Skip to main content

Treatment of Diabetes with Lifestyle Changes: Physical Activity

  • Reference work entry
  • First Online:
Diabetes Epidemiology, Genetics, Pathogenesis, Diagnosis, Prevention, and Treatment

Part of the book series: Endocrinology ((ENDOCR))

Abstract

Lifestyle improvements, like dietary changes and increased physical activity, are typically advocated for the cure, prevention, and reversion of several metabolic diseases, including diabetes mellitus. The non-pharmacological low-cost nature, along with the health-related benefits, increases the therapeutical appeal of regular physical activity. In the comprehensive approach of diabetes management, regular physical activity reduces risk of many diseases to which individuals with diabetes, particularly those with type 2 diabetes mellitus, are predisposed: hypertension, coronary heart diseases, and obesity.

The present chapter covers how exercise can facilitate optimal glucose control and lipid levels, assist in weight management, and prevent exacerbation of underlying diabetes-complications, moving medicine forward, far beyond the simplistic motto of “exercise more.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CGM:

Continuous glucose monitoring

CVD:

Cardiovascular diseases

FBG:

Fasting blood glucose

GLUT4:

Glucose transporter 4

HbA1c:

Glycosylated hemoglobin

HDL:

High density lipoproteins

ICT:

Information and communication technologies

IGT:

Impaired glucose tolerance

PI3-kinase:

Phosphoinositide 3-kinase

SMBG:

Self-monitoring of blood glucose

References

  • ACSM-ADA. Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Med Sci Sports Exerc. 2010;42(12):2282–303.

    Google Scholar 

  • Adamo M, et al. Active subjects with autoimmune type 1 diabetes have better metabolic profiles than sedentary controls. Cell Transpl. 2017;26(1):23–32. https://doi.org/10.3727/096368916X693022. Epub 2016 Sep 20.

    Article  CAS  Google Scholar 

  • Albright A, et al. American College of Sports Medicine position stand. exercise and type 2 diabetes. Med Sci Sports Exerc. 2000;32(7):1345–60.

    Google Scholar 

  • Allen NA, Fain JA, Braun B, Chipkin SR. Continuous glucose monitoring counseling improves physical activity behaviors of individuals with type 2 diabetes: a randomized clinical trial. Diabetes Res Clin Pract. 2008;80(3):371–9.

    Article  Google Scholar 

  • Balducci S, et al. Physical activity/exercise training in type 2 diabetes. The role of the Italian diabetes and exercise study. Diabetes Metab Res Rev. 2009;25:S29.

    Article  Google Scholar 

  • Black LE, Swan PD, Alvar BA. Effects of intensity and volume on insulin sensitivity during acute bouts of resistance training. J Strength Cond Res / Nat Strength Cond Assoc. 2010;24(4):1109–16. https://doi.org/10.1519/JSC.0b013e3181cbab6d.

    Article  Google Scholar 

  • Borghouts LB, Wagenmakers AJM, Goyens PLL, Keizer HA. Substrate utilization in non-obese type II diabetic patients at rest and during exercise. Clin Sci (Lond). 2002;103(6):559–66. 

    Article  CAS  Google Scholar 

  • Boulé NG, et al. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–27. 

    Article  Google Scholar 

  • Bramble DM, Lieberman DE. Endurance running and the evolution of homo. Nature. 2004;432(7015):345–52. https://doi.org/10.1038/nature03052

    Article  CAS  Google Scholar 

  • Bryner RW, et al. Effects of resistance vs. aerobic training combined with an 800 calorie liquid diet on lean body mass and resting metabolic rate. J Am Coll Nutr. 1999;18(2):115–21.

    Article  CAS  Google Scholar 

  • Burstein R, et al. Effect of an acute bout of exercise on glucose disposal in human obesity. J Appl Physiol. 1990;69(1):299–304.

    Article  CAS  Google Scholar 

  • Caro JF, Dohm LG, Pories WJ, Sinha MK. Cellular alterations in liver, skeletal muscle, and adipose tissue responsible for insulin resistance in obesity and type II diabetes. Diabetes/Metab Rev. 1989;5(8):665–89.

    Article  CAS  Google Scholar 

  • Cartee GD, et al. Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. Am J Phys. 1989;256:E494–9.

    CAS  Google Scholar 

  • Cheung BMY, et al. Diabetes prevalence and therapeutic target achievement in the United States, 1999 to 2006. Am J Med. 2009;122(5):443–53.

    Article  Google Scholar 

  • Church TS, et al. Exercise capacity and body composition as predictors of mortality among men with diabetes. Diabetes Care. 2004;27(1):83–8.

    Article  Google Scholar 

  • Codella R, Luzi L, Inverardi L, Ricordi C. The anti-inflammatory effects of exercise in the syndromic thread of diabetes and autoimmunity. Eur Rev Med Pharmacol Sci. 2015;19(19):3709–22.

    Google Scholar 

  • Coderre L, Kandror KV, Vallega G, Pilch PF. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J Biol Chem. 1995;270(46):27584–8.

    Article  CAS  Google Scholar 

  • Colberg SR, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–79.

    Article  Google Scholar 

  • DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1982;23(4):313–9.

    Article  CAS  Google Scholar 

  • Delahanty LM, Nathan DM. Implications of the Diabetes Prevention Program and Look AHEAD Clinical Trials for Lifestyle Interventions. J Am Dietetic Assoc. 2008;108(4 Suppl 1):S66–72.

    Article  Google Scholar 

  • Devlin JT. Effects of exercise on insulin sensitivity in humans. Diabetes Care. 1992;15(11):1690–3.

    Article  CAS  Google Scholar 

  • Devlin JT, Hirshman M, Horton ED, Horton ES. Enhanced peripheral and splanchnic insulin sensitivity in NIDDM men after single bout of exercise. Diabetes. 1987;36(4):434–9.

    Article  CAS  Google Scholar 

  • Eakin EG, et al. Living well with diabetes: a randomized controlled trial of a telephone-delivered intervention for maintenance of weight loss, physical activity and Glycaemic control in adults with type 2 diabetes. BMC Public Health. 2010;10:452.

    Google Scholar 

  • Galbo H, Tobin L, van Loon LJ. Responses to acute exercise in type 2 diabetes, with an emphasis on metabolism and interaction with oral hypoglycemic agents and food intake. Appl Physiol Nutr Metab. 2007;32(3):567–75.

    Article  CAS  Google Scholar 

  • Garetto LP, Richter EA, Goodman MN, Ruderman NB. Enhanced muscle glucose metabolism after exercise in the rat: the two phases. Am J Phys. 1984;246(6 Pt 1):E471–5.

    Article  CAS  Google Scholar 

  • Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998;49(1):235–61. https://doi.org/10.1146/annurev.med.49.1.235.

  • Goodyear LJ, et al. Effects of contractile activity on tyrosine phosphoproteins and PI 3-kinase activity in rat skeletal muscle. Am J Physiol. 1995;268(0002-9513(Print)):E987–95.

    CAS  PubMed  Google Scholar 

  • Hayashi T, Wojtaszewski JF, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. Am J Phys. 1997;273(6 Pt 1):E1039–51.

    Article  CAS  Google Scholar 

  • Heath GW, et al. Effects of exercise and lack of exercise on glucose tolerance and insulin sensitivity. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:512–7.

    Article  CAS  Google Scholar 

  • Henriksson J. Effects of physical training on the metabolism of skeletal muscle. Diabetes Care. 1992;15(11):1701–11.

    Article  CAS  Google Scholar 

  • International Diabetes Federation. IDF Diabetes atlas IDF diabetes atlas. 2015. http://www.diabetesatlas.org/resources/2015-atlas.html https://www.idf.org/sites/default/files/EN_6E_Atlas_Full_0.pdf www.ecuadorencifras.gob.ec.

  • Kennedy JW, et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes. 1999;48:1–6.

    Article  Google Scholar 

  • Kohl HW, Gordon NF, Villegas JA, Blair SN. Cardiorespiratory fitness, glycemic status, and mortality risk in men. Diabetes Care. 1992;15(2):184–92.

    Article  CAS  Google Scholar 

  • Koivisto V, DeFronzo R. Exercise in the Treatment of Type II Diabetes. Acta Endocrinol. 1984;262(Suppl):107–16.

    Google Scholar 

  • Kreisman SH, Halter JB, Vranic M, Marliss EB. Combined infusion of epinephrine and norepinephrine during moderate exercise reproduces the Glucoregulatory response of intense exercise. Diabetes. 2003;52(6):1347–54.

    Article  CAS  Google Scholar 

  • Levine JA, et al. Interindividual variation in posture allocation: possible role in human obesity. Science. 2005;307(5709):584–6.

    Article  CAS  Google Scholar 

  • Lund S, Holman GD, Schmitz O, Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci U S A. 1995;92(13):5817–21.

    Article  CAS  Google Scholar 

  • Luzi L. Human evolution and physical exercise: the concept of being ‘born to run’. In: Cellular physiology and metabolism of physical exercise. Milano: Springer Milan; 2012. p. 1–7. https://doi.org/10.1007/978-88-470-2418-2_1.

    Chapter  Google Scholar 

  • Luzi L, Pizzini G. Born to run: training our genes to cope with ecosystem changes in the twentieth century. Sport Sci Health. 2004;1(1):1–4. https://doi.org/10.1007/s11332-004-0001-0

    Article  Google Scholar 

  • Malpass A, Andrews R, Turner KM. Patients with type 2 diabetes experiences of making multiple lifestyle changes: a qualitative study. Patient Educ Couns. 2009;74(2):258–63.

    Article  Google Scholar 

  • Manders RJF, Van Dijk JWM, Van Loon LJC. Low-intensity exercise reduces the prevalence of hyperglycemia in type 2 diabetes. Med Sci Sports Exerc. 2010;42(2):219–25.

    Article  CAS  Google Scholar 

  • Manetta J, Brun JF, Mercier J, Prefaut C. The effects of exercise training intensification on glucose disposal in elite cyclists. Int J Sports Med. 2000;21(5):338–43.

    Article  CAS  Google Scholar 

  • Marliss EB, Vranic M. Intense exercise has unique effects on both insulin release and its roles in glucoregulation: implications for diabetes. Diabetes. 2002;51:S271.

    Article  CAS  Google Scholar 

  • Minuk HL, et al. Glucoregulatory and metabolic response to exercise in obese noninsulin-dependent diabetes Glucoregulatory and metabolic response to exercise in obese noninsulin-dependent diabetes. Am J Epidemiol. 1981;240(3):458–64.

    Google Scholar 

  • Myers J, et al. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.

    Article  Google Scholar 

  • O’Gorman DJ, et al. Exercise training increases insulin-stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes. Diabetologia. 2006;49(12):2983–92.

    Article  Google Scholar 

  • Ohlson LO, et al. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes. 1985;34(10):1055–8.

    Article  CAS  Google Scholar 

  • Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;281(7285):785–9.

    Article  Google Scholar 

  • Regensteiner JG, et al. Relationship between habitual physical activity and insulin area among individuals with impaired glucose tolerance: the San Luis Valley Diabetes Study. Diabetes Care. 1995;18(4):490–7.

    Article  CAS  Google Scholar 

  • Richter EA, Derave W, Wojtaszewski JFP. Glucose, exercise and insulin: emerging concepts. J Physiol. 2001;535(2):313–22.

    Article  CAS  Google Scholar 

  • Sakamoto K, Goodyear LJ. Invited review: intracellular signaling in contracting skeletal muscle. J Appl Physiol (Bethesda, Md.: 1985). 2002;93:369–83.

    Article  CAS  Google Scholar 

  • Schneider SH, Amorosa LF, Khachadurian AK, Ruderman NB. Studies on the mechanism of improved glucose control during regular exercise in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1984;26(5):355–60.

    Article  CAS  Google Scholar 

  • Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C. Physical activity/exercise and type 2 diabetes. Diabetes Care. 2004;27(10):2518–39.

    Article  Google Scholar 

  • St John A, Davis WA, Price CP, Davis TM. The value of self-monitoring of blood glucose: a review of recent evidence. J Diabetes Complicat. 2010;24(2):129–41.

    Article  Google Scholar 

  • Suh S-H, Paik I-Y, Jacobs K. Regulation of blood glucose homeostasis during prolonged exercise. Mol Cells. 2007;23(3):272–9.

    Google Scholar 

  • Wadden TA, et al. Four-year weight losses in the look AHEAD study: factors associated with long-term success. Obesity. 2011;19(10):1987–98. https://doi.org/10.1038/oby.2011.230/nature06264.

    Article  PubMed  Google Scholar 

  • Wahren J, Ekberg K. Splanchnic regulation of glucose production. Annu Rev Nutr. 2007;27:329–45. 

    Article  CAS  Google Scholar 

  • WHO. 894 World Health Organization technical report series Obesity: preventing and managing the global epidemic. Report of a WHO consultation. 2000. http://www.ncbi.nlm.nih.gov/pubmed/11234459.

  • Winnick JJ, et al. Short-term aerobic exercise training in obese humans with type 2 diabetes mellitus improves whole-body insulin sensitivity through gains in peripheral, not hepatic insulin sensitivity. J Clin Endocrinol Metab. 2008;93(3):771–8.

    Article  CAS  Google Scholar 

  • Wojtaszewski JF, Hansen BF, Ursø B, Richter EA. Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle. J Appl Physiol (Bethesda, Md.: 1985). 1996;81:1501–9.

    Article  CAS  Google Scholar 

  • Wojtaszewski JFP, et al. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J Clin Investig. 1999;104(9):1257–64.

    Article  CAS  Google Scholar 

  • Wojtaszewski JFP, Nielsen JN, Richter EA. Invited review: effect of acute exercise on insulin signaling and action in humans. J Appl Physiol (Bethesda, Md.: 1985). 2002;93(1):384–92.

    Article  CAS  Google Scholar 

Download references

Duality of Interest

No potential conflicts of interest relevant to this chapter were reported.

Contribution Statement

All authors were responsible for drafting the manuscript and revising it critically for valuable intellectual content. All authors approved the version to be published.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livio Luzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Codella, R., Terruzzi, I., Luzi, L. (2018). Treatment of Diabetes with Lifestyle Changes: Physical Activity. In: Bonora, E., DeFronzo, R. (eds) Diabetes Epidemiology, Genetics, Pathogenesis, Diagnosis, Prevention, and Treatment . Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-45015-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45015-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45014-8

  • Online ISBN: 978-3-319-45015-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics