 June 2007. p. 146.

    Google Scholar 

  • Beckie HJ, Morrison IN. Effect of ethalfluralin and other herbicides on trifluralin-resistant green foxtail (Setaria viridis). Weed Technol. 1993a;7:6–14.

    CAS  Google Scholar 

  • Beckie HJ, Morrison IN. Effective kill of trifluralin-susceptible and -resistant green foxtail (Setaria viridis). Weed Technol. 1993b;7:15–22.

    CAS  Google Scholar 

  • Beckie HJ, Tardif FJ. Herbicide cross resistance in weeds. Crop Prot. 2012;35:15–28.

    Article  CAS  Google Scholar 

  • Beckie HJ, Friesen LF, Nawolsky KM, Morrison IN. A rapid bioassay to detect trifluralin-resistant green foxtail (Setaria viridis). Weed Technol. 1990;4:505–8.

    CAS  Google Scholar 

  • Beckie HJ, Thomas AG, Légère A. Nature, occurrence, and cost of herbicide-resistant green foxtail (Setaria viridis) across Saskatchewan ecoregions. Weed Technol. 1999;13:626–31.

    Google Scholar 

  • Beckie HJ, Lozinski C, Shirriff S, Brenzil CA. Herbicide-resistant weeds in the Canadian Prairies: 2007 to 2011. Weed Technol. 2013;27:171–83.

    Article  Google Scholar 

  • Benabdelmouna A, Shi Y, Abirached-Darmency M, Darmency H. Genomic in situ hybridization (GISH) discriminates between the A and B genomes in diploid and tetraploid Setaria species. Genome. 2001;44:685–90.

    Article  CAS  PubMed  Google Scholar 

  • Beversdorf WD, Weiss-Lerman J, Reickson LR, Souza-Machado V. Transfer of cytoplasmically-inherited triazine resistance from bird’s rape to cultivated rapeseed (Brassica campestris L. and B. napus L.). Can J Genet Cytol. 1980;22:167–72.

    Article  CAS  Google Scholar 

  • Breviario D, Giani S, Morello L. Multiple tubulins: evolutionary aspects and biological implications. Plant J. 2013;75:202–18.

    Article  CAS  PubMed  Google Scholar 

  • Darmency H. Incestuous relations of foxtail millet (Setaria italica) with its parents and cousins. In: Gressel J, editor. Crop ferality and volunteerism: a threat to food security in the transgenic era. Boca Raton: CRC Press; 2004. p. 81–96.

    Google Scholar 

  • Darmency H. Pleiotropic effects of herbicide-resistance genes on crop yield: a review. Pest Manag Sci. 2013;69:897–904.

    Article  CAS  PubMed  Google Scholar 

  • Darmency H, Dekker J. Setaria. In: Kole C, editor. Wild crop relatives: genomic and breeding resources. Millet and grasses. Berlin: Springer; 2011. p. 275–96.

    Chapter  Google Scholar 

  • Darmency H, Pernès J. Use of wild Setaria viridis (L) Beauv to improve triazine resistance in cultivated S. italica (L) by hybridization. Weed Res. 1985;25:175–9.

    Article  CAS  Google Scholar 

  • Darmency H, Pernès J. Agronomic performance of a triazine resistant foxtail millet (Setaria italica (L) Beauv). Weed Res. 1989;29:147–50.

    Article  Google Scholar 

  • Darmency H, Zangre GR, Pernès J. The wild-weed-crop complex in Setaria: a hybridization study. Genetica. 1987;75:103–7.

    Article  Google Scholar 

  • Darmency H, Chauvel B, Gasquez J, Matejicek A. Variation of chlorophyll a/b ratio in relation to population polymorphism and mutation of triazine-resistance. Plant Physiol Biochem. 1992;30:57–63.

    CAS  Google Scholar 

  • Darmency H, Picard JC, Wang T. Fitness costs linked to dinitroaniline resistance mutation in Setaria. Heredity. 2011;107:80–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Prado R, Dominguez C, Tena M. Characterization of triazine-resistant biotypes of common lambsquarters (Chenopodium album), hairy fleabane (Conyza bonaeriensis), and yellow foxtail (Setaria glauca) found in Spain. Weed Sci. 1989;37:1–4.

    Google Scholar 

  • De Prado R, Diaz MA, Tena M. Differential tolerance to atrazine in four Setaria species. In: Proceedings of the EWRS symposium on integrated weed management in cereals, Helsinki, Finland; 4–6 Jun 1990. p. 61–8.

    Google Scholar 

  • De Prado R, Lopez-Martinez N, Gonzalez-Gutierrez J. Identification of two mechanisms of atrazine resistance in Setaria faberi and Setaria viridis biotypes. Pest Biochem Physiol. 2000;67:114–24.

    Article  Google Scholar 

  • De Prado R, Osuna MD, Fischer AJ. Resistance to ACCase inhibitor herbicides in a green foxtail (Setaria viridis) biotype in Europe. Weed Sci. 2004;52:506–12.

    Article  Google Scholar 

  • De Wet JMJ, Oestry-Stidd LL, Cubero JI. Origins and evolution of foxtail millets (Setaria italica). J Agri Tradit Bot Appl. 1979;26:53–64.

    Google Scholar 

  • Dekker J. The evolutionary biology of the foxtail (Setaria) species-group. In: Inderjit, editor. Weed biology and management. Dordrecht: Kluwer Academic; 2004. p. 65–113.

    Google Scholar 

  • Délye C. Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci. 2005;53:728–46.

    Article  Google Scholar 

  • Délye C, Wang T, Darmency H. An isoleucine-leucine substitution in chloroplastic acetyl-CoA carboxylase from green foxtail (Setaria viridis L Beauv) is responsible for resistance to the cyclohexanedione herbicide sethoxydim. Planta. 2002;214:421–7.

    Article  PubMed  Google Scholar 

  • Délye C, Menchari Y, Michel S, Darmency H. Molecular bases for sensitivity to tubulin-binding herbicides in green foxtail. Plant Physiol. 2004;136:3920–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Délye C, Menchari Y, Michel S. A single polymerase chain reaction-based assay for simultaneous detection of two mutation conferring resistance to tubulin-binding herbicides in Setaria viridis. Weed Res. 2005;45:228–35.

    Article  Google Scholar 

  • Délye C, Jasienuk M, Le Corre V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013;29:649–58.

    Article  PubMed  Google Scholar 

  • Dong Z, Zhao H, He J, Huai J, Lin H, Zheng J, et al. Overexpression of a foxtail millet acetyl-CoA carboxylase gene in maize increases sethoxydim resistance and oil content. Afr J Biotechnol. 2011;10:3986–95.

    CAS  Google Scholar 

  • Duke SO. Why have no new herbicide modes of action appeared in recent years? Pest Manag Sci. 2012;68:505–12.

    Article  CAS  PubMed  Google Scholar 

  • Gasquez J, Compoint JC. Observation de chloroplastes résistants aux triazines chez une panicoidée, Setaria viridis L. Agronomie. 1981;1:923–6.

    Article  Google Scholar 

  • Gimenez-Espinosa R, Romera E, Tena M, De Prado R. Fate of atrazine in treated and pristine accessions of three Setaria species. Pest Biochem Physiol. 1996;56:196–207.

    Article  CAS  Google Scholar 

  • Hao HB, Cui HY, Li MZ. Germplasm innovation of herbicide resistant and colored summer millet. J Hebei Agric Sci. 2013;17:1–2.

    Google Scholar 

  • Heap I. The international survey of herbicide resistant weeds. http://www.weedscience.org (2015). Accessed 12 Feb 2015.

  • Heap I, Morrison I. Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in green foxtail (Setaria viridis). Weed Sci. 1996;44:25–30.

    CAS  Google Scholar 

  • Jasieniuk M, Brûlé-Babel A, Morrison I. Inheritance of trifluralin resistance in green foxtail (Setaria viridis). Weed Sci. 1994;42:123–7.

    CAS  Google Scholar 

  • Ji G, Du R, Hou S, Ceng R, Wang X, Zhao X. Genetics, development and application of cytoplasmic herbicide resistance in foxtail millet. Sci Agric Sin. 2006;39:879–85.

    Google Scholar 

  • Jia X, Yuan J, Shi Y, Song Y, Wang G, Wang T, et al. A Ser-Gly substitution in plastid-encoded photosystem II D1 protein is responsible for atrazine resistance in foxtail millet (Setaria italica). Plant Growth Regul. 2007;52:81–9.

    Article  CAS  Google Scholar 

  • Konstantinovic B. Determination of triazine resistant biotypes of Setaria viridis. In: Proceedings of the BCPC conference: weeds, Brighton, UK; 12–15 Nov 2001. p. 607–12.

    Google Scholar 

  • Laplante J, Rajcan I, Tardif FJ. Multiple allelic forms of acetohydroxyacid synthase are responsible for herbicide resistance in Setaria viridis. Theor Appl Genet. 2009;119:577–85.

    Article  CAS  PubMed  Google Scholar 

  • Li MZ, Liu GR, Song K, Cui HY, Hao HB, Wang XM. Development status and analysis of hybrid millet seed industry. J Hebei Agric Sci. 2014;18:1–3.

    Google Scholar 

  • Liu JJ, Zhao ZH. Cultivation technology and extension experiences of hybrid millet in Ethiopia. J Hebei Agric Sci. 2012;16:9–12.

    Google Scholar 

  • Marles MAS, Devine MD, Hall JC. Herbicide resistance in Setaria viridis conferred by a less sensitive form of acetyl coenzyme A carboxylase. Pest Biochem Physiol. 1993;46:7–14.

    Article  CAS  Google Scholar 

  • Morrison IN, Todd BG, Nawolsky KM. Confirmation of trifluralin-resistant green foxtail (Setaria viridis) in Manitoba. Weed Technol. 1989;3:544–51.

    CAS  Google Scholar 

  • Naciri Y, Darmency H, Belliard J, Dessaint F, Pernès J. Breeding strategy in foxtail millet, Setaria italica (LP Beauv), following interspecific hybridization. Euphytica. 1992;60:97–103.

    Google Scholar 

  • Niu Y, Li Y, Shi Y, Song Y, Ma Z, Wang T, et al. AFLP mapping for the gene conferring sethoxydim resistance in foxtail millet (Setaria italica L Beauv). Acta Agric Sin. 2002;28:359–62.

    Google Scholar 

  • Oliver LR, Schreiber MM. Differential selectivity of herbicides on six Setaria taxa. Weed Sci. 1971;19:428–31.

    CAS  Google Scholar 

  • Reboud X, Till-Bottraud I. The cost of herbicide resistance measured by a competition experiment. Theor Appl Genet. 1991;82:690–6.

    Article  CAS  PubMed  Google Scholar 

  • Ricroch A, Mousseau M, Darmency H, Pernès J. Comparison of triazine-resistant and -susceptible cultivated Setaria italica L (PB): growth and photosynthetic capacity. Plant Physiol Biochem. 1987;25:29–34.

    CAS  Google Scholar 

  • Ritter RL, Kaufman LM, Monaco TJ, Novitzky WP, Moreland DE. Characterization of triazine-resistant giant foxtail (Setaria faberi) and its control in no-tillage corn (Zea mays). Weed Sci. 1989;37:591–5.

    CAS  Google Scholar 

  • Santelmann PW, Meade JA. Variation in morphological characteristics and dalapon susceptibility within the species Setaria lutescens and S. faberii. Weeds. 1961;9:406–10.

    Article  Google Scholar 

  • Shanxi Academy of Agricultural Sciences. The cultivation of foxtail millet in China. In: Gu S, editor. Beijing: Agriculture Press; 1987.

    Google Scholar 

  • Shi Y, Wang T, Li Y, Darmency H. Impact of transgene inheritance on the mitigation of gene flow between crops and their wild relatives: the example of foxtail millet. Genetics. 2008;180:969–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla A, Leach GE, Devine MD. High-level resistance to sethoxydim conferred by an alteration in the target enzyme, acetyl-CoA carboxylase, in Setaria faberi and Setaria viridis. Plant Physiol Biochem. 1997;35:803–7.

    CAS  Google Scholar 

  • Smeda RJ, Vaughn KC, Morrison IN. A novel pattern of herbicide cross-resistance in a trifluralin-resistant biotype of green foxtail [Setaria viridis (L.) Beauv.]. Pest Biochem Physiol. 1992;42:227–41.

    Article  CAS  Google Scholar 

  • Song XZ, Wang YW, Li HX, Tian G, Li ZH, Liu X. Breeding and the key cultivation techniques in herbicide-resistant millet Jingu 56. J Shanxi Agric Sci. 2014;42:115–8.

    CAS  Google Scholar 

  • Stepenson GR, Dykstra MD, McLaren RD, Hamill AS. Agronomic practices influencing triazine-resistant weed distribution in Ontario. Weed Technol. 1990;4:199–207.

    Google Scholar 

  • Stoltenberg DE, Wiederholt RJ. Giant foxtail (Setaria faberi) resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Sci. 1995;43:527–35.

    CAS  Google Scholar 

  • Thompson Jr L. Metabolism of chloro s-triazine herbicides by Panicum and Setaria. Weed Sci. 1972;20:584–7.

    CAS  Google Scholar 

  • Tian X, Darmency H. Rapid bidirectional allele-specific PCR identification for triazine resistance in higher plants. Pest Manag Sci. 2006;62:531–6.

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Délye C, Darmency H. Molecular evidence of biased inheritance of trifluralin herbicide resistance in foxtail millet. Plant Breed. 2006;125:254–8.

    Article  CAS  Google Scholar 

  • Tian BH, Wang JG, Li YJ, Zhang LX. Study on selection of suitable herbicide for hybrid millet. J Hebei Agric Sci. 2010;14:46–7.

    Google Scholar 

  • Till-Bottraud I, Reboud X, Brabant P, Lefranc M, Rherissi B, Vedel F, et al. Outcrossing and hybridization in wild and cultivated foxtail mil-lets: consequences for the release of transgenic crops. Theor Appl Genet. 1992;83:940–6.

    Article  CAS  PubMed  Google Scholar 

  • Vila-Aiub MM, Neve P, Powles SB. Fitness cost associated with evolved herbicide resistance alleles in plants. New Phytol. 2009;184:751–67.

    Article  CAS  PubMed  Google Scholar 

  • Volenberg D, Stoltenberg D. Altered acetyl-coenzyme A carboxylase confers resistance to clethodim, fluazifop and sethoxydim in Setaria faberi and Digitaria sanguinalis. Weed Res. 2002a;42:342–50.

    Article  CAS  Google Scholar 

  • Volenberg DS, Stoltenberg DE. Giant foxtail (Setaria faberi) outcrossing and inheritance of resistance to acetyl-coenzyme A carboxylase inhibitors. Weed Sci. 2002b;50:622–7.

    Article  CAS  Google Scholar 

  • Volenberg DS, Stoltenberg DE, Boerboom CM. Biochemical mechanism and inheritance of cross-resistance to acetolactate synthase inhibitors in giant foxtail. Weed Sci. 2001;49:635–41.

    Article  CAS  Google Scholar 

  • Volenberg DS, Stoltenberg DE, Boerboom CM. Green foxtail (Setaria viridis) resistance to acetolactate synthase inhibitors. Phytoprotection. 2002;83:99–109.

    Article  CAS  Google Scholar 

  • Wang T, Darmency H. Dinitroaniline herbicide cross-resistance in resistant Setaria italica lines selected from interspecific cross with S. viridis. Pest Sci. 1997a;49:277–83.

    Article  CAS  Google Scholar 

  • Wang T, Darmency H. Inheritance of sethoxydim resistance in foxtail millet, Setaria italica (L). Beauv. Euphytica. 1997b;94:69–73.

    Article  Google Scholar 

  • Wang T, Darmency H. Cross-resistance to aryloxyphenoxypropionate and cyclohexanedione in foxtail millet (Setaria italica). Pest Biochem Physiol. 1998;59:81–8.

    Article  Google Scholar 

  • Wang RL, Dekker J. Weedy adaptation in Setaria spp. II. Variation in herbicide resistance in Setaria spp. Pest Biochem Physiol. 1995;51:99–116.

    Article  CAS  Google Scholar 

  • Wang T, Du R, Chen H, Darmency H, Fleury A. A new way of using herbicide resistant gene on hybrid utilization in foxtail millet. Sci Agric Sin. 1996a;29:96.

    Google Scholar 

  • Wang T, Fleury A, Ma J, Darmency H. Genetic control of dinitroaniline resistance in foxtail millet (Setaria italica). J Hered. 1996b;87:423–6.

    Article  CAS  Google Scholar 

  • Wang ZM, Devos KM, Liu CJ, Wang RQ, Gale MD. Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theor Appl Genet. 1998;96:31–36.

    Google Scholar 

  • Wang T, Xin Z, Shi Y, Darmency H. A creation, evaluation and utilization of the new crop germplasm: herbicide resistance foxtail millet (Setaria italica). J China Agric Sci Technol. 2000;2:62–6.

    Google Scholar 

  • Wang T, Zhao Z, Yan H, Li Y, Song Y, Ma Z, et al. Gene flow from cultivated herbicide-resistant foxtail millet to its wild relatives: a basis for risk assessment of the release of transgenic millet. Acta Agric Sin. 2001;27:681–7.

    Google Scholar 

  • Wang T, Shi Y, Li Y, Song Y, Darmency H. Population growth rate of Setaria viridis in the absence of herbicide: resulting yield loss in foxtail millet Setaria italica. Weed Res. 2010a;50:228–34.

    Article  Google Scholar 

  • Wang T, Picard JC, Tian X, Darmency H. A herbicide-resistant ACCase 1781 Setaria mutant shows higher fitness than wild type. Heredity. 2010b;105:394–400.

    Article  CAS  PubMed  Google Scholar 

  • Wang YW, Li HX, Tian G, Shi QX. Study on innovation and application of highly-male-sterile line with high outcrossing rate in millet. Sci Agric Sin. 2010c;43:680–9.

    Google Scholar 

  • Zhou HZ, Hou SL, Song YF, Zhao Y, Dong L, Jia HY, et al. Impacts of monocotyledon weeds on millet yield loss in foxtail millet field. Chinese Agric Sci Bull. 2013;29:179–84.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Darmency M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Darmency, H., Wang, T., Délye, C. (2017). Herbicide Resistance in Setaria . In: Doust, A., Diao, X. (eds) Genetics and Genomics of Setaria. Plant Genetics and Genomics: Crops and Models, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-45105-3_15

Download citation

Publish with us

Policies and ethics