Skip to main content

Dependency on Non-myogenic Cells for Regeneration of Skeletal Muscle

  • Chapter
  • First Online:
Innovations in Molecular Mechanisms and Tissue Engineering

Abstract

Humans and other vertebrates have evolved a robust repair mechanism required to respond to overuse, trauma, and disease. In amphibians, some reptiles and fish, entire muscles can be regenerated in response to amputation. Understanding the underlying mechanisms that control these processes has therapeutic implications for individuals where the severe loss of muscle or chronic destabilization has led to the histopathological accumulation of fibrotic scars and fat. Much of the past 30 years has focused on defining the regulatory pathways that control development of skeletal muscle and the additional layers of regulation necessary for recapitulating myogenesis in adults. More recently, it has become clear that efficient skeletal muscle repair and regeneration cannot be understood solely through the lens of a single cell lineage. In this chapter, we discuss current findings on the contribution of the immune system, fibroadipogenic cells and the extracellular matrix in regulating myogenic progenitor cell activation, proliferation, and differentiation of myotubes in response to injury or amputation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283. doi:10.1006/dbio.1997.8721

    Article  CAS  PubMed  Google Scholar 

  2. Seale P, Sabourin LA, Girgis-Gabardo A et al (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786. doi:10.1016/S0092-8674(00)00066-0

    Article  CAS  PubMed  Google Scholar 

  3. Shea KL, Xiang W, LaPorta VS et al (2010) Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6:117–129. doi:10.1016/j.stem.2009.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fukada S, Uezumi A, Ikemoto M et al (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25:2448–2459. doi:10.1634/stemcells.2007-0019

    Article  CAS  PubMed  Google Scholar 

  5. Guenther MG, Levine SS, Boyer LA et al (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88. doi:10.1016/j.cell.2007.05.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tatsumi R, Anderson JE, Nevoret CJ et al (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128. doi:10.1006/dbio.1997.8803

    Article  CAS  PubMed  Google Scholar 

  7. Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Source Sci New Ser 302:1575–1577. doi:10.1126/science.1087573

    CAS  Google Scholar 

  8. Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010. doi:10.1016/j.cell.2007.03.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones NC, Tyner KJ, Nibarger L et al (2005) The p38α/β MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169:105–116. doi:10.1083/jcb.200408066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mourikis P, Sambasivan R, Castel D et al (2012) A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30:243–252. doi:10.1002/stem.775

    Article  CAS  PubMed  Google Scholar 

  11. Rodgers JT, King KY, Brett JO et al (2014) mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 509:393–396. doi:10.1038/nature13255

    Google Scholar 

  12. Le Grand F, Jones AE, Seale V et al (2009) Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4:535–547. doi:10.1016/j.stem.2009.03.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wozniak AC, Anderson JE (2007) Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Dev Dyn 236:240–250. doi:10.1002/dvdy.21012

    Article  CAS  PubMed  Google Scholar 

  14. Oberc MA, Engel WK (1977) Ultrastructural localization of calcium in normal and abnormal skeletal muscle. Lab Invest 36(6):566–577, PMID: 17033

    CAS  PubMed  Google Scholar 

  15. Chakravarthy MV, Davis BS, Booth FW (2000) IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J Appl Physiol 89:1365–1379. doi:10.1111/j.1600-0838.2001.110111-3.x

    CAS  PubMed  Google Scholar 

  16. Langley B, Thomas M, Bishop A et al (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277:49831–49840. doi:10.1074/jbc.M204291200

    Article  CAS  PubMed  Google Scholar 

  17. McCroskery S, Thomas M, Maxwell L et al (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147. doi:10.1083/jcb.200207056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trendelenburg AU, Meyer A, Jacobi C et al (2012) TAK-1/p38/nNFkB signaling inhibits myoblast differentiation by increasing levels of Activin A. Skelet Muscle 2:3. doi:10.1186/2044-5040-2-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conboy IM, Rando TA (2002) The regulation of notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 10:273. doi:10.1016/j.devcel.2006.01.003

    Article  CAS  Google Scholar 

  20. George RM, Biressi S, Beres BJ et al (2013) Numb-deficient satellite cells have regeneration and proliferation defects. Proc Natl Acad Sci U S A 110:18549–18554. doi:10.1073/pnas.1311628110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2:22–31. doi:10.1016/j.stem.2007.12.012

    Article  CAS  PubMed  Google Scholar 

  22. Kherif S, Lafuma C, Dehaupas M et al (1999) Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. Dev Biol 205:158–170. doi:10.1006/dbio.1998.9107

    Article  CAS  PubMed  Google Scholar 

  23. Joe AW, Yi L, Natarajan A et al (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163. doi:10.1038/ncb2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Otto A, Schmidt C, Luke G et al (2008) Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration. J Cell Sci 121:2939–2950. doi:10.1242/jcs.026534

    Article  CAS  PubMed  Google Scholar 

  25. Serrano AL, Baeza-Raja B, Perdiguero E et al (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7:33–44. doi:10.1016/j.cmet.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  26. Heredia JE, Mukundan L, Chen FM et al (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153:376–388. doi:10.1016/j.cell.2013.02.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Machida S, Booth FW (2004) Insulin-like growth factor 1 and muscle growth: implication for satellite cell proliferation. Proc Nutr Soc 63:337–340. doi:10.1079/PNS2004354

    Article  CAS  PubMed  Google Scholar 

  28. Montarras D, L’Honoré A, Buckingham M (2013) Lying low but ready for action: the quiescent muscle satellite cell. FEBS J 280:4036–4050. doi:10.1111/febs.12372

    Article  CAS  PubMed  Google Scholar 

  29. Christov C, Chrétien F, Abou-Khalil R et al (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18:1397–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dellavalle A, Sampaolesi M, Tonlorenzi R et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9:255–267. doi:10.1038/ncb1542

    Article  CAS  PubMed  Google Scholar 

  31. Dulauroy S, Di Carlo SE, Langa F et al (2012) Lineage tracing and genetic ablation of ADAM12+ perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med 18:1262–1270. doi:10.1038/nm.2848

    Article  CAS  PubMed  Google Scholar 

  32. Bönnemann CG (2007) The collagen VI-related myopathies: muscle meets its matrix. Nat Rev Neurol 7:379–390. doi:10.1038/nrneurol.2011.81

    Article  CAS  Google Scholar 

  33. Michele DE, Campbell KP (2003) Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J Biol Chem 278:15457–15460. doi:10.1074/jbc.R200031200

    Article  CAS  PubMed  Google Scholar 

  34. Bentzinger CF, Wang YX, Von Maltzahn J et al (2013) Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell Stem Cell 12:75–87. doi:10.1016/j.stem.2012.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Han WM, Jang YC, García AJ (2016) Engineered matrices for skeletal muscle satellite cell engraftment and function. Matrix Biol 53:1–14. doi:10.1016/j.matbio.2016.06.001

    Google Scholar 

  36. Engler AJ, Griffin MA, Sen S et al (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166:877–887. doi:10.1083/jcb.200405004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao Y, Kostrominova T (2008) Age-related changes in the mechanical properties of the epimysium in skeletal muscles of rats. J Biomech 41:465–469

    Article  PubMed  Google Scholar 

  38. Quarta M, Brett JO, DiMarco R et al (2016) An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol 34(7):752–759. doi:10.1038/nbt.3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boontheekul T, Hill EE, Kong H-J, Mooney DJ (2007) Regulating myoblast phenotype through controlled gel stiffness and degradation. Tissue Eng 13:1431–1442. doi:10.1089/ten.2006.0356

    Article  CAS  PubMed  Google Scholar 

  40. Brigitte M, Schilte C, Plonquet A et al (2010) Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis Rheum 62:268–279. doi:10.1002/art.27183

    Article  CAS  PubMed  Google Scholar 

  41. Tews DS, Goebel HH (1996) Cytokine expression profile in idiopathic inflammatory myopathies. J Neuropathol Exp Neurol 55:342–347. doi:10.1017/CBO9781107415324.004

    Article  CAS  PubMed  Google Scholar 

  42. Tidball JG (1995) Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc 27(7):1022–1032

    Article  CAS  PubMed  Google Scholar 

  43. Saini J, McPhee JS, Al-Dabbagh S et al (2016) Regenerative function of immune system: modulation of muscle stem cells. Ageing Res Rev 27:67–76. doi:10.1016/j.arr.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  44. Tsou CL, Peters W, Si Y et al (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117:902–909. doi:10.1172/JCI29919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu H, Huang D, Ransohoff RM, Zhou L (2011) Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair. FASEB J 25:3344–3355. doi:10.1096/fj.10-178939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Warren GL, Hulderman T, Mishra D et al (2005) Chemokine receptor CCR2 involvement in skeletal muscle regeneration. FASEB J 19:413–415. doi:10.1096/fj.04-2421fje

    CAS  PubMed  Google Scholar 

  47. Warren GL, O’Farrell L, Summan M et al (2004) Role of CC chemokines in skeletal muscle functional restoration after injury. Am J Physiol Cell Physiol 286:C1031–C1036. doi:10.1152/ajpcell.00467.2003

    Article  CAS  PubMed  Google Scholar 

  48. Zhang C, Li Y, Wu Y et al (2013) Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J Biol Chem 288:1489–1499. doi:10.1074/jbc.M112.419788

    Article  CAS  PubMed  Google Scholar 

  49. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Nguyen HX, Tidball JG (2002) Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro. J Physiol 547:125–132. doi:10.1113/jphysiol.2002.031450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chen S-E, Gerken E, Zhang Y et al (2005) Role of TNF-α signaling in regeneration of cardiotoxin-injured muscle. Am J Physiol Cell Physiol 289:C1179–C1187. doi:10.1152/ajpcell.00062.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Langen RC, Van Der Velden JL, Schols AM et al (2004) Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization. FASEB J 18:227–237. doi:10.1096/fj.03-0251com

    Article  CAS  PubMed  Google Scholar 

  53. Arnold L, Henry A, Poron F et al (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069. doi:10.1084/jem.20070075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ruffell D, Mourkioti F, Gambardella A et al (2009) A CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci U S A 106:17475–17480. doi:10.1073/pnas.0908641106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Perdiguero E, Sousa-Victor P, Ruiz-Bonilla V et al (2011) p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. J Cell Biol 195:307–322. doi:10.1083/jcb.201104053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mounier R, Théret M, Arnold L et al (2013) AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab 18:251–264. doi:10.1016/j.cmet.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  57. Novak ML, Koh TJ (2013) Macrophage phenotypes during tissue repair. J Leukoc Biol 93:875–881. doi:10.1189/jlb.1012512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Villalta SA, Nguyen HX, Deng B et al (2008) Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18:482–496. doi:10.1093/hmg/ddn376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wermuth PJ, Jimenez SA (2015) The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clin Transl Med 4:2. doi:10.1186/s40169-015-0047-4

    Article  PubMed  PubMed Central  Google Scholar 

  60. Forbes SJ, Rosenthal N (2014) Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 20:857–869. doi:10.1038/nm.3653

    Article  CAS  PubMed  Google Scholar 

  61. Tonkin J, Temmerman L, Sampson RD et al (2015) Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol Ther 23:1189–1200. doi:10.1038/mt.2015.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Burzyn D, Kuswanto W, Kolodin D et al (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–1295. doi:10.1016/j.cell.2013.10.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Villalta SA, Rosenthal W, Martinez L et al (2014) Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci Transl Med 6:10. doi:10.1126/scitranslmed.3009925

    Article  CAS  Google Scholar 

  64. Rybalko V, Hsieh PL, Merscham-Banda M et al (2015) The development of macrophage-mediated cell therapy to improve skeletal muscle function after injury. PLoS One 10:1–19. doi:10.1371/journal.pone.0145550

    Article  CAS  Google Scholar 

  65. Jetten N, Verbruggen S, Gijbels MJ et al (2014) Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17:109–118. doi:10.1007/s10456-013-9381-6

    Article  CAS  PubMed  Google Scholar 

  66. Kumar VA, Taylor NL, Shi S et al (2015) Self-assembling multidomain peptides tailor biological responses through biphasic release. Biomaterials 52:71–78. doi:10.1016/j.biomaterials.2015.01.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Carlson BM (2003) Muscle regeneration in amphibians and mammals: passing the torch. Dev Dyn 226:167–181

    Article  PubMed  Google Scholar 

  68. Kragl M, Knapp D, Nacu E et al (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65

    Article  CAS  PubMed  Google Scholar 

  69. Makanae A, Satoh A (2012) Early regulation of Axolotl limb regeneration. Anat Rec 295:1566–1574

    Article  CAS  Google Scholar 

  70. Christensen RN, Tassava RA (2000) Apical epithelial cap morphology and fibronectin gene expression in regenerating axolotl limbs. Dev Dyn 217:216–224

    Article  CAS  PubMed  Google Scholar 

  71. Christensen RN, Weinstein M, Tassava RA (2002) Expression of fibroblast growth factors 4, 8, and 10 in limbs, flanks, and blastemas of Ambystoma. Dev Dyn 223:193–203

    Article  CAS  PubMed  Google Scholar 

  72. Godwin J, Kuraitis D, Rosenthal N (2014) Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates. Int J Biochem Cell Biol 56:47–55. doi:10.1016/j.biocel.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  73. Morrison JI, Loof S, He P et al (2006) Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol 172:433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tanaka EM, Gann AA, Gates PB et al (1997) Newt myotubes reenter the cell cycle by phosphorylation of the retinoblastoma protein. J Cell Biol 136:155–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sorokin L (2010) The impact of the extracellular matrix on inflammation. Nat Rev Immunol 10:712–723

    Article  CAS  PubMed  Google Scholar 

  76. Konttinen YT, Kaivosoja E, Stegaev V et al (2011) Extra-cellular matrix and tissue regeneration. Regener Med 22:21–80

    Article  Google Scholar 

  77. Nambiar VV, Bhatt IY, Deshmukh PA et al (2008) Assessment of extracellular matrix remodeling during tail regeneration in the lizard Hemidactylus flaviviridis. J Endocrinol Reprod 12:67–72

    Google Scholar 

  78. Vinarsky V, Atkinson DL, Stevenson TJ et al (2005) Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol 279:86–98

    Article  CAS  PubMed  Google Scholar 

  79. Kovacs EJ (1991) Fibrogenic cytokines: the role of immune mediators in the development of scar tissue. Immunol Today 12:17–23

    Article  CAS  PubMed  Google Scholar 

  80. Moyer AL, Wagner KR (2011) Regeneration versus fibrosis in skeletal muscle. Curr Opin Rheumatol 23:568–573

    Article  PubMed  Google Scholar 

  81. Godwin JW, Pinto AR, Rosenthal NA (2013) Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A 110:9415–9420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Seifert AW, Monaghan JR, Voss SR, Maden M (2012) Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PLoS One 7, e32875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Echeverri K, Clarke JD, Tanaka EM (2001) In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev Biol 236:151–164

    Article  CAS  PubMed  Google Scholar 

  84. Hay ED (1959) Electron microscopic observations of muscle dedifferentiation in regenerating Ambystoma limbs. Dev Biol 1:555–585

    Article  Google Scholar 

  85. Lo DC, Allen F, Brockes JP (1993) Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci U S A 90:7230–7234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Duckmanton A, Kumar A, Chang YT et al (2005) A single cell analysis of myogenic dedifferentiation induced by small molecules. Chem Biol 12:1117–1126

    Article  CAS  PubMed  Google Scholar 

  87. Calve S, Simon HG (2011) High resolution three-dimensional imaging: evidence for cell cycle reentry in regenerating skeletal muscle. Dev Dyn 240:1233–1239

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sandoval-Guzmán T, Wang H, Khattak S et al (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14(2):174–187

    Article  PubMed  CAS  Google Scholar 

  89. Echeverri K, Tanaka EM (2002) Mechanisms of muscle dedifferentiation during regeneration. Semin Cell Dev Biol 13:353–360

    Article  CAS  PubMed  Google Scholar 

  90. Kumar A, Velloso CP, Imokawa Y et al (2004) The regenerative plasticity of isolated urodele myofibers and its dependence on MSX1. PLoS Biol 2, E218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Pajcini KV, Corbel SY, Sage J et al (2010) Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell 7:198–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kodaka Y, Tanaka K, Kitajima K et al (2016) LIM homeobox transcription factor Lhx2 inhibits skeletal muscle differentiation in part via transcriptional activation of Msx1 and Msx2. Exp Cell Res 331:309–319

    Article  CAS  Google Scholar 

  93. Odelberg SJ, Kollhoff A, Keating MT (2000) Dedifferentiation of mammalian myotubes induced by msx1. Cell 103:1099–1109

    Article  CAS  PubMed  Google Scholar 

  94. Yang Z, Liu Q, Mannix RJ et al (2014) Mononuclear cells from dedifferentiation of mouse myotubes display remarkable regenerative capability. Stem Cells 32:2492–2501. doi:10.1002/stem.1742

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yilmaz A, Engeler R, Constantinescu S et al (2015) Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation. Stem Cell Res 15:542–553. doi:10.1016/j.scr.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  96. Camarda G, Siepi F, Pajalunga D et al (2004) A pRb-independent mechanism preserves the postmitotic state in terminally differentiated skeletal muscle cells. J Cell Biol 167:417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sacco A, Siepi F, Crescenzi M (2003) HPV E7 expression in skeletal muscle cells distinguishes initiation of the postmitotic state from its maintenance. Oncogene 22:4027–4034

    Article  CAS  PubMed  Google Scholar 

  98. Brookes S, Rowe J, Gutierrez Del Arroyo A et al (2004) Contribution of p16INK4a to replicative senescence of human fibroblasts. Exp Cell Res 298:549–559

    Article  CAS  PubMed  Google Scholar 

  99. Gilley J, Fried M (2001) One INK4 gene and no ARF at the Fugu equivalent of the human INK4A/ARF/INK4B tumour suppressor locus. Oncogene 20:7447–7452

    Article  CAS  PubMed  Google Scholar 

  100. Kim SH, Mitchell M, Fujii H et al (2003) Absence of p16INK4a and truncation of ARF tumor suppressors in chickens. Proc Natl Acad Sci U S A 100:211–216

    Article  CAS  PubMed  Google Scholar 

  101. Calve S, Odelberg SJ, Simon HG (2010) A transitional extracellular matrix instructs cell behavior during muscle regeneration. Dev Biol 344:259–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Calve S, Simon HG (2012) Biochemical and mechanical environment cooperatively regulate skeletal muscle regeneration. FASEB J 26:2538–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Morrison JI, Borg P, Simon A (2010) Plasticity and recovery of skeletal muscle satellite cells during limb regeneration. FASEB J 24:750–756

    Article  CAS  PubMed  Google Scholar 

  104. Grogg MW, Call MK, Okamoto M et al (2005) BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. Nature 438:858–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Suetsugu-Maki R, Maki N, Nakamura K et al (2012) Lens regeneration in axolotl: new evidence of developmental plasticity. BMC Biol 10:103

    Article  PubMed  PubMed Central  Google Scholar 

  106. King MW, Neff AW, Mescher AL (2012) The developing Xenopus limb as a model for studies on the balance between inflammation and regeneration. Anat Rec 295:1552–1562. doi: 10.1002/ar.22443

    Google Scholar 

  107. Flajnik MF, Hsu E, Kaufman JF et al (1987) Changes in the immune system during metamorphosis of Xenopus. Immunol Today 8:58–64

    Article  CAS  PubMed  Google Scholar 

  108. Robert J, Cohen N (1998) Evolution of immune surveillance and tumor immunity: studies in Xenopus. Immunol Rev 166:231–243

    Article  CAS  PubMed  Google Scholar 

  109. Grow M, Neff AW, Mescher AL et al (2006) Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration. Dev Dyn 235:2667–2685

    Article  CAS  PubMed  Google Scholar 

  110. King MW, Neff AW, Mescher AL (2009) Proteomics analysis of regenerating amphibian limbs: changes during the onset of regeneration. Int J Dev Biol 295:955–969

    Article  CAS  Google Scholar 

  111. Pearl EJ, Barker D, Day RC et al (2008) Identification of genes associated with regenerative success of Xenopus laevis hindlimbs. BMC Dev Biol 8:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Fukazawa T, Naora Y, Kunieda T (2009) Suppression of the immune response potentiates tadpole tail regeneration during the refractory period. Development 136:2323–2327

    Article  CAS  PubMed  Google Scholar 

  113. Chen G, Robert J (2011) Antiviral immunity in amphibians. Viruses 3:2065–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cotter JD, Storfer A, Page RB (2008) Transcriptional response of Mexican axolotls to Ambystoma tigrinum virus (ATV) infection. BMC Genomics 9:493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Kaufman J, Volk H, Wallny HJ (1995) A “minimal essential Mhc” and an “unrecognized Mhc”: two extremes in selection for polymorphism. Immunol Rev 143:63–88

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Rawls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lynch, C.A., Andre, A.B., Rawls, A. (2016). Dependency on Non-myogenic Cells for Regeneration of Skeletal Muscle. In: Wilson-Rawls, J., Kusumi, K. (eds) Innovations in Molecular Mechanisms and Tissue Engineering. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-44996-8_3

Download citation

Publish with us

Policies and ethics