Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 2))

Abstract

Amorphous silicon dioxide (a-SiO2) plays a central role in many of today’s technologies, including fiber optics for communications and satellite data bus applications, as the gate and field oxides in 90% of all contemporary metal-oxide-semiconductor (MOS) devices (e.g., computer chips), as windows, photomasks, and transmissive optics for ultravioletlaser microchip lithography, and as thin films for highly reflective (or highly transmissive) coatings for laser optics. Point defects in aSiO2 introduced in the manufacturing process or induced by ionizing or particle irradiations (including ultraviolet photons) can degrade the otherwise excellent properties of this material, potentially leading to device failure in the field. In principal, a single fundamental defect type, or class of defects, may at the same time cause massive attenuation in optical fibers and lead to equally fatal threshold voltage shifts in MOS transistors. It is easy to imagine how improvements in identification and control of these defects could result in billions of dollars in cost savings to photonics and semiconductor industries over the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Abragam and B. Bleaney (1970) Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London.

    Google Scholar 

  2. W. Weltner, Jr. (1983) Magnetic A toms and Molecules, Dover, New York.

    Google Scholar 

  3. J.A. Weil, J.R. Bolton, and J.E. Wertz (1996) Electron Paramagnetic Resonance: Elemental Theory and Practical Applications, Wiley, New York.

    Google Scholar 

  4. D.L. Griscom (1990) Rev. Solid State Science 4, 565.

    CAS  Google Scholar 

  5. M. Cook and C.T. White (1989) Surf. Sci. Technol. 4, 1012

    CAS  Google Scholar 

  6. A.H. Edwards and W.B. Fowler (1990) Phys. Rev. B14, 10816.

    Google Scholar 

  7. D.L. Griscom, P.J. Bray, and R.E. Griscom (1967) J. Chem. Phys. 47, 2711.

    Article  CAS  Google Scholar 

  8. D.L. Griscom (1990) Glass: Science and Technology Vol. 4B, D.R. Uhlmann and N.J. Kreidl, Ed., Academic Press, Boston, pp. 151–251.

    Google Scholar 

  9. D.L. Griscom (1966) Ph.D. Thesis, Brown University, Providence, RI.

    Google Scholar 

  10. D.L. Griscom, C.I. Merzbacher, R.A. Weeks, R.A. Zuhr (1999) J. Non-Cryst. Solids 258, 34.

    Article  CAS  Google Scholar 

  11. W. Känzig and M.H. Cohen (1959) Phys. Rev. Lett. 3, 509.

    Article  Google Scholar 

  12. G. Hochstrasser and J.F. Antonini (1972) Surf. Sci. 32, 644.

    Article  CAS  Google Scholar 

  13. D.L. Griscom (1980) Phys. Rev. B22, 4192.

    Google Scholar 

  14. D.L. Griscom (1984) Nucl. Inst.&Methods Bl, 481.

    Article  Google Scholar 

  15. R.H. Silsbee (1961) J. Appl. Phys. 32, 1459.

    Article  CAS  Google Scholar 

  16. F.J. Feigl and J.H. Anderson (1970) J. Phys. Chem. Solids 31, 575.

    Article  CAS  Google Scholar 

  17. M.G. Jani, R.B. Bossoli, and L.E. Halliburton (1983) Phys. Rev. B27, 2285.

    Google Scholar 

  18. K.L. Yip and W.B. Fowler (1975) Phys. Rev. B11, 2327.

    Google Scholar 

  19. J.K. Rudra and W.B. Fowler (1987) Phys. Rev. B35, 8223.

    Google Scholar 

  20. D.C. Alan and M.P. Teter (1990) J. Am. Ceram. Soc. 73, 3247.

    Article  Google Scholar 

  21. K.C. Snyder and W.B. Fowler (1993) Phys. Rev. B48, 13238.

    Google Scholar 

  22. M. Boero, A. Pasquarello, J. Samthein, and R. Car (1997) Phys. Rev. Lett. 78, 887.

    Article  CAS  Google Scholar 

  23. F.J. Feigl, W.B. Fowler, and K.L. Yip., Sol. State Commun. 14 (1974) 225.

    Article  CAS  Google Scholar 

  24. D.L. Griscom, E.J. Friebele, and G.H. Sigel, Jr. (1974) Sol. State Commun. 15, 479.

    Article  CAS  Google Scholar 

  25. J. Vitko, Jr. (1978) J. Appl. Phys. 49, 5530.

    Article  CAS  Google Scholar 

  26. T.-E. Tsai and D.L. Griscom (1987) J. Non-Cryst. Solids 91, 170.

    Article  CAS  Google Scholar 

  27. A.R. Reinberg (1964) J. Chem. Phys. 41, 850.

    Article  CAS  Google Scholar 

  28. A.C. Wright (1994) J. Non-Cryst. Solids 179, 84.

    Article  CAS  Google Scholar 

  29. D.L. Griscom (1979) Phys. Rev. B20, 1823.

    Google Scholar 

  30. D.L. Griscom and M. Cook (1995) J. Non-Cryst. Solids 182, 119.

    Article  CAS  Google Scholar 

  31. R.L. Mozzi and B.E. Warren (1969) J. Appl. Cryst. 2, 164.

    Article  CAS  Google Scholar 

  32. A.H. Edwards, W.B. Fowler, and T.S. Elicker (1997) Mater. Sci. Forum 239-241, 11.

    Article  CAS  Google Scholar 

  33. L. Skuja (1998) J. Non-Cryst. Solids 239, 16.

    Article  CAS  Google Scholar 

  34. D.L. Griscom, M. Stapelbroek, and E.J. Friebele (1983) J. Chem. Phys. 78, 1638.

    Article  CAS  Google Scholar 

  35. D.L. Griscom (1984) J. Non-Cryst. Solids 68, 301.

    Article  CAS  Google Scholar 

  36. R.A. Weeks (1963) Phys. Rev. 130, 570.

    Article  CAS  Google Scholar 

  37. Wm. R. Austin and R.G. Leisure (1996) Phys. Rev. B54, 15064.

    Google Scholar 

  38. E.J. Friebele, D.L. Griscom, and K. Rau (1983) J. Non-Cryst. Solids 57, 167.

    Article  CAS  Google Scholar 

  39. Wm. R. Austin and R.G. Leisure (1996) J. Appl. Phys. 80, 6646.

    Article  CAS  Google Scholar 

  40. T.E. Tsai, D.L. Griscom and E.J. Friebele (1988) Phys. Rev. B 38, 2140.

    Google Scholar 

  41. D.L. Griscom, E.J. Friebele, K.J. Long, and J.W. Fleming (1983) J. Appl. Phys. 54, 3743.

    Article  CAS  Google Scholar 

  42. V.A. Radtsig (1979) Kinetika i Kataliz 20, 456.

    CAS  Google Scholar 

  43. D.L. Griscom and E.J. Friebele (1986) Phys. Rev. B34, 7524.

    Google Scholar 

  44. M.E. Zvanut, T.L. Chen, R.E. Stahlbush, E.S. Steigerwalt, and G.A. Brown (1995) J. Appl Phys. 77, 1.

    Article  Google Scholar 

  45. E. Wasserman, L.C. Snyder, and Y.A. Yager (1964) J. Chem. Phys. 41, 1763.

    Article  CAS  Google Scholar 

  46. R.A. Weeks (1956) J. Appl Phys. 27, 1376.

    Article  CAS  Google Scholar 

  47. D.L. Griscom (1978) J. Non-Cryst. Solids 31, 241.

    Article  CAS  Google Scholar 

  48. M. Stapelbroek, D.L. Griscom, E.J. Friebele, and G.H. Sigel, Jr. (1979)7. Non-Cryst. Solids 32, 313.

    Google Scholar 

  49. D.L. Griscom and C.J. Brinker (1987) Diffusion and Defect Data 53-54, 213.

    Article  CAS  Google Scholar 

  50. D.L. Griscom and M. Mizuguchi (1998) J. Non-Cryst. Solids 239, 66.

    Article  CAS  Google Scholar 

  51. E.J. Friebele, D.L. Griscom, M. Stapelbroek, and R.A. Weeks (1979) Phys. Rev. Lett. 42, 1346.

    Article  CAS  Google Scholar 

  52. D.L. Griscom and E.J. Friebele (1981) Phys. Rev. B 24, 4896.

    Article  CAS  Google Scholar 

  53. D.L. Griscom (1992) J. Non-Cryst. Solids 149, 137.

    Article  CAS  Google Scholar 

  54. D.L. Griscom (1990) Nucl. Inst&Methods B46. 12.

    CAS  Google Scholar 

  55. A.H. Edwards and W.B. Fowler (1982) Phys. Rev. B26, 6649.

    Google Scholar 

  56. R.L. Pfeffer (1988) in The Physics and Technology of Amorphous SiO2, R.A.B. Devine, Ed., Plenum Publishing, New York, pp. 181.

    Chapter  Google Scholar 

  57. R.L. Pfeffer (1988) in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, C.R. Helms and B.E. Deal, Eds., Plenum Press, New York, pp. 169–176.

    Google Scholar 

  58. F.J. Norton (1961) Nature 191, 701.

    Article  CAS  Google Scholar 

  59. L. Skuja and B. Guttler (1996) Phys. Rev. Lett. 67, 2093.

    Article  Google Scholar 

  60. R.L. Pfeffer (1985) J. Appl. Phys. 57, 5176.

    Article  CAS  Google Scholar 

  61. J.H.O. Varley (1954) Nature (London) 174, 886.

    Article  CAS  Google Scholar 

  62. H. Nishikawa, R. Nakamura, R. Tohmon, Y. Ohki, Y. Sakurai, K. Nagasawa, and H. Hama (1990) Phys. Rev. B41, 7828.

    Google Scholar 

  63. T.-E. Tsai and D.L. Griscom (1991) Phys. Rev. Lett. 67, 2517.

    Article  CAS  Google Scholar 

  64. D. Emin (1976) Linear and Nonlinear Electron Transport in Solids, J.T. Devreese and V.E. van Doren, Ed., Plenum, New York, pp. 409–433.

