Skip to main content

Defects in Oxides in Electronic Devices

  • Reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

This chapter provides an overview of established models of some of the typical defects in oxides used in microelectronic devices, highlighting some recent results of theoretical modeling as well as existing problems of computational methods. In numerous electrical measurements, defects in oxide dielectric films have been demonstrated to be electrically active, meaning that they can capture and emit charge carriers from the substrate as well as the gate. These defects, commonly referred to as charge traps, can strongly affect the device characteristics or even impair their functionality causing device failure. Predictive theoretical modeling and simulation of growth and properties of complex and often disordered thin oxide films became a powerful tool of materials discovery where new sophisticated methods of computer experiments play an important part in designing and screening new materials and studying and predicting their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afanas’ev VV, Stesmans A (1998) Hydrogen-induced valence alternation state at SiO2 interfaces. Phys Rev Lett 80:5176–5179

    Article  ADS  Google Scholar 

  • Alay JL, Hirose M (1997) The valence band alignment at ultrathin SiO2/Si interfaces. J Appl Phys 81:1606

    Article  ADS  Google Scholar 

  • Bachlechner ME, Omeltchenko A, Nakano A, Kalia RK, Vashishta P (1998) Multimillion-atom molecular dynamics simulation of atomic level stresses in Si(111)/Si3N4(0001) nanopixels. Appl Phys Lett 72:1969–1971

    Article  ADS  Google Scholar 

  • Blöchl PE (2000) First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen. Phys Rev B 62:6158–6179

    Article  ADS  Google Scholar 

  • Chen Y, Kolopus JL, Sibley WA (1969) Luminescence of the F+ center in MgO. Phys Rev 186:865

    Article  ADS  Google Scholar 

  • Cox SFJ (2003) The shallow-to-deep instability of hydrogen and muonium in II–VI and III–V semiconductors. J Phys Condens Matter 15(46):R1727

    Article  ADS  Google Scholar 

  • Cox SFJ, Gavartin JL, Lord JS, Cottrell SP, Gil JM, Alberto HV, Piroto Duarte J, Vilao RC, Ayres De Campos N, Keeble DJ et al (2006) Oxide muonics: II. Modelling the electrical activity of hydrogen in wide-gap and high-permittivity dielectrics. J Phys Condens Matter 18(3):1079

    Google Scholar 

  • Degreave R, Kaczer B, Groeseneken G (1999) Degradation and breakdown in thin oxide layers: mechanisms, models and reliability prediction. Microelectron Reliab 39:1445–1460

    Article  Google Scholar 

  • Dkhissi A, Este‘ve A, Mastail C, Mazaleyrat G, Olivier S, Jeloaica L, Djafari Rouhani M (2008) Multiscale modeling of the atomic layer deposition of HfO2 thin film grown on silicon: how to deal with a kinetic Monte Carlo procedure. J Chem Theory Comput 4:1915–1927

    Google Scholar 

  • Dkhissi A, Mazaleyrat G, Este‘ve A, Djafari Rouhani M (2009) Nucleation and growth of atomic layer deposition of HfO2 gate dielectric layers on silicon oxide: a multiscale modelling investigation. Phys Chem Chem Phys 11:3701–3709

    Google Scholar 

  • Edwards AH, Fowler WB (1999) Recent advances in the theory of oxide-semiconductor interfaces. Microel Reliab 39:3–14

    Article  Google Scholar 

  • El-Sayed Al-M, Watkins MB, Grasser T, Afanas’ev VV, Shluger AL (2015) Hydrogen-induced rupture of strained Si-O bonds in amorphous silicon dioxide. Phys Rev Lett 114(11):115503

    Article  ADS  Google Scholar 

  • Fleetwood DM (2002) Effects of hydrogen transport and reactions on miscroelectronics radiation response and reliability. Microelectron Reliab 42:523–541

    Article  Google Scholar 

  • Fleetwood DM, Pantelides ST, Schrimpf RD (eds) (2008) Defects in microelectronic materials and devices. CRC Press, Boca Raton

    Google Scholar 

  • Forst CJ, Ashman CR, Schwarz K, Blochl PE (2004) The interface between silicon and a high-k oxide. Nature 427:53–56

    Article  ADS  Google Scholar 

  • Foster AS, Lopez Gejo F, Shluger AL, Nieminen RM (2002a) Vacancy and interstitial defects in hafnia. Phys Rev B 65:174117

    Article  ADS  Google Scholar 

  • Foster AS, Shluger AL, Nieminen RM (2002b) Mechanism of interstitial oxygen diffusion in hafnia. Phys Rev Lett 89:225901–1–225901–4

    Google Scholar 

  • Freysoldt C, Grabowski B, Hickel T, Janotti A, Neugebauer J, Kresse G, Van de Walle CG (2014) First-principles calculations for point defects in solids. Rev Mod Phys 86:254–305

    Article  ADS  Google Scholar 

  • Gavartin JL, Shluger AL (2007) Modeling HfO2/SiO2/Si interface. Microel Eng 84:2412– 2415

    Article  Google Scholar 

  • Gellings PJ, Bouwmeester HJM (2000) Solid state aspects of oxidation catalysis. Catal Today 58:1–53

    Article  Google Scholar 

  • Godet J, Broqvist P, Pasquarello A (2007) Hydrogen in Si (100)-SiO2-HfO2 gate stacks: relevant charge states and their location. Appl Phys Lett 91(26):262901

    Article  ADS  Google Scholar 

  • Grasser T (ed) (2014) Bias temperature instability for devices and circuits, Springer, New York

    Google Scholar 

  • Griscom DL (2000) The natures of point defects in amorphous silicon dioxide. In: Pacchioni G, Skuja L, Griscom DL (eds). Defects in SiO2 and related dielectrics: science and technology. NATO science series, pp 117–161. Kluwer, Dordrecht

    Chapter  Google Scholar 

  • Griscom DL, Friebele EJ, Jr Sigel GH (1974) Observation and analysis of the primary 29Si hyperfine structure of the E’ center in non-crystalline SiO2. Sol State Sommun 15:479

    Article  ADS  Google Scholar 

  • Hayes W, Stoneham AM (1985) Defects and defect processes in non-metallic solids. Wiley, New York

    Google Scholar 

  • Henderson B (1980) Anion vacancy centers in alkaline earth oxides. CRC Critical Rev Sol St Mater Sci 9:1–60

    Article  ADS  Google Scholar 

  • Henderson B, Wertz JE (1977) Defects in the alkaline earth oxides with applications to radiation damage and catalysis, Taylor and Francis, London

    Google Scholar 

  • Hine NDM, Frensch K, Foulkes WMC, Finnis MW (2009) Supercell size scaling of density functional theory formation energies of charged defects. Phys Rev B 79:024112

    Article  ADS  Google Scholar 

  • Hofmann A, Ganduglia-Pirovano MV, Sauer J (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep 62: 219–270

    Article  ADS  Google Scholar 

  • Islam MS (2000) Ionic transport in ABO3 perovskite oxides: a computer modelling tour. J Mater Chem 10:1027–1038

    Article  Google Scholar 

  • Jupille J, Thornton G (eds) (2015) Defects at oxide surfaces. Springer, Cham

    Google Scholar 

  • Kaviani M, Afanasev VV, Shluger AL (2017) Interactions of hydrogen with amorphous hafnium oxide. Phys Rev B 95(7):075117

    Article  ADS  Google Scholar 

  • Kawamoto A, Jameson J, Cho K, Dutton RW (2000) Challenges for atomic scale modelling in alternative gate stack engineering. IEEE Trans Electr Dev 47(10):1787–1794

    Article  ADS  Google Scholar 

  • Kawamoto A, Cho K, Dutton R (2002) Perspectives paper: first principles modelling of high-k dielectrics. J Comp Aided Mater Design 8:39–57

    Article  Google Scholar 

  • Kotomin EA, Popov AI (1998) Radiation-induced point defects in simple oxides. Nucl Instr Meth Phys B 141:1

    Article  ADS  Google Scholar 

  • Kotomin EE, Maier J, Eglitis RI, Borstel G (2002) Calculation of radiation-induced point defect, polarons and excitons in ferroelectric perovskites. Nuclear Instr Meth Phys Res B 191:22

    Article  ADS  Google Scholar 

  • Lenahan PM, Jr Conley JF (1998) What can electronic paramagnetic resonance tell us about the Si/SiO2 system. J Vac Sci Technol 16(4):2134–2153

    Article  Google Scholar 

  • Li H, Robertson J (2014) Behaviour of hydrogen in wide band gap oxides. J Appl Phys 115(20):203708

    Article  ADS  Google Scholar 

  • Lyons JL, Janotti A, Van de Walle CG (2011) The role of oxygen-related defects and hydrogen impurities in HfO2 and ZrO2. Microelectron Eng 88(7):1452–1456

    Article  Google Scholar 

  • Massoud HZ, Baumvol IJR, Hirose M, Poindexter EH (eds) (2000) The physics and chemistry of SiO2 and the Si-SiO2 interface, vol 4. The Electrochemical Society, Pennington, NJ

    Google Scholar 

  • Medvedeva JE, Buchholz DB, Chang RPH (2017) Recent advances in understanding the structure and properties of amorphous oxide semiconductors. Adv Electron Mater 3:1700082–1–17

    Google Scholar 

  • Mihaychuk JG, Shamir N, van Driel HM (1999) Multiphonon photoemission and electric-field-induced optical second- harmonic generation as probes of charge transfer across the Si/SiO2 interface. Phys Rev B 59:2164

    Article  ADS  Google Scholar 

  • Millon E (2013) Advanced functional oxide thin films grown by pulsed-laser deposition. Appl Surf Sci 278(7):2–6

    Article  ADS  Google Scholar 

  • Muñoz Ramo D, Gavartin JL, Shluger AL, Bersuker G (2007) Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory. Phys Rev B 75:205336

    Article  ADS  Google Scholar 

  • Netzer FP, Fortunelli A (eds) (2016) Oxide materials at the two-dimensional limit. Springer, Cham

    Google Scholar 

  • Neumark GF (1997) Defects in wide band gap II-VI crystals. Mater Sci Eng Reports 21:1–46

    Article  Google Scholar 

  • Pacchioni G (2000) Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity. Solid State Sci 2:161–179

    Article  ADS  Google Scholar 

  • Pacchioni G (2000) Theory of point defects at the MgO surface, In: Woodruff DP (ed) The chemical physics of solid surfaces vol 9 - oxide surfaces, pp 94–135. Elsevier, Amsterdam

    Google Scholar 

  • Pacchioni G, Skuja L, Griscom DL (eds) (2000) Defects in SiO2 and related dielectrics: science and technology. NATO science series. Kluwer, Dordrecht

    Google Scholar 

  • Pandey A, Biswas P, Drabold DA (2016) Inversion of diffraction data for amorphous materials. Sci Rep 6:33731

    Article  ADS  Google Scholar 

  • Popov AI, Kotomin EA, Maier J (2010) Basic properties of the F-type centers in halides, oxides and perovskites. Nucl Instr Meth Phys Res B 268:2084–3089

    Article  Google Scholar 

  • Reichel F, Jeurgens LPH, Mittemeijer EJ (2008) The thermodynamic stability of amorphous oxide overgrowths on metals. Acta Mater 56(7):659–674

    Article  Google Scholar 

  • Ricci D, Di Valentin C, Pacchioni G, Sushko PV, Shluger AL, Giamello E (2003) Paramagnetic defect centers at the MgO surface. An alternative model to oxygen vacancies. J Am Chem Soc 125(3):738–747

    Article  Google Scholar 

  • Stathis JH (2002) Reliability limits for the gate insulator in CMOS technology. IBM J Res Dev 46:265–286

    Article  Google Scholar 

  • Sulimov VB, Sushko PV, Edwards AH, Shluger AL, Stoneham AM (2002) Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy in α-quartz. Phys Rev B 66:024108

    Article  ADS  Google Scholar 

  • Tse KY, Liu D, Robertson J (2010) Electronic and atomic structure of metal-HfO2 interfaces. Phys Rev B 81:035325

    Article  ADS  Google Scholar 

  • van Duin ACT, Strachan A, Stewman S, Zhang Q, Xu X, III Goddard WA (2003) ReaxffSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A 107:3803–3811

    Google Scholar 

  • Weber JR, Janotti A, Van de Walle CG (2011) Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide semiconductor-based devices. J Appl Phys 109:033715

    Article  ADS  Google Scholar 

  • Weeks RA (1956) Paramagnetic resonance of lattice defects in irradiated quartz. J Appl Phys 27:1376–1381

    Article  ADS  Google Scholar 

  • Weeks RA (1994) The many varieties of E’ centers: a review. J Non-Cryst Solids 179:1–9

    Article  ADS  Google Scholar 

  • Wimmer Y, El-Sayed Al-M, Gös W, Grasser T, Shluger AL (2016) Role of hydrogen in volatile behaviour of defects in SiO2-based electronic devices. In: Proceedings of the Royal Society A 472:20160009. The Royal Society

    Google Scholar 

  • Zeng Z, Hangaard Hansen M, Greeley JP, Rossmeisl J, Bjrketun ME (2014) Ab initio thermodynamic modeling of electrified metal-oxide interfaces: consistent treatment of electronic and ionic chemical potentials. J Phys Chem C 118:22663–22671

    Article  Google Scholar 

  • Zunger A (1998) Theoretical predictions of electronic materials and their properties. Current Opinion Sol St Mater Sci 3:32–37

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Funding provided by EPSRC under grants No. EP/K01739X/1 and EP/P013503/1 and by the Leverhulme Trust RPG-2016-135 is gratefully acknowledged. Computer facilities on Archer service have been provided via the UK’s HPC Materials Chemistry Consortium (EPSRC Grant No. EP/L000202). I am grateful to J. Gavartin, P. Sushko, A.-M. El-Sayed, D. Z. Gao, M. Kaviani, J. Strand, J. Cottom, and O. Dicks for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Shluger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shluger, A. (2020). Defects in Oxides in Electronic Devices. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44680-6_79

Download citation

Publish with us

Policies and ethics