Skip to main content

Musculoskeletal Aging, Sarcopenia, and Cancer

  • Living reference work entry
  • First Online:
Geriatric Oncology

Abstract

The decrease in muscle mass and strength represents one of the most relevant descriptor of physiological aging. Sarcopenia is the term coined to indicate the pathologic loss of skeletal muscle mass and strength/function during aging. The skeletal muscle decline has a multifactorial origin, involving lifestyle habits, disease triggers, and age-dependent biological changes. This phenomenon is part of the geriatric background and is today starting to disseminate in other specialties dealing with the complexity of frail older persons. In the oncology field, the interest in muscle wasting has mostly been focused on the clinical entity of cancer cachexia, a complex metabolic syndrome characterized by severe muscle loss, systemic inflammation, and malnutrition. The study of body composition in the oncological setting is crucial and may become one of the main characterizations of the oncogeriatric field, where clinical and research actions have to be designed taking into account the consequences of the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adamsen L, et al. Effect of a multimodal high intensity exercise intervention in cancer patients undergoing chemotherapy: randomised controlled trial. BMJ. 2009;339:b3410.

    Article  PubMed  PubMed Central  Google Scholar 

  • Argilés JM. Cancer-associated malnutrition. Eur J Oncol Nurs. 2005;9(Suppl 2):S39–50.

    Article  PubMed  Google Scholar 

  • Argilés JM, et al. Skeletal muscle regulates metabolism via Interorgan crosstalk: roles in health and disease. J Am Med Dir Assoc. 2016;17:789–96.

    Article  PubMed  Google Scholar 

  • Balducci L, Ershler WB. Cancer and ageing: a nexus at several levels. Nat Rev Cancer. 2005;5:655–62.

    Article  PubMed  CAS  Google Scholar 

  • Batsis JA, et al. Sarcopenia, sarcopenic obesity and mortality in older adults: results from the National Health and Nutrition Examination Survey III. Eur J Clin Nutr. 2014;68:1001–7.

    Article  PubMed  CAS  Google Scholar 

  • Bauer J, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc. 2013;14:542–59.

    Article  PubMed  Google Scholar 

  • Baumgartner RN, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147:755–63.

    Article  PubMed  CAS  Google Scholar 

  • Beaudart C, et al. Sarcopenia in daily practice: assessment and management. BMC Geriatr. 2016;16:170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buford TW, et al. Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res Rev. 2010;9:369–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Butikofer L, et al. Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia. FASEB J. 2011;25:4378–93.

    Article  PubMed  CAS  Google Scholar 

  • Calvani R, et al. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem. 2013a;394:393–414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calvani R, et al. Current nutritional recommendations and novel dietary strategies to manage sarcopenia. J Frailty Aging. 2013b;2:38–53.

    PubMed  PubMed Central  Google Scholar 

  • Calvani R, et al. Biomarkers for physical frailty and sarcopenia: state of the science and future developments. J Cachexia Sarcopenia Muscle. 2015;6:278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvani R, et al. Systemic inflammation, body composition, and physical performance in old community-dwellers. J Cachexia Sarcopenia Muscle. 2016; https://doi.org/10.1002/jcsm.12134.

  • Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    Article  PubMed  CAS  Google Scholar 

  • Carter CS, et al. Angiotensin-converting enzyme inhibition intervention in elderly persons: effects on body composition and physical performance. J Gerontol A Biol Sci Med Sci. 2005;60:1437–46.

    Article  PubMed  Google Scholar 

  • Cesari M, Vellas B. Sarcopenia: a novel clinical condition or still a matter for research? J Am Med Dir Assoc. 2012;13:766–7.

    Article  PubMed  Google Scholar 

  • Cesari M, et al. Skeletal muscle and mortality results from the InCHIANTI Study. J Gerontol A Biol Sci Med Sci. 2009;64:377–84.

    Article  PubMed  Google Scholar 

  • Cesari M, et al. Vitamin D hormone: a multitude of actions potentially influencing the physical function decline in older persons. Geriatr Gerontol Int. 2011;11:133–42.

    Article  PubMed  Google Scholar 

  • Cesari M, et al. Biomarkers of sarcopenia in clinical trials-recommendations from the International Working Group on Sarcopenia. J Frailty Aging. 2012;1:102–10.

    Google Scholar 

  • Cesari M, et al. Functional status and mortality in older women with gynecological cancer. J Gerontol A Biol Sci Med Sci. 2013;68:1129–33.

