Skip to main content

Psychophysical Correlates of Retinal Processing

  • Chapter
  • First Online:
Human Color Vision

Part of the book series: Springer Series in Vision Research ((SSVR,volume 5))

  • 2600 Accesses

Abstract

Color is a psychological construct of our visual experience that represents an interaction between the physical properties of objects in the environment, the illuminant, and our nervous system. This chapter describes how the psychophysically measured subjective experiences that arise from signals originating in the retina lead to chromatic and achromatic visual perception. We explore how the processing of cone signals under photopic illumination, the interaction between cones and rods under mesopic illumination, and rod signaling under scotopic illumination give rise to human color vision by examining links to retinal physiology and the effect that individual variability has on visual perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teller DY. Locus questions in visual science. In: Harris CS, editor. Visual coding and adaptability. Hillsdale, NJ: Lawrence Erlbaum Associates; 1980. p. 151–76.

    Google Scholar 

  2. Masaoka K, Berns RS, Fairchild MD, Abed FM. Number of discernible object colors is a conundrum. J Opt Soc Am A. 2013;30(2):264–77.

    Article  Google Scholar 

  3. Berlin B, Kay P. Basic color terms: their universality and evolution. Berkeley: University of California Press; 1969.

    Google Scholar 

  4. Boynton RM, Olson CX. Salience of chromatic basic color terms confirmed by three measures. Vision Res. 1990;30:1311–7.

    Article  CAS  PubMed  Google Scholar 

  5. Smith VC, Pokorny J. Chromatic-discrimination axes, CRT phosphor spectra, and individual variation in color vision. J Opt Soc Am A. 1995;12(1):27–35.

    Article  CAS  Google Scholar 

  6. Neitz J, Neitz M. The genetics of normal and defective color vision. Vision Res. 2011;51(7):633–51. doi:10.1016/j.visres.2010.12.002. S0042-6989(10)00569-9 [pii].

    Article  CAS  PubMed  Google Scholar 

  7. Neitz M, Kraft TW, Neitz J. Expression of L cone pigment gene subtypes in females. Vision Res. 1998;38(21):3221–5. S0042-6989(98)00076-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  8. Feigl B, Zele AJ. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells in retinal disease. Optom Vis Sci. 2014;91(8):894–903. doi:10.1097/OPX.0000000000000284.

    Article  PubMed  Google Scholar 

  9. Fechner GT. Elemente der Psychophysik. The classical psychologists. Boston: Houghton Mifflin; 1860.

    Google Scholar 

  10. Abney WD, Watson W. The threshold of vision for different coloured lights. Philos Trans R Soc Lond A. 1916;216:91.

    Article  Google Scholar 

  11. Smith VC, Pokorny J. Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Res. 1975;15(2):161–71. 0042-6989(75)90203-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  12. Hecht S, Haig C, Wald G. The dark adaptation of retinal fields of different size and location. J Gen Physiol. 1935;19(2):321–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stiles WS, Crawford BH. The luminous efficiency of rays entering the eye pupil at different points. Proc R Soc Lond B. 1933;112:428–50.

    Article  Google Scholar 

  14. deMonasterio FM, Gouras P, Tolhurst DJ. Concealed colour-opponency in ganglion cells of the rhesus monkey retina. J Physiol (London). 1975;251:251.

    Google Scholar 

  15. Finkelstein MA, Hood DC. Opponent-color cells can influence detection of small brief lights. Vision Res. 1982;22:89–95.

    Article  CAS  PubMed  Google Scholar 

  16. Wiesel T, Hubel DH. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol. 1966;29:1115–56.

    CAS  PubMed  Google Scholar 

  17. Lee BB. Neural models and physiological reality. Vis Neurosci. 2008;25(3):231–41. doi:10.1017/S0952523808080140.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ingling Jr CR, Grigsby SS. Perceptual correlates of magnocellular and parvocellular channels: seeing form and depth in afterimages. Vision Res. 1990;30:823–8.

    Article  PubMed  Google Scholar 

  19. Ingling Jr CR, Martinez-Uriegas E. Simple-opponent receptive fields are asymmetrical: G-cone centers predominate. J Opt Soc Am. 1983;73(11):1527–32.

    Article  PubMed  Google Scholar 

  20. Lennie P, D’Zmura MD. Mechanisms of color vision. CRC Crit Rev Neurobiol. 1988;3:333–400.

    CAS  Google Scholar 

  21. Barlow HB. Dark and light adaptation: psychophysics. In: Jameson D, Hurvich LM, editors. Handbook of sensory physiology, visual psychophysics. Berlin: Springer; 1972. p. 1–28.

    Chapter  Google Scholar 

  22. Hood DC, Finkelstein MA. A case for the revision of textbook models of color vision: the detection and appearance of small brief lights. In: Mollon JD, Sharpe LT, editors. Colour vision: physiology and psychophysics. London: Academic; 1983. p. 385–98.

    Google Scholar 

  23. Croner LJ, Purpura K, Kaplan E. Response variability in retinal ganglion cells of primates. Proc Natl Acad Sci U S A. 1993;90:8128–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gur M, Beylin A, Snodderly DM. Response variability of neurons in primary visual cortex (V1) of alert monkeys. J Neurosci. 1997;17(8):2914–20.

    CAS  PubMed  Google Scholar 

  25. Uzzell VJ, Chichilnisky EJ. Precision of spike trains in primate retinal ganglion cells. J Neurophysiol. 2004;92(2):780–9. doi:10.1152/jn.01171.2003.

    Article  CAS  PubMed  Google Scholar 

  26. Brindley GS. Physiology of the retina and the visual pathway. London: Arnold; 1960.

    Google Scholar 

  27. Teller DY. Linking propositions. Vision Res. 1984;24:1233–46.

    Article  CAS  PubMed  Google Scholar 

  28. Lamb TD. Spontaneous quantal events induced in toad rods by pigment bleaching. Nature. 1980;287(5780):349–51.

    Article  CAS  PubMed  Google Scholar 

  29. Stockman A, Sharpe LT. The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res. 2000;40(13):1711–37. S0042-6989(00)00021-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  30. Stockman A, Sharpe LT, Fach C. The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches. Vision Res. 1999;39(17):2901–27. S0042-6989(98)00225-9 [pii].

    Article  CAS  PubMed  Google Scholar 

  31. Rushton WA. Pigments and signals in colour vision. J Physiol. 1972;220(3):1P-P.

    Article  PubMed  Google Scholar 

  32. Graham CH, Hartline HK. The response of single visual sense cells to lights of different wave lengths. J Gen Physiol. 1935;18(6):917–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Young T. On the theory of light and colours. Philos Trans Lond. 1802;92:12–48.

    Article  Google Scholar 

  34. König A, Dieterici C. Die Grundempfindungen und ihre Intensitäts-Vertheilung im Spectrum. Berlin: Sitzungsberichte Akademie der Wissenschaften; 1886.

    Google Scholar 

  35. Stiles WS. Incremental thresholds and the mechanisms of colour vision. Doc Ophthalmol. 1949;3:138–63.

    Article  CAS  PubMed  Google Scholar 

  36. King-Smith PE, Webb JR. The use of photopic saturation in determining the fundamental spectral sensitivity curves. Vision Res. 1974;14(6):421–9. doi:0042-6989(74)90240-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  37. Stockman A, Mollon J. The spectral sensitivities of the middle- and long-wavelength cones: an extension of the two-colour threshold technique of W S Stiles. Perception. 1986;15(6):729–54.

    Article  CAS  PubMed  Google Scholar 

  38. Brainard DH, Stockman A. Colorimetry. In: Bass M, Enoch JM, Lakshminarayanan V, editors. Handbook of optics, Vision and vision optics, vol. 3. New York: McGraw Hill; 2010. p. 1–49.

    Google Scholar 

  39. Dartnall HJ, Bowmaker JK, Mollon JD. Human visual pigments: microspectrophotometric results from the eyes of seven persons. Proc R Soc Lond B Biol Sci. 1983;220(1218):115–30.

    Article  CAS  PubMed  Google Scholar 

  40. CIE. Fundamental chromaticity diagram with physiological axes—Part 1. Vienna: Central Bureau of the Commission Internationale de l’ Éclairage; 2006.

    Google Scholar 

  41. Asenjo AB, Rim J, Oprian DD. Molecular determinants of human red/green color discrimination. Neuron. 1994;12(5):1131–8. 0896-6273(94)90320-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  42. Neitz J, Neitz M, He JC, Shevell SK. Trichromatic color vision with only two spectrally distinct photopigments. Nat Neurosci. 1999;2(10):884–8. doi:10.1038/13185.

    Article  CAS  PubMed  Google Scholar 

  43. He JC, Shevell SK. Variation in color matching and discrimination among deuteranomalous trichromats: theoretical implications of small differences in photopigments. Vision Res. 1995;35(18):2579–88. 0042-6989(95)00007-M [pii].

    Article  CAS  PubMed  Google Scholar 

  44. Thomas PB, Formankiewicz MA, Mollon JD. The effect of photopigment optical density on the color vision of the anomalous trichromat. Vision Res. 2011;51(20):2224–33. doi:10.1016/j.visres.2011.08.016. S0042-6989(11)00305-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  45. Pokorny J, Smith VC. Effect of field size on red-green color mixture equations. J Opt Soc Am. 1976;66:705–8.

    Article  CAS  PubMed  Google Scholar 

  46. van de Kraats J, van Norren D. Optical density of the aging human ocular media in the visible and the UV. J Opt Soc Am A. 2007;24(7):1842–57.

    Article  Google Scholar 

  47. Snodderly DM, Brown PK, Delori FC, Auran JD. The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Invest Ophthalmol Vis Sci. 1984;25:660–73.

    CAS  PubMed  Google Scholar 

  48. Shevell SK, Kingdom FA. Color in complex scenes. Annu Rev Psychol. 2008;59:143–66. doi:10.1146/annurev.psych.59.103006.093619.

    Article  PubMed  Google Scholar 

  49. Hurvich LM, Jameson D. An opponent-process theory of color vision. Psychol Rev. 1957;64(6 Pt 1):384–404.

    Article  PubMed  Google Scholar 

  50. Hering E. Outlines of a theory of the light sense (L. M. Hurvich & D. Jameson, Transl.). Cambridge, MA: Harvard University Press; 1964.

    Google Scholar 

  51. De Valois RL, De Valois KK, Switkes E, Mahon L. Hue scaling of isoluminant and cone-specific lights. Vision Res. 1997;37(7):885–97. S0042698996002349 [pii].

    Article  PubMed  Google Scholar 

  52. King-Smith PE, Carden D. Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration. J Opt Soc Am. 1976;66(7):709–17.

    Article  CAS  PubMed  Google Scholar 

  53. Kranda K, King-Smith PE. Detection of coloured stimuli by independent linear systems. Vision Res. 1979;19(7):733–45. 0042-6989(79)90149-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  54. Calkins DJ, Thornton JE, Pugh Jr EN. Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus. Vision Res. 1992;32(12):2349–67. 0042-6989(92)90098-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  55. Mullen KT, Kulikowski JJ. Wavelength discrimination at detection threshold. J Opt Soc Am A. 1990;7(4):733–42.

    Article  CAS  PubMed  Google Scholar 

  56. Werner JS, Wooten BR. Opponent chromatic mechanisms: relation to photopigments and hue naming. J Opt Soc Am. 1979;69(3):422–34.

    Article  CAS  PubMed  Google Scholar 

  57. Krauskopf J, Williams DR, Heeley DW. Cardinal directions of color space. Vision Res. 1982;22(9):1123–31.

    Article  CAS  PubMed  Google Scholar 

  58. MacLeod DI, Boynton RM. Chromaticity diagram showing cone excitation by stimuli of equal luminance. J Opt Soc Am. 1979;69(8):1183–6.

    Article  CAS  PubMed  Google Scholar 

  59. Jordan G, Mollon JD. On the nature of unique hues. In: Dickinson C, Murray I, Carden D, editors. John Dalton’s colour vision legacy. London: Taylor and Francis; 1997. p. 381–92.

    Google Scholar 

  60. Kuehni RG. Variability in unique hue selection: a surprising phenomenon. Color Res Appl. 2004;29:158–62.

    Article  Google Scholar 

  61. De Valois RL, Abramov I, Jacobs GH. Analysis of response patterns of LGN cells. J Opt Soc Am A. 1966;56(7):966–77.

    Article  Google Scholar 

  62. De Valois RL, De Valois KK. A multi-stage color model. Vision Res. 1993;33(8):1053–65. 0042-6989(93)90240-W [pii].

    Article  PubMed  Google Scholar 

  63. Schmidt BP, Touch P, Neitz M, Neitz J. Circuitry to explain how the relative number of L and M cones shapes color experience. J Vis. 2016;16(8):18. doi:10.1167/16.8.18.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shevell SK, Humanski RA. Color perception under chromatic adaptation: red/green equilibria with adapted short-wavelength-sensitive cones. Vision Res. 1988;28(12):1345–56.

    Article  CAS  PubMed  Google Scholar 

  65. Stromeyer III CF, Chaparro A, Rodriguez C, Chen D, Hu E, Kronauer RE. Short-wave cone signal in the red-green detection mechanism. Vision Res. 1998;38(6):813–26. S0042-6989(97)00231-9 [pii].

    Article  PubMed  Google Scholar 

  66. Burns SA, Elsner AE, Pokorny J, Smith VC. The Abney effect: chromaticity coordinates of unique and other constant hues. Vision Res. 1984;24(5):479–89.

    Article  CAS  PubMed  Google Scholar 

  67. Webster MA, Mollon JD. The influence of contrast adaptation on color appearance. Vision Res. 1994;34(15):1993–2020. 0042-6989(94)90028-0 [pii].

    Article  CAS  PubMed  Google Scholar 

  68. Cole GR, Hine T, McIlhagga W. Detection mechanisms in L-, M-, and S-cone contrast space. J Opt Soc Am A. 1993;10(1):38–51.

    Article  CAS  PubMed  Google Scholar 

  69. Sankeralli MJ, Mullen KT. Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space. J Opt Soc Am A. 1997;14(10):2633–46.

    Article  CAS  Google Scholar 

  70. Sakurai M, Mullen KT. Cone weights for the two cone-opponent systems in peripheral vision and asymmetries of cone contrast sensitivity. Vision Res. 2006;46(26):4346–54. doi:10.1016/j.visres.2006.08.016. S0042-6989(06)00388-9 [pii].

    Article  PubMed  Google Scholar 

  71. Drum B. Hue signals from short- and middle-wavelength-sensitive cones. J Opt Soc Am A. 1989;6(1):153–7.

    Article  CAS  PubMed  Google Scholar 

  72. Guth SL. Model for color vision and light adaptation. J Opt Soc Am A. 1991;8(6):976–93.

    Article  CAS  PubMed  Google Scholar 

  73. Valberg A. Unique hues: an old problem for a new generation. Vision Res. 2001;41(13):1645–57. S0042-6989(01)00041-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  74. Webster MA, Miyahara E, Malkoc G, Raker VE. Variations in normal color vision. I. Cone-opponent axes. J Opt Soc Am A. 2000;17(9):1535–44.

    Article  CAS  Google Scholar 

  75. Boynton RM, Nagy AL, Olson CX. A flaw in equations for predicting chromatic differences. Color Res Appl. 1983;8:69–74.

    Article  Google Scholar 

  76. Cropper SJ, Kvansakul JG, Little DR. The categorisation of non-categorical colours: a novel paradigm in colour perception. PLoS One. 2013;8(3):e59945. doi:10.1371/journal.pone.0059945. PONE-D-12-39574 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schefrin BE, Werner JS. Loci of spectral unique hues throughout the life span. J Opt Soc Am A. 1990;7(2):305–11.

    Article  CAS  PubMed  Google Scholar 

  78. Wachtler T, Dohrmann U, Hertel R. Modeling color percepts of dichromats. Vision Res. 2004;44(24):2843–55. doi:10.1016/j.visres.2004.06.016. S0042-6989(04)00329-3 [pii].

    Article  PubMed  Google Scholar 

  79. Tailby C, Solomon SG, Lennie P. Functional asymmetries in visual pathways carrying S-cone signals in macaque. J Neurosci. 2008;28(15):4078–87. doi:10.1523/JNEUROSCI.5338-07.2008. 28/15/4078 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Field GD, Gauthier JL, Sher A, Greschner M, Machado TA, Jepson LH, et al. Functional connectivity in the retina at the resolution of photoreceptors. Nature. 2010;467(7316):673–7. doi:10.1038/nature09424. nature09424 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Delahunt PB, Webster MA, Ma L, Werner JS. Long-term renormalization of chromatic mechanisms following cataract surgery. Vis Neurosci. 2004;21(3):301–7. S0952523804213025 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mollon J. Monge: the Verriest lecture, Lyon, July 2005. Vis Neurosci. 2006;23(3–4):297–309. doi:10.1017/S0952523806233479. S0952523806233479 [pii].

    Article  PubMed  Google Scholar 

  83. Panorgias A, Kulikowski JJ, Parry NR, McKeefry DJ, Murray IJ. Phases of daylight and the stability of color perception in the near peripheral human retina. J Vision. 2012;12(3). doi:10.1167/12.3.1. 12.3.1.

    Google Scholar 

  84. Neitz J, Neitz M. Colour vision: the wonder of hue. Curr Biol. 2008;18(16):R700–2. doi:10.1016/j.cub.2008.06.062. S0960-9822(08)00819-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  85. Moreland J, Cruz A. Colour perception with the peripheral retina. Opt Acta. 1959;6:117–51.

    Article  Google Scholar 

  86. Mullen KT, Kingdom FA. Differential distributions of red-green and blue-yellow cone opponency across the visual field. Vis Neurosci. 2002;19(1):109–18. S0952523802191103 [pii].

    Article  PubMed  Google Scholar 

  87. Anderson SJ, Mullen KT, Hess RF. Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors. J Physiol. 1991;442:47–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mullen KT, Sankeralli MJ, Hess RF. Color and luminance vision in human amblyopia: shifts in isoluminance, contrast sensitivity losses, and positional deficits. Vision Res. 1996;36(5):645–53. 0042-6989(95)00159-X [pii].

    Article  CAS  PubMed  Google Scholar 

  89. Mullen KT, Sakurai M, Chu W. Does L/M cone opponency disappear in human periphery? Perception. 2005;34(8):951–9.

    Article  PubMed  Google Scholar 

  90. Stromeyer III CF, Lee J, Eskew Jr RT. Peripheral chromatic sensitivity for flashes: a post-receptoral red-green asymmetry. Vision Res. 1992;32(10):1865–73.

    Article  PubMed  Google Scholar 

  91. Williams DR, MacLeod DI, Hayhoe MM. Punctate sensitivity of the blue-sensitive mechanism. Vision Res. 1981;21(9):1357–75. 0042-6989(81)90242-X [pii].

    Article  CAS  PubMed  Google Scholar 

  92. Curcio CA, Allen KA, Sloan KR, Lerea CL, Hurley JB, Klock IB, et al. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol. 1991;312(4):610–24. doi:10.1002/cne.903120411.

    Article  CAS  PubMed  Google Scholar 

  93. Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye. Nature. 1999;397(6719):520–2. doi:10.1038/17383.

    Article  CAS  PubMed  Google Scholar 

  94. Roorda A, Metha AB, Lennie P, Williams DR. Packing arrangement of the three cone classes in primate retina. Vision Res. 2001;41(10–11):1291–306. S0042-6989(01)00043-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  95. Gowdy PD, Cicerone CM. The spatial arrangement of the L and M cones in the central fovea of the living human eye. Vision Res. 1998;38(17):2575–89. S0042-6989(97)00416-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  96. Otake S, Gowdy PD, Cicerone CM. The spatial arrangement of L and M cones in the peripheral human retina. Vision Res. 2000;40(6):677–93. S0042-6989(99)00202-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  97. Dacey DM. Parallel pathways for spectral coding in primate retina. Annu Rev Neurosci. 2000;23:743–75. doi:10.1146/annurev.neuro.23.1.743.

    Article  CAS  PubMed  Google Scholar 

  98. Reid RC, Shapley RM. Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. J Neurosci. 2002;22(14):6158–75. 20026444 22/14/6158 [pii].

    CAS  PubMed  Google Scholar 

  99. Newton JR, Eskew Jr RT. Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity. Vis Neurosci. 2003;20(5):511–21. S0952523803205058 [pii].

    Article  PubMed  Google Scholar 

  100. Vakrou C, Whitaker D, McGraw PV, McKeefry D. Functional evidence for cone-specific connectivity in the human retina. J Physiol. 2005;566(Pt 1):93–102. doi:10.1113/jphysiol.2005.084855. jphysiol.2005.084855 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Abramov I, Gordon J, Chan H. Color appearance in the peripheral retina: effects of stimulus size. J Opt Soc Am A. 1991;8(2):404–14.

    Article  CAS  PubMed  Google Scholar 

  102. McKeefry DJ, Murray IJ, Parry NR. Perceived shifts in saturation and hue of chromatic stimuli in the near peripheral retina. J Opt Soc Am A. 2007;24(10):3168–79. 141432 [pii].

    Article  Google Scholar 

  103. Parry NR, McKeefry DJ, Murray IJ. Variant and invariant color perception in the near peripheral retina. J Opt Soc Am A. 2006;23(7):1586–97. 90375 [pii].

    Article  Google Scholar 

  104. Volbrecht VJ, Nerger JL, Imhoff SM, Ayde CJ. Effect of the short-wavelength-sensitive-cone mosaic and rods on the locus of unique green. J Opt Soc Am A. 2000;17(3):628–34.

    Article  CAS  Google Scholar 

  105. Volbrecht VJ, Nerger JL. Color appearance at +/−10 degrees along the vertical and horizontal meridians. J Opt Soc Am A. 2012;29(2):A44–51. 226498 [pii].

    Article  Google Scholar 

  106. Kuchenbecker JA, Sahay M, Tait DM, Neitz M, Neitz J. Topography of the long- to middle-wavelength sensitive cone ratio in the human retina assessed with a wide-field color multifocal electroretinogram. Vis Neurosci. 2008;25(3):301–6. doi:10.1017/S0952523808080474. S0952523808080474 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  107. Pokorny J, Smith VC. L/M cone ratios and the null point of the perceptual red/green opponent system. Farbe. 1987;34:53–7.

    Google Scholar 

  108. Miyahara E, Pokorny J, Smith VC, Baron R, Baron E. Color vision in two observers with highly biased LWS/MWS cone ratios. Vision Res. 1998;38(4):601–12. S0042-6989(97)88334-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  109. Brainard DH, Roorda A, Yamauchi Y, Calderone JB, Metha A, Neitz M, et al. Functional consequences of the relative numbers of L and M cones. J Opt Soc Am A. 2000;17(3):607–14.

    Article  CAS  Google Scholar 

  110. De Vries HL. The luminosity curve of the eye as determined by measurements with the flickerphotometer. Physica. 1949;14:319–33.

    Article  Google Scholar 

  111. Yamaguchi T, Motulsky AG, Deeb SS. Visual pigment gene structure and expression in human retinae. Hum Mol Genet. 1997;6(7):981–90. dda133 [pii].

    Article  CAS  PubMed  Google Scholar 

  112. Kremers J, Scholl HP, Knau H, Berendschot TT, Usui T, Sharpe LT. L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry. J Opt Soc Am A. 2000;17(3):517–26.

    Article  CAS  Google Scholar 

  113. Bowmaker JK, Parry JW, Mollon J. The arrangement of L and M cones in human retina and a primate retina. In: Mollon J, Pokorny J, Knoblauch K, editors. Normal and defective colour vision. New York: Oxford University Press; 2003.

    Google Scholar 

  114. Rushton WA, Baker HD. Red–green sensitivity in normal vision. Vision Res. 1964;4(1):75–85.

    Article  CAS  PubMed  Google Scholar 

  115. Berendschot TT, van de Kraats J, van Norren D. Foveal cone mosaic and visual pigment density in dichromats. J Physiol (London). 1996;492(Pt 1):307–14.

    Article  CAS  Google Scholar 

  116. Hofer H, Carroll J, Neitz J, Neitz M, Williams DR. Organization of the human trichromatic cone mosaic. J Neurosci. 2005;25(42):9669–79. doi:10.1523/JNEUROSCI.2414-05.2005. 25/42/9669 [pii].

    Article  CAS  PubMed  Google Scholar 

  117. Gunther KL, Dobkins KR. Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye. Vision Res. 2002;42(11):1367–78. S0042698902000433 [pii].

    Article  PubMed  Google Scholar 

  118. Lennie P, Pokorny J, Smith VC. Luminance. J Opt Soc Am A. 1993;10(6):1283–93.

    Article  CAS  PubMed  Google Scholar 

  119. Diller L, Packer OS, Verweij J, McMahon MJ, Williams DR, Dacey DM. L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina. J Neurosci. 2004;24(5):1079–88. doi:10.1523/JNEUROSCI.3828-03.2004. 24/5/1079 [pii].

    Article  CAS  PubMed  Google Scholar 

  120. Martin PR, Blessing EM, Buzas P, Szmajda BA, Forte JD. Transmission of colour and acuity signals by parvocellular cells in marmoset monkeys. J Physiol. 2011;589(Pt 11):2795–812. doi:10.1113/jphysiol.2010.194076. jphysiol.2010.194076 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Crook JD, Manookin MB, Packer OS, Dacey DM. Horizontal cell feedback without cone type-selective inhibition mediates “red-green” color opponency in midget ganglion cells of the primate retina. J Neurosci. 2011;31(5):1762–72. doi:10.1523/JNEUROSCI.4385-10.2011. 31/5/1762 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Danilova MV, Chan CH, Mollon JD. Can spatial resolution reveal individual differences in the L:M cone ratio? Vision Res. 2013;78:26–38. doi:10.1016/j.visres.2012.12.006. S0042-6989(12)00396-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  123. Baraas RC, Gjelle JV, Finstad EB, Jacobsen SB, Gilson SJ. The relationship between perifoveal achromatic, L- and M-cone acuity and retinal structure as assessed with multimodal high resolution imaging. Vision Res. 2016. doi:10.1016/j.visres.2016.06.005.

    PubMed  Google Scholar 

  124. Kaiser PK, Lee BB, Martin PR, Valberg A. The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina. J Physiol (London). 1990;422:153–83.

    Article  CAS  Google Scholar 

  125. Lee BB, Martin PR, Valberg A. The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. J Physiol (London). 1988;404:323–47.

    Article  CAS  Google Scholar 

  126. Stockman A, MacLeod DI, Lebrun SJ. Faster than the eye can see: blue cones respond to rapid flicker. J Opt Soc Am A. 1993;10(6):1396–402.

    Article  CAS  PubMed  Google Scholar 

  127. Zele AJ, Cao D. Vision under mesopic and scotopic illumination. Front Psychol. 2015;5:1594. doi:10.3389/fpsyg.2014.01594.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Smith VC, Pokorny J. Large-field trichromacy in protanopes and deuteranopes. J Opt Soc Am. 1977;67:213–20.

    Article  CAS  PubMed  Google Scholar 

  129. Buck SL, Knight R, Fowler G, Hunt B. Rod influence on hue-scaling functions. Vision Res. 1998;38:3259–63.

    Article  CAS  PubMed  Google Scholar 

  130. Lythgoe R. Dark-adaptation and the peripheral colour sensations of normal subjects. Br J Ophthalmol. 1931;15:193–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Benimoff N, Schneider S, Hood DC. Interactions between rod and cone channels above threshold: a test of various models. Vision Res. 1982;22:1133–40.

    Article  CAS  PubMed  Google Scholar 

  132. Sun H, Pokorny J, Smith VC. Brightness Induction from rods. J Vis. 2001;1:32–41. doi:10.1167/1.1.4.

    CAS  PubMed  Google Scholar 

  133. Knight R, Buck SL, Pereverzeva M. Stimulus size affects rod influence on tritan chromatic discrimination. Color Res Appl. 2001;26:S65–8.

    Article  Google Scholar 

  134. Walkey HC, Barbur JL, Harlow JA, Makous W. Measurements of chromatic sensitivity in the mesopic range. Color Res Appl. 2001;26:S36–42.

    Article  Google Scholar 

  135. Cao D, Zele AJ, Pokorny J. Chromatic discrimination in the presence of incremental and decremental rod pedestals. Vis Neurosci. 2008;25(3):399–404. doi:10.1017/S0952523808080425

    Article  PubMed  Google Scholar 

  136. von Kries J. Uber die Funktion der Netzhautstabchen. Z Psychol Physiol Sinnesorg. 1896;9:81–123.

    Google Scholar 

  137. Nagel W. Appendix: Adaptation, twilight vision and the duplicity theory. Helmholtz’s treatise on physiological optics. Translated from the Third German Edition by J.P.C. Southall. Third German Edition ed. Rochester, New York: Optical Society of America; 1924. p. 313-43.

    Google Scholar 

  138. Pokorny J, Smithson H, Quinlan J. Photostimulator allowing independent control of rods and the three cone types. Vis Neurosci. 2004;21(3):263–7.

    Article  PubMed  Google Scholar 

  139. Cao D, Pokorny J, Smith VC. Matching rod percepts with cone stimuli. Vision Res. 2005;45(16):2119–28. doi:10.1016/j.visres.2005.01.034.

    Article  PubMed  Google Scholar 

  140. Cao D, Pokorny J, Smith VC, Zele AJ. Rod contributions to color perception: linear with rod contrast. Vision Res. 2008;48(26):2586–92. doi:10.1016/j.visres.2008.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zele AJ, Maynard ML, Feigl B. Rod and cone pathway signaling and interaction under mesopic illumination. J Vis. 2013;13(1):1–19. doi:10.1167/13.1.21.

    Article  Google Scholar 

  142. Willmer EN. Interaction between lights of different wave-length in the central fovea. J Physiol. 1950;111(1–2):69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lie I. Dark adaptation and the photochromatic interval. Doc Ophthalmol. 1963;17:411–510.

    Article  CAS  PubMed  Google Scholar 

  144. Stabell U, Stabell B. Scotopic contrast hues triggered by rod activity. Vision Res. 1975;15:1119–23.

    Article  CAS  PubMed  Google Scholar 

  145. McCann JJ. Rod-cone interactions: different color sensations from identical stimuli. Science. 1972;176(4040):1255–7.

    Article  CAS  PubMed  Google Scholar 

  146. Pokorny J, Lutze M, Cao D, Zele AJ. The color of night: surface color perception under dim illuminations. Vis Neurosci. 2006;23:525–30. doi:10.1017/S0952523806233492.

    Google Scholar 

  147. Elliott SL, Cao D. Scotopic hue percepts in natural scenes. J Vis. 2013;13(13):15. doi:10.1167/13.13.15.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Nagy AL, Boynton RM. Large-field color naming of dichromats with rods bleached. J Opt Soc Am. 1979;69(9):1259–65.

    Article  CAS  PubMed  Google Scholar 

  149. de Lange H. Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I Attenuation characteristics with white and coloured light. J Opt Soc Am. 1958;48:777–84.

    Article  Google Scholar 

  150. Kelly DH. Visual responses to time-dependent stimuli: I. Amplitude sensitivity measurements. J Opt Soc Am. 1961;51:422–9.

    Article  CAS  PubMed  Google Scholar 

  151. Schade Sr OH. Optical and photoelectric analog of the eye. J Opt Soc Am. 1956;46(9):721–39.

    Article  PubMed  Google Scholar 

  152. Snowden RJ, Hess RF, Waugh SJ. The processing of temporal modulation at different levels of retinal illuminance. Vision Res. 1995;35(6):775–89. 0042-6989(94)00158-I [pii].

    Article  CAS  PubMed  Google Scholar 

  153. Swanson WH, Ueno T, Smith VC, Pokorny J. Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations. J Opt Soc Am A. 1987;4(10):1992–2005.

    Article  CAS  PubMed  Google Scholar 

  154. Lee BB, Martin PR, Valberg A. Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker. J Physiol (London). 1989;414:223–43.

    Article  CAS  PubMed Central  Google Scholar 

  155. King-Smith PE, Kulikowski JJ. Pattern and flicker detection analysed by subthreshold summation. J Physiol (London). 1975;249:519–48.

    Article  CAS  Google Scholar 

  156. Mandler MB, Makous W. A three channel model of temporal frequency perception. Vision Res. 1984;24:1881–7.

    Article  CAS  PubMed  Google Scholar 

  157. Hess RF, Plant GT. Temporal frequency discrimination in human vision: evidence for an additional mechanism in the low spatial and high temporal frequency region. Vision Res. 1985;25:1493–500.

    Article  CAS  PubMed  Google Scholar 

  158. Metha AB, Mullen KT. Temporal mechanisms underlying flicker detection and identification for red-green and achromatic stimuli. J Opt Soc Am A. 1996;13:1969–80.

    Article  CAS  Google Scholar 

  159. Metha AB, Mullen KT. Red-green and achromatic temporal filters: a ratio model predicts contrast-dependent speed perception. J Opt Soc Am A. 1997;14:984–96.

    Article  CAS  Google Scholar 

  160. Baraas RC, Kulikowski JJ, Muldoon MR. Bar-like S-cone stimuli reveal the importance of an intermediate temporal filter. J Opt Soc Am A Opt Image Sci Vis. 2010;27(4):766–80. 196741 [pii].

    Article  PubMed  Google Scholar 

  161. Kulikowski JJ, Tolhurst DJ. Psychophysical evidence for sustained and transient detectors in human vision. J Physiol. 1973;232(1):149–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Clifford CWG, Spehar B, Solomon SG, Martin PR, Zaidi Q. Interactions between color and luminance in the perception of orientation. J Vis. 2003;3:106–15.

    Article  PubMed  Google Scholar 

  163. Smith VC, Pokorny J, Lee BB, Dacey DM. Sequential processing in vision: the interaction of sensitivity regulation and temporal dynamics. Vision Res. 2008;48(26):2649–56.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Yeh T, Lee BB, Kremers J. Temporal response of ganglion cells of the macaque retina to cone-specific modulation. J Opt Soc Am A Opt Image Sci Vis. 1995;12(3):456–64.

    Article  CAS  PubMed  Google Scholar 

  165. Conner JD, MacLeod DI. Rod photoreceptors detect rapid flicker. Science. 1977;195(4279):698–9.

    Article  CAS  PubMed  Google Scholar 

  166. Hecht S, Smith EL. Intermittent stimulation by light. IV. Area and the relation between critical frequency and intensity. J Gen Physiol. 1936;19:979–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hecht S, Verrijp CD. The influence of intensity, color and retinal location on the fusion frequency of intermittent illumination. Proc Natl Acad Sci U S A. 1933;19:522–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mullen KT. The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. J Physiol. 1985;359:381–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Thibos LN, Cheney FE, Walsh DJ. Retinal limits to the detection and resolution of gratings. J Opt Soc Am A. 1987;4(8):1524–9.

    Article  CAS  PubMed  Google Scholar 

  170. Rossi EA, Roorda A. The relationship between visual resolution and cone spacing in the human fovea. Nat Neurosci. 2010;13(2):156–7. doi:10.1038/nn.2465. nn.2465 [pii].

    Article  CAS  PubMed  Google Scholar 

  171. Dees EW, Gilson SJ, Neitz M, Baraas RC. The influence of L-opsin gene polymorphisms and neural ageing on spatio-chromatic contrast sensitivity in 20–71 year olds. Vision Res. 2015. doi:10.1016/j.visres.2015.08.015. S0042-6989(15)00284-9 [pii].

    PubMed  Google Scholar 

  172. Williams D, Sekiguchi N, Brainard D. Color, contrast sensitivity, and the cone mosaic. Proc Natl Acad Sci U S A. 1993;90(21):9770–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zaidi Q, Shapiro A, Hood D. The effect of adaptation on the differential sensitivity of the S-cone color system. Vision Res. 1992;32:1297–318.

    Article  CAS  PubMed  Google Scholar 

  174. Livingstone MS, Hubel DH. Psychophysical evidence for separate channels for the perception of form, color, motion and depth. J Neurosci. 1987;7:3416–68.

    CAS  PubMed  Google Scholar 

  175. Pokorny J, Smith VC. Psychophysical signatures associated with magnocellular and parvocellular pathway contrast gain. J Opt Soc Am A. 1997;14:2477–86.

    Article  CAS  Google Scholar 

  176. Pokorny J. Review: steady and pulsed pedestals, the how and why of post-receptoral pathway separation. J Vis. 2011;11(5):1–23. doi:10.1167/11.5.7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Australian Research Council Discovery Projects ARC-DP140100333 (A.J.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigmor C. Baraas Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baraas, R.C., Zele, A.J. (2016). Psychophysical Correlates of Retinal Processing. In: Kremers, J., Baraas, R., Marshall, N. (eds) Human Color Vision. Springer Series in Vision Research, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-44978-4_5

Download citation

Publish with us

Policies and ethics