Skip to main content
Log in

Reserpine can confer stress tolerance and lifespan extension in the nematode C. elegans

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Though the lifespan extension mechanism is partly understood from C. elegans to mice, a viable pharmacological intervention is not yet feasible. Here, we report that reserpine largely known as an antipsychotic–antihypertensive drug, can extend C. elegans lifespan. Chronic reserpine treatment from embryo stage or young adults extends the C. elegans lifespan robustly at 25°C. Most importantly, the reserpine treated long lived worms are active (locomotion and pharyngeal pumping) for a long time thereby conferring high quality throughout life. Reserpine mediated lifespan extension is independent of the daf-16 pathway and partly requires serotonin. Reserpine treatment makes the worms highly thermotolerant. Thus, in addition to its known function, reserpine is able to provide stress tolerance and lifespan extension in C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcedo J, Kenyon C (2004) Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 41:45–55

    Article  PubMed  CAS  Google Scholar 

  • Apfeld J, Kenyon C (1999) Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402:804–809

    Article  PubMed  CAS  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  PubMed  CAS  Google Scholar 

  • Bleuler M, Stoll WA (1955) Clinical use of reserpine in psychiatry: comparison with chlorpromazine. Ann N Y Acad Sci 61:167–173

    Article  PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • Chase DL, Koelle MR (2007) Biogenic amine neurotransmitters in C. elegans. WormBook, ed. The C. elegans Research Community, WormBook. doi:10.1895/wormbook.1.132.1. http://www.wormbook.org

  • Dempsey CM, Mackenzie SM, Gargus A, Blanco G, Sze JY (2005) Serotonin (5HT), fluoxetine, imipramine and dopamine target distinct 5HT receptor signaling to modulate Caenorhabditis elegans egg-laying behavior. Genetics 169:1425–1436

    Article  PubMed  CAS  Google Scholar 

  • Duerr JS, Frisby DL, Gaskin J, Duke A, Asermely K, Huddleston D, Eiden LE, Rand JB (1999) The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors. J Neurosci 19:72–84

    PubMed  CAS  Google Scholar 

  • Evason K, Huang C, Yamben I, Covey DF, Kornfeld K (2005) Anticonvulsant medications extend worm life-span. Science 307:258–262

    Article  PubMed  CAS  Google Scholar 

  • Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980

    Article  PubMed  CAS  Google Scholar 

  • Hercus MJ, Loeschcke V, Rattan SI (2003) Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology 4:149–156

    Article  PubMed  CAS  Google Scholar 

  • Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Xiong C, Kornfeld K (2004) Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci U S A 101:8084–8089

    Article  PubMed  CAS  Google Scholar 

  • Johnson TE, de Castro E, Hegi de Castro S, Cypser J, Henderson S, Tedesco P (2001) Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in Caenorhabditis elegans. Exp Gerontol 36:1609–1617

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    Article  PubMed  CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  PubMed  CAS  Google Scholar 

  • Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95:13091–13096

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90:8905–8909

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL, Albert PS, Riddle DL (1995) Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139:1567–1583

    PubMed  CAS  Google Scholar 

  • Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115(4):489–502

    Article  PubMed  CAS  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci U S A 92:7540–7544

    Article  PubMed  CAS  Google Scholar 

  • Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    Article  PubMed  CAS  Google Scholar 

  • Olsen A, Vantipalli MC, Lithgow GJ (2006) Lifespan extension of Caenorhabditis elegans following repeated mild hormetic heat treatments. Biogerontology 7:221–230

    Article  PubMed  Google Scholar 

  • Palhagen S, Heinonen E, Hagglund J, Kaugesaar T, Maki-Ikola O, Palm R; Swedish Parkinson Study Group (2006) Selegiline slows the progression of the symptoms of Parkinson disease. Neurologology 66:1200–1266

    Google Scholar 

  • Petrascheck M, Ye X, Buck LB (2007) An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 450:553–556

    Article  PubMed  CAS  Google Scholar 

  • Pinkston JM, Garigan D, Hansen M, Kenyon C (2006) Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313:971–975

    Article  PubMed  CAS  Google Scholar 

  • Purves D et al (eds) (2001) Neurotransmitters, chap 1.6. Neuroscience, 2nd ed. Sinauer Associates, Inc

  • Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) (1997) C. elegans II. Cold Spring Harbor Laboratory Press

  • Sulston JE, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode C. elegans. J Comp Neurol 163:215–226

    Article  PubMed  CAS  Google Scholar 

  • Sze JY, Victor M, Loer C, Shi Y, Ruvkun G (2000) Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403:560–564

    Article  PubMed  CAS  Google Scholar 

  • Vakil RJ (1949) A clinical trial of Rauwolfia serpentina in essential hypertension. Br Heart J 11:350–355

    Article  PubMed  CAS  Google Scholar 

  • Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolkow CA (2006) Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5:59–68

    Article  PubMed  CAS  Google Scholar 

  • Wolkow CA, Kimura KD, Lee MS, Ruvkun G (2000) Regulation of C. elegans life-span by insulin like signaling in the nervous system. Science 290:147–150

    Article  PubMed  CAS  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Vatner DE, O’Connor JP, Ivessa A, Ge H, Chen W, Hirotani S, Ishikawa Y, Sadoshima J, Vatner SF (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130:247–258

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. K. Subramaniam for help with the worm expertise, Indian Institute of Technology, Kanpur, India for financial support and C. elegans Stock Center, supported by National Institutes of Health, for providing the mutant strains of C. elegans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamuna R. Subramaniam.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 301 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, D., Arya, U., SoundaraRajan, T. et al. Reserpine can confer stress tolerance and lifespan extension in the nematode C. elegans . Biogerontology 9, 309–316 (2008). https://doi.org/10.1007/s10522-008-9139-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9139-5

Keywords

Navigation