    Article  PubMed  Google Scholar 

  • Cesari M, et al. Sarcopenia-related parameters and incident disability in older persons: results from the “Invecchiare in Chianti” Study. J Gerontol A Biol Sci Med Sci. 2015;70:547–58.

    Google Scholar 

  • Cesari M, et al. The geriatric management of frailty as paradigm of “The end of the disease era”. Eur J Intern Med. 2016a;31:11–4.

    Article  PubMed  Google Scholar 

  • Cesari M, Nobili A, Vitale G. Frailty and sarcopenia: from theory to clinical implementation and public health relevance. Eur J Intern Med. 2016b;35:1–9.

    Article  PubMed  Google Scholar 

  • Chahal HS, Drake WM. The endocrine system and ageing. J Pathol. 2007;211:173–80.

    Article  PubMed  CAS  Google Scholar 

  • Christensen JF, et al. Muscle dysfunction in cancer patients. Ann Oncol. 2014;25:947–58.

    Article  PubMed  CAS  Google Scholar 

  • Cleeland CS, et al. Reducing the toxicity of cancer therapy: recognizing needs, taking action. Nat Rev Clin Oncol. 2012;9:471–8.

    Article  PubMed  CAS  Google Scholar 

  • Combaret L, et al. Skeletal muscle proteolysis in aging. Curr Opin Clin Nutr Metab Care. 2009;12:37–41.

    Article  PubMed  Google Scholar 

  • Cruz-Jentoft AJ, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in older people. Age Ageing. 2010a;39:412–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz-Jentoft AJ, et al. Understanding sarcopenia as a geriatric syndrome. Curr Opin Clin Nutr Metab Care. 2010b;13:1–7.

    Article  PubMed  Google Scholar 

  • Dam TT, et al. An evidence-based comparison of operational criteria for the presence of sarcopenia. J Gerontol A Biol Sci Med Sci. 2014;69:584–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Delmonico MJ, et al. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc. 2007;55:769–74.

    Article  PubMed  Google Scholar 

  • Deutz NE, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33:929–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards BK, et al. Annual report to the nation on the status of cancer, 1973–1999, featuring implications of age and aging on U.S. cancer burden. Cancer. 2002;94:2766–92.

    Article  PubMed  Google Scholar 

  • Eijsvogels TM, Thompson PD. Exercise is medicine: at any dose. JAMA. 2015;314:1915–6.

    Article  PubMed  Google Scholar 

  • (1989) Epidemiologic and methodologic problems in determining nutritional status of older persons. In: Proceedings of a conference. Albuquerque, October 19–21, 1988. Am J Clin Nutr 50:1121–235. https://www.ncbi.nlm.nih.gov/pubmed/2816807.

  • Evans WJ. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr. 2010;91:1123S–7S.

    Article  PubMed  CAS  Google Scholar 

  • Evans WJ, et al. Cachexia: a new definition. Clin Nutr. 2008;27:793–9.

    Article  PubMed  CAS  Google Scholar 

  • Fearon K, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12:489–95.

    Article  PubMed  Google Scholar 

  • Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012;16:153–66.

    Article  PubMed  CAS  Google Scholar 

  • Ferrucci L, et al. Designing randomized, controlled trials aimed at preventing or delaying functional decline and disability in frail, older persons: a consensus report. J Am Geriatr Soc. 2004;52:625–34.

    Article  PubMed  Google Scholar 

  • Fielding RA, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12:249–56.

    Article  PubMed  Google Scholar 

  • Finkel T, Serrano M, Blasco MA. The common biology of cancer and ageing. Nature. 2007;448:767–74.

    Article  PubMed  CAS  Google Scholar 

  • Forbes GB. Longitudinal changes in adult fat-free mass: influence of body weight. Am J Clin Nutr. 1999;70: 1025–31.

    Article  PubMed  CAS  Google Scholar 

  • Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4–9.

    Article  PubMed  Google Scholar 

  • Galvão DA, et al. Exercise can prevent and even reverse adverse effects of androgen suppression treatment in men with prostate cancer. Prostate Cancer Prostatic Dis. 2007;10:340–6.

    Article  PubMed  Google Scholar 

  • Galvao DA, et al. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol. 2010;28:340–7.

    Article  PubMed  CAS  Google Scholar 

  • Gérard S, et al. Body composition and anti-neoplastic treatment in adult and older subjects – a systematic review. J Nutr Health Aging. 2016;20:878–88.

    Article  PubMed  CAS  Google Scholar 

  • Global Burden of Disease Cancer Collaboration, et al. Global, Regional, and National Cancer Incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 Cancer Groups, 1990 to 2015: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol. 2016; https://doi.org/10.1001/jamaoncol.2016.5688.

  • Hamaker ME, et al. Frailty screening methods for predicting outcome of a comprehensive geriatric assessment in elderly patients with cancer: a systematic review. Lancet Oncol. 2012;13:e437–44.

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  • Hepple RT, Rice CL. Innervation and neuromuscular control in ageing skeletal muscle. J Physiol. 2016;594:1965–78.

    Article  PubMed  CAS  Google Scholar 

  • Herndon LA, et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature. 2002;419:808–14.

    Article  PubMed  CAS  Google Scholar 

  • Hughes VA, et al. Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr. 2002;76:473–81.

    Article  PubMed  CAS  Google Scholar 

  • Hurria A, et al. Aging, the medical subspecialties, and career development: where we were, Where we are going. J Am Geriatr Soc. 2017;65:680.

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssen I, et al. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol. 2004;159:413–21.

    Article  PubMed  Google Scholar 

  • Jo E, et al. Potential mechanisms underlying the role of chronic inflammation in age-related muscle wasting. Aging Clin Exp Res. 2012;24:412–22.

    PubMed  CAS  Google Scholar 

  • Justice JN, et al. Comparative approaches to understanding the relation between aging and physical function. J Gerontol A Biol Sci Med Sci. 2016;71:1243–53.

    Article  PubMed  Google Scholar 

  • Kalinkovich A, Livshits G. Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev. 2016; https://doi.org/10.1016/j.arr.2016.09.008.

  • Kazemi-Bajestani SM, Mazurak VC, Baracos V. Computed tomography-defined muscle and fat wasting are associated with cancer clinical outcomes. Semin Cell Dev Biol. 2016;54:2–10.

    Article  PubMed  Google Scholar 

  • Landi F, et al. Sarcopenia as the biological substrate of physical frailty. Clin Geriatr Med. 2015;31:367–74.

    Article  PubMed  Google Scholar 

  • Landi F, et al. Age-related variations of muscle mass, strength, and physical performance in community-dwellers: results from the Milan EXPO Survey. J Am Med Dir Assoc. 2016a; https://doi.org/10.1016/j.jamda.2016.10.007.

  • Landi F, et al. Sarcopenia and frailty: from theoretical approach into clinical practice. Eur Geriatr Med. 2016b;7:197–200.

    Article  Google Scholar 

  • Lauretani F, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95:1851–60.

    Article  PubMed  Google Scholar 

  • López-Otín C, et al. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin L, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31:1539–47.

    Article  PubMed  Google Scholar 

  • Martone AM, et al. Treating sarcopenia in older and oldest old. Curr Pharm Des. 2015;21:1715–22.

    Article  PubMed  CAS  Google Scholar 

  • Marzetti E, et al. Sarcopenia of aging: underlying cellular mechanisms and protection by calorie restriction. Biofactors. 2009;35:28–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marzetti E, et al. Apoptosis in skeletal myocytes: a potential target for interventions against sarcopenia and physical frailty – a mini-review. Gerontology. 2012;58:99–106.

    Article  PubMed  CAS  Google Scholar 

  • Marzetti E, et al. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol. 2013;45:2288–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marzetti E, et al. Patterns of circulating inflammatory biomarkers in older persons with varying levels of physical performance: a partial least squares-discriminant analysis approach. Front Med (Lausanne). 2014;1:27.

    Google Scholar 

  • Marzetti E, et al. Innovative medicines initiative: the SPRINTT project. J Frailty Aging. 2015;4:207–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Marzetti E, et al. Brand new medicine for an Older Society. J Am Med Dir Assoc. 2016;17:558–9.

    Article  PubMed  Google Scholar 

  • Miquel J, et al. Mitochondrial role in cell aging. Exp Gerontol. 1980;15:575–91.

    Article  PubMed  CAS  Google Scholar 

  • Morley JE, et al. Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc. 2011;12:403–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muscaritoli M, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29:154–9.

    Article  PubMed  CAS  Google Scholar 

  • Newman AB, et al. Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc. 2003;51:1602–9.

    Article  PubMed  Google Scholar 

  • Nicholson JK, Wilson ID. Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov. 2003;2:668–76.

    Article  PubMed  CAS  Google Scholar 

  • Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care. 2009;12:86–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pahor M, Manini T, Cesari M. Sarcopenia: clinical evaluation, biological markers and other evaluation tools. J Nutr Health Aging. 2009;13:724–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pahor M, et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE Study Randomized Clinical Trial. JAMA. 2014;311:2387–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Picca A, Lezza AM. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: useful insights from aging and calorie restriction studies. Mitochondrion. 2015;25:67–75.

    Article  PubMed  CAS  Google Scholar 

  • Picca A, et al. A comparison among the tissue-specific effects of aging and calorie restriction on TFAM amount and TFAM-binding activity to mtDNA in rat. Biochim Biophys Acta. 2014;1840:2184–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prado CM. Body composition in chemotherapy: the promising role of CT scans. Curr Opin Clin Nutr Metab Care. 2013;16:525–33.

    Article  PubMed  Google Scholar 

  • Prado CM, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9:629–35.

    Article  PubMed  Google Scholar 

  • Prins JB. Adipose tissue as an endocrine organ. Best Pract Res Clin Endocrinol Metab. 2002;16:639–51.

    Article  PubMed  CAS  Google Scholar 

  • Psutka SP, et al. Sarcopenia in patients with bladder cancer undergoing radical cystectomy: impact on cancer-specific and all-cause mortality. Cancer. 2014;120:2910–8.

    Article  PubMed  Google Scholar 

  • Rier HN, et al. The prevalence and prognostic value of low muscle mass in Cancer patients: a review of the literature. Oncologist. 2016;21:1396.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riera CE, Dillin A. Tipping the metabolic scales towards increased longevity in mammals. Nat Cell Biol. 2015;17:196–203.

    Article  PubMed  CAS  Google Scholar 

  • Rolland YM, et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging. 2008;12:433–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rolland Y, et al. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIDemiologie de l’OSteoporose) Study. Am J Clin Nutr. 2009;89:1895–900.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127:990S–1S.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg IH, Roubenoff R. Stalking sarcopenia. Ann Intern Med. 1995;123:727–8.

    Article  PubMed  CAS  Google Scholar 

  • Rozhok AI, DeGregori J. The evolution of lifespan and age-dependent Cancer risk. Trends Cancer. 2016;2:552–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz JR, et al. Muscular strength and adiposity as predictors of adulthood cancer mortality in men. Cancer Epidemiol Biomark Prev. 2009;18:1468–76.

    Article  Google Scholar 

  • Sakuma K, Yamaguchi A. Sarcopenia and age-related endocrine function. Int J Endocrinol. 2012a;2012: 127362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakuma K, Yamaguchi A. Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass. J Cachexia Sarcopenia Muscle. 2012b;3:77–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shachar SS, et al. Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review. Eur J Cancer. 2016;57:58–67.

    Article  PubMed  Google Scholar 

  • Snyder PJ, et al. Effects of testosterone treatment in Older Men. N Engl J Med. 2016;374:611–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Studenski S. Target population for clinical trials. J Nutr Health Aging. 2009;13:729–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Studenski SA, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69:547–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan BH, et al. Sarcopenia in an overweight or obese patient is an adverse prognostic factor in pancreatic cancer. Clin Cancer Res. 2009;15:6973–9.

    Article  PubMed  CAS  Google Scholar 

  • van Vledder MG, et al. Body composition and outcome in patients undergoing resection of colorectal liver metastases. Br J Surg. 2012;99:550–7.

    Article  PubMed  Google Scholar 

  • Villaseñor A, et al. Prevalence and prognostic effect of sarcopenia in breast cancer survivors: the HEAL Study. J Cancer Surviv. 2012;6:398–406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Visser M, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci. 2005;60:324–33.

    Article  PubMed  Google Scholar 

  • Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitham M, Febbraio MA. The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat Rev Drug Discov. 2016;15:719–29.

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse L, et al. A phase 2 randomized study investigating the efficacy and safety of Myostatin antibody LY2495655 versus placebo in patients undergoing elective Total hip arthroplasty. J Frailty Aging. 2016;5:62–70.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Francesco Antognarelli for his invaluable assistance with the illustration (Fig. 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Cesari .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cesari, M., Calvani, R., Marzetti, E. (2018). Musculoskeletal Aging, Sarcopenia, and Cancer. In: Extermann, M. (eds) Geriatric Oncology . Springer, Cham. https://doi.org/10.1007/978-3-319-44870-1_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44870-1_59-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44870-1

  • Online ISBN: 978-3-319-44870-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics