Skip to main content
Log in

Dark adaptation and the photochromatic interval

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Summary

An experimental as well as a theoretical analysis of the photochromatic interval as a function of dark adaptation has been undertaken. It is commonly assumed that the variation of the photochromatic interval with dark adaptation bears the following simple relation to the two-step dark adaptation curve. During the first step of dark adaptation the specific threshold coincides with the absolute threshold, and the photochromatic interval should not appear until this period of dark adaptation is passed. During further stay in the dark, the specific threshold remains unchanged from its value at the break in the dark adaptation curve. The intensity area covered by the second step of the dark adaptation curve should, therefore, be a representation of the changing value of the photochromatic interval as dark adaptation proceeds beyond the first step.

An attempt was made to summarize the available empirical evidence relevant to this assumption. It was concluded that the assumed relation between the photochromatic interval and the dark adaptation curve has not been put to a direct empirical test. Other evidence having some bearing upon the question was found to be far from conclusive.

The first group of experiments was set up to decide whether the photochromatic interval can be derived (according to the prevailing assumptions) from the dark adaptation curve. The courses for both the absolute and the specific threshold curves were determined with red, orange, yellow, and blue light. As far as the first step of dark adaptation is concerned, the results from these experiments show that sometimes the two thresholds coincide, at other times, a small photochromatic interval is observed. It was concluded that to some extent this inconsistency may reasonably be ascribed to an inconsistent use of the criteria adopted for determination of the two thresholds. Concerning the second step of dark adaptation, the specific threshold starts rising in a negatively accelerated way at the break in the dark adaptation curve. Moreover, the specific threshold appears to rise to much the same extent as the absolute threshold drops. The rise of the specific threshold at a given moment and the corresponding drop of the absolute threshold were labelledb anda, respectively. The question was discussed as to whetherb can be expressed as a function ofa, independent of wave-length. It was concluded that although inter-colour differences exist with respect to this function, thea-b relation appears to represent an adequate quantitative expression of a lawful relationship between the dark adaptation curves for the absolute and the specific thresholds.

A second group of experiments was conducted to investigate further the extent of invariance in thea-b relation. The courses of the two thresholds during dark adaptation were determined with regard to variations in the following conditions: the location of the retinal area stimulated, the size of the retinal area stimulated, the duration of the preceding light adaptation, and the duration of the test-exposure. It was concluded from this second group of experiments that, except, perhaps, from duration of pre-adaptation, thea-b relation cannot be specified independent of the experimental conditions. However, variations in the factors investigated were generally found to produce systematic variations in thea-b relation.

A final experiment was carried out to investigate some questions concerning the variation in saturation with a variation of intensity above the specific threshold.

The result has been interpreted within the frame-work of the duplicity theory. This theory appears to be the only one which provides a satisfactory explanation of both the two-step dark adaptation curve and the photochromatic interval. However, the duplicity theory does not allow for a prediction of the course of the specific threshold curve and its relation to the dark adaptation curve. An evaluation of the explicit statements of the theory reveals that it falls short on the following critical points - which directly bear on the prediction of the specific threshold: Do cones make hue discrimination possible whenever they function ? How and where does the transition from rod to cone activity take place ? Do rods and cones function independently of each other ? What is the psychological effect of a possible simultaneous activity of rods and cones ? In view of these shortcomings the main implication of the present results is that in the dark-adapted eye rods and cones function and influence colour vision simultaneously within a wide range of intensities.

Résumé

Le but des expérimentations qui ont été entreprises était d'effectuer un test en vue d'établir la plausibilité de la supposition ordinaire selon laquelle la proportion quantitative entre l'intervalle photochromatique et l'état d'adaptation de l'oeil peut être constatée directement de la courbe d'adaptation à l'obscurité.

En se basant sur les résultats obtenues antérieurement on a supposé que l'intervalle photochromatique n'apparaît qu'au moment où l'oeil s'est adapté à un niveau correspondant au point de brisement dans la courbe d'adaptation à l'obscurité. On a de plus et sans base d'expérimentation, supposé qu'à partir du point de brisement le seuil spécifique reste inchangé, nonobstant les variations de l'état d'adaptation.

A la lumière de ces suppositions, les résultats principaux peuvent être résumés dans les deux points suivants:

  1. 1)

    Dans la plupart des conditions qui provoquent une courbe d'adaptation à l'obscurité bi-sectionnée, une petite intervalle photochromatique pourra être observée même au cours de l'espace de temps correspondant à la première partie de la courbe d'adaptation à l'obscurité.

  2. 2)

    A partir du moment correspondant au point de brisement dans la courbe d'adaptation à l'obscurité, et dans la plupart des conditions, le seuil spécifique augmente à chaque moment donné approximativement au même degré que le seuil absolu baisse.

Les résultats impliquent que dans l'oeil adapté à l'obscurité fonctionnent à la fois des bâtonnets et des cônes sur un domaine d'intensité étendu.

Zusammenfassung

Der Zweck der vorliegenden Experimente war die Haltbarkeit der gewöhnlichen Vermutung zu erproben, dass das quantitative Verhältnis zwischen dem photochromatischen Intervall und dem Adaptations-zustand des Auges direkt von der Dunkeladaptierungskurve abgeleitet werden kann.

Unterstützt durch frühere Ergebnisse ist angenommen worden, dass das photochromatische Intervall erst dann auftritt, wenn das Auge an ein Niveau adaptiert ist, welches dem Knickpunkt der Dunkeladaptierungskurve entspricht. Im weiteren ist, ohne irgendwelche experimentelle Unterstützung, angenommen worden, dass vom Knickpunkt aus die spezifische Schwelle ungeändert bleibt, ungeachtet der Variationen im Adaptationszustand.

Im Lichte dieser Vermutungen können die Hauptergebnisse in folgenden zwei Punkten zusammengefasst werden.

  1. 1)

    Unter den meisten Bedingungen, die eine zwei-geteilte Dunkel-adaptierungskurve hervorbringen, wird ein kleines photochromatisches Intervall beobachtet werden, auch in dem Zeitraum, der dem ersten Teil der Dunkeladaptierungskurve entspricht.

  2. 2)

    Von dem Zeitpunkt an, welcher dem Knickpunkt in der Dunkel-adaptierungskurve entspricht, steigt die spezifische Schwelle unter den meisten Bedingungen, zu jedem Zeitpunkt annäherungsweise im gleichen Grade wie die absolute Schwelle sinkt.

Die Ergebnisse implizieren, dass in dem dunkeladaptierten Auge sowohl Stäbchen wie Zapfen gleichzeitig über ein weites Intensitätsgebiet wirksam sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abney, W. &Watson, W. (1916) The Threshold of Vision For Different Coloured Lights.Phil. Trans. Roy. Soc. A., 216, 91–128.

    Article  Google Scholar 

  • Adams, Dorothy. (1929) Dark Adaptation.Med. Res. Counc. Spec. Rep. Ser. London: His Majesty's Stationary Office, No. 127.

  • Aguilar, M. &Stiles, W. S. (1954) Saturation of the Rod Mechanism of the Retina at High Levels of Stimulation.Opt. Acta, 1, 59–65.

    Article  Google Scholar 

  • Aubert, H. (1865) Physiologie der Netzhaut. Breslau: Morgenstern.

    Google Scholar 

  • Bartley, S. H. (1941). Vision. A Study of Its Basis. New York: Van Nostrand.

    Google Scholar 

  • Boring, E. G. (1942). Sensation and Perception in the History of Experimental Psychology. New York: Appleton - Century.

    Google Scholar 

  • Bridgeman, C. S. (1953) The Luminosity Curve as Affected by the Relation Between Rod and Cone Adaptation.J. opt. Soc. Amer., 43, 733–737.

    Article  Google Scholar 

  • Burch, G. J. (1905) On Colour-Vision by Very Weak Light.Proc. Roy. Soc. London, B, 76, 199–216.

    Article  Google Scholar 

  • Burnham, R. W., Evans, R. M. &Newhall, S. M. (1952) Influence On Colour Perception of Adaptation to Illumination.J. opt. Soc. Amer., 42, 597–605.

    Article  CAS  Google Scholar 

  • Butz, R. (1883) Untersuchungen über die physiologischen Funktionen der Peripherie der Netzhaut. Inaug. Diss. Dorpat.

  • Chapanis, A. (1944) Spectral Saturation and Its Relation to Colour-Vision Defects.J. exp. Psychol., 34, 24–44.

    Article  Google Scholar 

  • Charpentier, A. (1884) Nouvelles recherches analytiques sur les fonctions visuelles.Arch. Ophthal., Paris 4, 291–323.

    Google Scholar 

  • — (1896) La sensation lumineuse dans la fovea centralis.Arch. Ophthal., Paris 16, 337–344.

    Google Scholar 

  • Chodin, A. (1877) Ueber die Abhängigkeit der Farbenempfindungen von der Licht-stärke.Preyer, W.: Sammlung Physiologischer Abhandlungen. Jena. pp.379–444.

  • Chon, H. (1882) Ueber Farbenempflndungen bei schwacher künstlicher Beleuchtung.Arch. Augenheilk. 11, 283–302.

    Google Scholar 

  • Clarke, F. J. J. (1960) A Study of Troxler's Effect.Opt. Acta, 7, (3), 219–236.

    Article  Google Scholar 

  • Creed, R. S. &Granit, R. (1928) On The Latency of Negative After-Images Following Stimulation of Different Areas of the Retina.J. Physiol., 66, 281–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crozier, W. J. &Holway, A. H. (1939) Theory and Measurements of Visual Mechanisms. I. A Visual Discriminometer. II. Threshold Stimulus Intensity and Retinal Position.J. gen. Physiol., 22, 341–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • — &Wolf, E. (1941) Theory and Measurements of Visual Mechanisms. VI. Wave-Length and Flash Duration in Flicker.J. gen. Physiol., 25, 89–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dagher, M., Cruz, A. &Plaza, L. (1958) Colour Thresholds With Monochromatic Stimuli in the Spectral Region 530–630 mμ.Nat. physical lab. Symposium No. 8.Visual Problems of Colour, vol. 2. pp. 389–398. London: Her Majesty's Stationary Office.

    Google Scholar 

  • Dodt, E. (1952) Beiträge zur Elektrophysiologie des Auges. Über Hemmungsvorgänge in der menschlichen Retina.v. Graefes Arch. Ophthal., 153, 152–162.

    Article  CAS  Google Scholar 

  • Fick, A.E. (1888) Studien über Licht- und Farbenempfindung.Pflüg. Arch. ges. Physiol., 43, 441–501.

    Article  Google Scholar 

  • Grailich, J. (1854) Beitrag zur Theorie der gemischten Farben.S. B. k. Akad. Wiss. (Mat.-Nat.), 13, 201–284.

    Google Scholar 

  • Granit, R. (1927) Ueber eine Hemmung der Zapfenfunktion durch Stäbchenerregung beim Bewegungsnachbild.Z. Sinnesphysiol., 58, 95–110.

    Google Scholar 

  • — (1935) Two Types of Retinae and Their Electrical responses to Intermittent Stimuli in Light and Dark Adaptation.J. Physiol., 85, 421–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • — (1938) Processes of Adaptation in the Vertebrate Retina in the Light of Recent Photochemical and Electro-physiological Research.Docum. Ophthal., 1, 7–77.

    Article  CAS  Google Scholar 

  • — (1947) Sensory Mechanism of the Retina. London: Oxford Univ. Press.

    Google Scholar 

  • Granit, R. (1955) Receptors and Sensory Perception. Yale Univ. Press.

  • — &Riddell, H. A. (1934) The Electrical Responses of Light- and Darkadapted Frog's Eyes to Rhythmic and Continuous Stimuli.J. Physiol., 81, 1–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Göthlin, G. F. (1917) Die Energieschwelle für die Empfindung Rot in ihrer Abhängigkeit von der Wellenlänge der Lichtstrahlung.Kungl. Svenska Vetensk. Handl., 58, Nr. 1, 1–89.

    Google Scholar 

  • Hartridge, H. (1950) Recent Advances in the Physiology of Vision. London: Churchill.

    Google Scholar 

  • Hecht, S. (1925) The Visual Discrimination of Intensity and the Weber-Fechner Law.J. gen. Physiol., 7, 235–267.

    Article  Google Scholar 

  • — (1937) Rods, Cones, and the Chemical Basis of Vision.Physiol. Rev., 17, 239–290.

    Google Scholar 

  • —,Haig, C. &Chase, A. M. (1937) The Influence of Light Adaptation on Subsequent Dark Adaptation of the Eye.J. gen. Physiol., 20, 831–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • —,Haig, C. &Wald, G. (1935) The Dark Adaptation of Retinal Fields of Different Size and Location.J. gen. Physiol., 19, 321–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • —, &Hsia, Y. (1945) Dark Adaptation Following Light Adaptation to Red and White Lights.J. opt. Soc. Amer., 35, 261–267.

    Article  Google Scholar 

  • — &Mandelbaum, J. (1939) The Relation Between Vitamin A and Dark Adaptation.J.A.M.A., 112, 1910–1916.

    Article  CAS  Google Scholar 

  • — &Schlaer, S. (1938) An Adaptometer for Measuring Human Dark Adaptation.J. opt. Soc. Amer., 28. 269–275.

    Article  Google Scholar 

  • Hecht, S., Schlaer, S. &Smith, E. L. (1935) Intermittent Light Stimulation and the Duplicity Theory of Vision.Symposia, Cold Spring Harbour, on quantitative biology, 3, 237–244.

    Article  Google Scholar 

  • Hering, E. (1895) Ueber das sogen. Purkinje'sche Phänomen.Pflüg. Arch. ges. Physiol., 60, 519–542.

    Article  Google Scholar 

  • Hillebrand, F. (1889) Ueber die specifische Helligkeit der Farben.S.B. k.Akad. Wiss., 98, (3), 70–120.

    Google Scholar 

  • Hunt, R. W. G. (1952) Light and Dark Adaptation and the Perception of Colour.J. opt. Soc. Amer., 42, 190–199.

    Article  CAS  Google Scholar 

  • — (1953) The Perception of Color in 1 ° Fields for Different States of Adaptation.J. opt. Soc. Amer., 43, 479–484.

    Article  CAS  Google Scholar 

  • Kohlrausch, A. (1922) Untersuchungen mit farbigen Schwellenprüfslichtern über den Dunkeladaptationsverlauf des normalen Auges.Pflüg. Arch. ges. Physiol., 196, 113–117.

    Article  Google Scholar 

  • — (1931) Tagessehen, Dämmersehen, Adaptation.Handb. norm. path. Physiol., 12, Nr. 2, 1499–1555.

    Google Scholar 

  • Koster, W. (1895) Untersuchungen zur Lehre vom Farbensinn.Arch. Ophthal. 41, 1–20.

    Google Scholar 

  • Kries Von, J. (1895) Über den Einfluss der Adaptation auf Licht- und Farbenempfin- dungund über die Funktion der Stäbchen.Ber. nat. Ges. Freiburg i. Br., 9, (2), 61–70.

    Google Scholar 

  • — (1896) Über die Funktion der Netzhautstäbchen.Z. Psychol. Physiol. Sinnes-org., 9, 81–123.

    Google Scholar 

  • — &Nagel, W. A. (1900) Weitere Mitteilungen über die funktionelle Sonder- stellung des Netzhautcentrums.Z. Psychol. Physiol. Sinnesorg., 23, 161–186.

    Google Scholar 

  • König, A. (1891) Über den Helligkeitswert der Spectralfarben bei verschiedener absoluter Intensität. Beitr. Psychol. Physiol. Helmholtz-Festschrift, Hamburg. Pp.311–388.

  • König, A. (1894) Über den menschlichen Sehpurpur und seine Bedeutung für das Sehen.S. B. k. Akad. Wiss. Berlin, 577–598.

  • Loeser, L. (1904) Über den Einfluss der Dunkeladaptation auf die spezifische Farbenschwelle.Z. Psychol. Physiol. Sinnesorg., 36, 1–18.

    Google Scholar 

  • Lythgoe, R. J. (1938) The Structure of the Retina and the Role of Its Visual Purple.Proc. phys. Soc., 50, 321–339.

    Article  Google Scholar 

  • — (1940) The Mechanism of Dark Adaptation. A Critical Résumé.Brit. J. Ophthal., 24, 21–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandelbaum, J. (1941) Dark Adaptation. Some Physiologic and Clinical Considerations.Arch. Ophthal., 26, 203–239.

    Article  Google Scholar 

  • Mayer, A. (1903) Über die Abhängigkeit der Farbenschwelle von der Adaptation. Inaug. Diss. Freiburg in Br. Spreyer & Kaerner.

  • Monroe, M. M. (1925) The Energy Value of the Minimum Visible, Chromatic and Achromatic, for Different Wave-Lengths of the Spectrum.Psychol. Monogr., No. 158.

  • Müller, H. K. (1931) Über den Einfluss verschiedener langer Vorbelichtung auf die Dunkeladaptation und auf die Fehlgrösse der Schwellenreizbestimmung während der Dunkelanpassung.v. Graefes Arch. Ophthal., 125, 624–642.

    Article  Google Scholar 

  • Müller, G. E. (1924) Typen der Farbenblindheit. Göttingen.

  • Nagel, W. A. &Schaefer, K. L. (1904) Über das Verhalten der Netzhautzapfen bei Dunkeladaptation des Auges.Z. Psychol. Physiol. Sinnesorg., 34, 271–284.

    Google Scholar 

  • Parinaud, H. (1881) L'héméralopie et les fonctions du pourpre visuel.C.R. Acad. Sci., Paris, 93, 286–287.

    Google Scholar 

  • — (1894) La sensibilité lumineuse de l'oeil aux Couleurs spectrales, fonctions des éléments rétiniens et du pourpre visuel.Ann. Oculist., 112, 228–256.

    Google Scholar 

  • Piper, H. (1903) Über Dunkeladaptation.Z. Psychol. Physiol., 31, 161–214.

    Google Scholar 

  • Polyak, S. L. (1941) The Retina. Chicago: Univ. Chicago Press.

    Google Scholar 

  • Purdy, D. McL. (1931) On the Saturation and Chiomatic Thresholds of the Spectral Colours.Brit. J. Psychol., 21, 283–313.

    Google Scholar 

  • Purkinje, J. (1825) Beobachtungen und Versuche zur Physiologie der Sinne. 2. Berlin: Reimer.

    Google Scholar 

  • Rushton, W. A. H. (1959) Visual Pigments in Man and Animals and Their Relation to Seeing.Progr. Biophysics, 9, 239–283.

    Google Scholar 

  • Saugstad, P, &Saugstad, A. (1959) The Duplicity Theory. An Evaluation.Adv. Ophthal., 9, 1–51.

    Google Scholar 

  • Schultze, M. (1866) Zur Anatomie und Physiologie der Retina.Arch. Mikr. Anat., 2, 176–286.

    Google Scholar 

  • Sheard, C. (1944) Dark Adaptation: Some Physical, Physiological, Clinical, and Aeromedical Considerations.J. opt. Soc. Amer., 34, 464–508.

    Article  Google Scholar 

  • Sherman, F. D. (1898) Über das Purkinje'sche Phänomen im Zentrum der Netzhaut.Phil. Stud., 13, 434–479.

    Google Scholar 

  • Sloan, Louise L. (1950) The Threshold Gradients of the Rods and the Cones: In the Dark-Adapted and in the Partially Light Adapted Eye.Amer. J. Ophthal., 33, 1077–1089.

    Article  CAS  PubMed  Google Scholar 

  • Stiles, W. S. (1949) The Determination of the Spectral Sensitivities of the Retinal Mechanisms by Sensory Methods.Ned. T. Natuurk., 15, 125–146.

    Google Scholar 

  • Tschermak, A. (1898) Ueber die Bedeutung der Lichtstärke und des Zustandes des Sehorgans für farblose optische Gleichungen.Pflüg. Arch. ges. Physiol., 70, 297–328.

    Article  Google Scholar 

  • — (1902) Die Hell-Dunkeladaptation des Auges und die Funktion der Stäbchen und Zapfen.Ergebn. Physiol., 1, 695–800.

    Article  Google Scholar 

  • Wald, G. (1938) Area and Visual Threshold.J. gen. Physiol., 21, 269–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wald, G. (1945) Human Vision and the Spectrum.Science, 101, 653–658.

    Article  CAS  PubMed  Google Scholar 

  • — &Clark, Anna B. (1936) Sensory Adaptation and Chemistry of the Retinal Rods.Amer. J. Physiol., 116, 157–158.

    Google Scholar 

  • Walters, H. V. &Wright, W. D. (1943) The Spectral Sensitivity of the Fovea and Extrafovea in the Purkinje Range.Proc. roy. Soc. London, B 131, 340–361.

    Article  Google Scholar 

  • Weale, R. A. (1961) The Duplicity Theory of Vision.Ann. Roy. Coll. Surgeons of England, 28, 16–35.

    CAS  Google Scholar 

  • Willmer, E. N. (1946) Retinal Structure and Colour Vision. Cambridge: Cambridge Univ. Press.

    Google Scholar 

  • Winsor, C. P. &Clark, Anna-Betty. (1936) Dark Adaptation After Varying Degrees of Light Adaptation.Proc. Nat. Acad. Sci. U.S.A., 22, 400–404.

    Article  CAS  Google Scholar 

  • Wolf, E. &Zigler, M. J. (1951) Dark Adaptation Level and the Duration of Testflash.J. opt. Soc. Amer., 41, 130–133.

    Article  Google Scholar 

  • — (1954) Location of the Break in the Dark Adaptation Curve in Relation to Pre-Exposure Brightness and Pre-Exposure Time.J. opt. Soc. Amer., 44, 875–879.

    Article  CAS  Google Scholar 

  • Wright, W. O. (1946) Researches On Normal and Defective Colour Vision. London: Kimpton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lie, I. Dark adaptation and the photochromatic interval. Doc Ophthalmol 17, 411–510 (1963). https://doi.org/10.1007/BF00573528

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00573528

Keywords

Navigation