    Google Scholar 

  65. N. F. Mott (1977) A dv. Phys. 26, 363.

    CAS  Google Scholar 

  66. T.O. Woodruff and W. Kanzig (1958) J. Phys. Chem. Solids 5, 268.

    Article  CAS  Google Scholar 

  67. P.W. Anderson (1958) Phys. Rev. 109, 1492.

    Article  CAS  Google Scholar 

  68. W. Hayes and T.J.L. Jenkin (1986) J. Phys. C 19, 6211.

    Article  CAS  Google Scholar 

  69. D.L. Griscom (1989) Phys. Rev. B 40, 4224.

    Article  CAS  Google Scholar 

  70. P.V. Chernov, E.M. Dianov, V.N. Karpechev, L.S. Kornienko, I.O. Morozova, A.O. Rybaltovskii, V.O. Sokolov and V.B. Sulimov (1989) Phys. Stat. Sol. B 115, 663.

    Google Scholar 

  71. E. Harari, S. Wang, and B.S.H. Royce (1975) J. Appl. Phys. 46, 1310.

    Article  CAS  Google Scholar 

  72. K.L. Brower, P.M. Lenahan and P.V. Dressendorfer (1982) Appl. Phys. Lett. 41, 251.

    Article  CAS  Google Scholar 

  73. N.S. Saks, R.B. Klein, S. Yoon, and D.L. Griscom (1991) J. Appl Phys. 70, 7434.

    Article  CAS  Google Scholar 

  74. G.E. Peterson, C.R. Kurkjian, and A. Carnavale (1974) Phys. Chem. Glasses 15, 52.

    CAS  Google Scholar 

  75. S.T. Pantelides and W.A. Harrison (1976) Phys. Rev. B 13, 2667.

    Article  CAS  Google Scholar 

  76. D.L. Griscom, E.J. Friebele and S.P. Mukherjee (1987) Crystal Lattice Defects and Amorphous Materials 17

    Google Scholar 

  77. R. Cases and D.L. Griscom (1984) Nucl. Inst.&Methods. B1, 503.

    Article  Google Scholar 

  78. R.A.B. Devine is thanked for densifying this sample.

    Google Scholar 

  79. D.L. Griscom, C.J. Brinker, and R.A.B. Devine (1992) presented at 94th Annual Mtg. of the American Ceramic Society.

    Google Scholar 

  80. A.G. Revesz, B.J. Mrstik, and H.L. Hughes (1988) The Physics and Technology of Amorphous SiO2 R.A.B. Devine, Ed., Plenum, New York, 297.

    Chapter  Google Scholar 

  81. R.A.B. Devine and J. Arndt (1987) Phys. Rev. B35, 9376.

    Google Scholar 

  82. R.A.B. Devine and J. Arndt (1989) Phys. Rev. B39, 5132.

    Google Scholar 

  83. D.L. Griscom (1997) Materials Sci. Forum Vols. 239-241, 19.

    Article  CAS  Google Scholar 

  84. D.L. Griscom (1997) Appl Phys. Lett. 71, 175.

    Article  CAS  Google Scholar 

  85. K. Nagasawa, M. Tanabe, and K. Yahagi (1984) Jpn. J. Appl. Phys. 23, 1608.

    Article  CAS  Google Scholar 

  86. D.L. Griscom (1996) J. Appl. Phys. 80, 2142.

    Article  CAS  Google Scholar 

  87. W. Primak (1958) Phys. Rev. 110, 1240.

    Article  CAS  Google Scholar 

  88. R.A.B. Devine (1994) Nucl. Inst.&Methods B 91, 378.

    Article  CAS  Google Scholar 

  89. J.A. Ruller and E.J. Friebele (1991) J. Non-Cryst. Solids 136, 163.

    Article  CAS  Google Scholar 

  90. O. Deparis, D.L. Griscom, P. Mégret, M. Decréton, and M. Blondel (1997) J. Non-Cryst. Solids 216, 124.

    Article  CAS  Google Scholar 

  91. R.A. Weeks (1997) J. Non-Cryst. Solids 179, 1.

    Article  Google Scholar 

  92. A. Stesmans. (1997) J. Non-Cryst. Solids 179, 10.

    Article  Google Scholar 

  93. J.R. Chavez, S.P. Karna, K. Vanheusden, C.P. Brothers, R.D. Pugh, B.K. Singaraju, W.L. Warren, and R.A.B. Devine (1997) IEEE Trans. Nucl. Sci. NS-44, 1799.

    Article  Google Scholar 

  94. G. Pacchioni and A. Basile (1999) Phys. Rev. B60, 9990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Griscom, D.L. (2000). THE NATURES OF POINT DEFECTS IN AMORPHOUS SILICON DIOXIDE. In: Pacchioni, G., Skuja, L., Griscom, D.L. (eds) Defects in SiO2 and Related Dielectrics: Science and Technology. NATO Science Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0944-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0944-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6686-7

  • Online ISBN: 978-94-010-0944-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics