Skip to main content

Research Collections in Germany: Modern Trends in Methods of Sorting, Preserving, and Research

  • Chapter
  • First Online:
Zoological Collections of Germany

Part of the book series: Natural History Collections ((NHC))

  • 918 Accesses

Abstract

Research methods applied in zoological collections are reviewed. Collection management and data processing are briefly introduced referring to the most integrative database systems. In the section on conservation techniques, the new task of preserving tissues for molecular research is emphasized.

The main focus of this overview is to provide some insight into modern imaging techniques like 3D and CT scanning, as well as into the expanding wealth of molecular techniques which have made museum collections extremely valuable sources for phylogenetics and population genetics, as well as for applications in monitoring biodiversity, such as DNA bar coding.

Modern techniques may be increasingly sophisticated and costly, yet there is no reason why they should not be applied even to smaller collections, as a research cooperation with universities and other large research institutions is always possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For about 75 years (1870–1945), the Berlin Museum für Naturkunde was kind of a central German natural history museum and thus acquired the largest zoological collection of all German museums, but time was too short to dominate the others, and as it was located in Eastern Germany, it suffered from a delayed development during the time of the German Democratic Republic (1949–1990).

  2. 2.

    Special cases are collections linked to an aquarium, e.g., the Löbbecke Museum and Aquazoo at Düsseldorf and the Deutsches Meeresmuseum with its Ozeaneum at Stralsund. Their live animal displays clearly dominate over their museum collections, providing very attractive sources of income.

  3. 3.

    Genotyping is the measurement of general genetic variation in the genome.

References

  • Abel RL, Laurini C, Richter M (2012) A biologist’s guide to ‘virtual’ micro-CT preparation. Palaeontol Electron 15:1–16

    Google Scholar 

  • Cooper A (1994) DNA from museum specimens. In: Herrmann B, Hummel S (eds) Ancient DNA. Heidelberg, Berlin, pp 149–165

    Chapter  Google Scholar 

  • Diamond JM (1990) Old dead rats are valuable. Nature 347:334–335

    Article  CAS  PubMed  Google Scholar 

  • Döppes D, Gill-Frerking H, Joger U, Rosendahl W, Stümpel N (2014) A mountain hare mummy from the Zillertaler Alps. In: Yearbook of mummy studies. München, vol 2, pp 23–29

    Google Scholar 

  • Ellegren H (1994) Genomic DNA from museum bird feathers. In: Herrmann B, Hummel S (eds) Ancient DNA. Heidelberg, Berlin, pp 211–217

    Chapter  Google Scholar 

  • Green RE, Krause J et al (2010) A draft sequence of the Neandertal genome. Science 328:710–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood AD, Lee F, Capelli C, Possnert G, Pääbo S (1999) Evolution of endogenous retrovirus-like elements of the Woolly Mammoth (Mammuthus primigenius) and its relatives. Mol Biol Evol 16:840–847

    Article  Google Scholar 

  • Guschanski K, Krause J, Sawyer S, Valente LM, Bailey S, Finstermeier K, Sabin R, Gilissen E, Sonet G, Nagy ZT, Lenglet G, Mayer F, Savolainen V (2013) Next-Generation Museomics disentangles one of the largest primate radiations. Syst Biol 62:539–554

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagelberg E (1994) Mitochondrial DNA from ancient bones. In: Herrmann B, Hummel S (eds) Ancient DNA. Heidelberg, Berlin, pp 195–204

    Chapter  Google Scholar 

  • Hauf J, Baur A, Chalwatzis N, Joger U, Zimmermann FK, Lazarev P (1995) Selective amplification of a mammoth mitochondrial cytochrome b fragment using an elephant-specific primer. Curr Genet 27:486–487

    Article  CAS  PubMed  Google Scholar 

  • Hauf J, Joger U, Zimmermann FK, Lazarev P, Vartanyan SL (1999) Protein and nucleic acid sequences of Woolly Mammoth cytochrome b and the phylogenetic position of Mammuthus within the Elephantidae. In: Haynes G, Klimowicz J, Reumer JWF (eds) Mammoths and the Mammoths Fauna: studies of an extinct ecosystem. Proceedings of the 1st international mammoth conference, St. Petersburg, Russia, Deinsea (Rotterdam), vol 6, pp 211–217

    Google Scholar 

  • Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54:852–859

    Article  PubMed  Google Scholar 

  • Henderickx H, Tafforeau P, Soriano C (2012) Phase-contrast synchrotron microtomography reveals the morphology of a partially visible new Pseudogarypus in Baltic amber (Pseudoscorpiones: Pseudogarypidae). Palaeontol Electron 15:1–11

    Google Scholar 

  • Höss M, Pääbo S, Vereshchagin NK (1994) Mammoth DNA sequences. Nature 370:333

    Article  PubMed  Google Scholar 

  • Joger U (1984) Morphologische und biochemisch-immunologische Untersuchungen zur Systematik und Evolution der Gattung Tarentola. Zool Jb Anat 112:137–256

    Google Scholar 

  • Joger U (1996) Molekularbiologische Methoden in der phylogenetischen Rekonstruktion. Zool Beiträge 37(1):77–131

    Google Scholar 

  • Joger U, Ritter A (2012) Die Geburt des Braunschweiger Spinophorosaurus. Vermessung von Dinosaurierknochen mit 3D-Technologie. IQjournal (Braunschweig) 1/2012:12–13

    Google Scholar 

  • Kress WJ, Erickson DL (eds) (2012) DNA barcodes: methods and protocols. Springer protocols methods in molecular biology, p 858

    Google Scholar 

  • Lalueza-Fox C, Römpler H, Caramelli D, Stäubert C, Catalano G, Hughes D, Rohland N, Pilli E, Longo L, Condemi S, de la Rasilla M, Fortea J, Rosas A, Stoneking M, Schöneberg T, Bertranpetit J, Hofreiter M (2007) A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 318:5855

    Article  Google Scholar 

  • Lenk P, Joger U, Fritz U, Heidrich P, Wink M (1999) Phylogeographic patterns in the mitochondrial cytochrome b gene of the European pond turtle, Emys orbicularis (Linnaeus). Mol Ecol 8:1911–1912

    Article  CAS  PubMed  Google Scholar 

  • Martinkova N, Searle JB (2006) Amplification success rate of DNA from museum skin collections: a case study of stoats from 18 museums. Mol Ecol 6:1014–1017

    Article  CAS  Google Scholar 

  • Mullis KB, Falloona FA (1987) Specific synthesis of DNA in vitro visa a polymerase catalized chain reaction. Methods Enzymol 155:335–350

    Article  CAS  PubMed  Google Scholar 

  • Murphy RW, Crawford AJ, Bauer AM, Che J, Donnellan SC, Fritz U, Haddad CFB, Nagy ZT, Poyarkov NY, Vences M, Wang W-Z, Zhang Y-P (2013) Cold code: the global initiative to DNA barcode amphibians and nonavian reptiles. Mol Ecol Resour 13:161–167

    Article  CAS  Google Scholar 

  • Paredes UM, Prys-Jones R, Adams M, Groombridge J, Kundu S, Agapow P-M, Abel RL (2012) Micro-CT X-rays do not fragment DNA in preserved bird skins. J Zool Syst Evol Res 50:247–250

    Article  Google Scholar 

  • Poinar H, Schwartz C, Qi J, Shapiro B, Mac Phee RDE, Buigues B, Tikhonov A, Huson DH, Tosho LP, Auch A, Rampp M, Miller W, Schuster C (2006) Museomics to paleogenomics: large scale sequencing of mammoth DNA. Science 311:392–394

    Article  CAS  PubMed  Google Scholar 

  • Poinar H, Okello J, Zurek J, Devault A, Kuch M, Okwi AL, Wewankambo N, Bimenya G, Poinar D (2010) A quantitative and qualitative comparison of total nucleic acid (DNA and RNA) yields from formalin-fixed paraffin-embedded tissues using ten different extraction methods. Anal Biochem 400:110–117

    Article  PubMed  Google Scholar 

  • Römpler H, Rohland N, Lalueza-Fox C, Willerslev E, Kuznetsova T, Raberder G, Bertrandpetit J, Schöneberg P, Hofreiter M (2006) Nuclear gene indicates coat-color polymorphism in mammoths. Science 313:62–65

    Article  PubMed  Google Scholar 

  • Schambach SJ, Bag S, Schilling L, Groden C, Brockmann MA (2010) Application of micro-CT in small animal imaging. Methods 50:2–13

    Article  CAS  PubMed  Google Scholar 

  • Schleich HH, Kästle W (1988) Reptile egg-shells SEM Atlas. Fischer, Stuttgart

    Google Scholar 

  • Shapiro B, Hofreiter M (eds) (2012) Ancient DNA: methods and protocols. Methods Mol Biol 840:155–170

    Google Scholar 

  • Sibley C, Ahlquist J (1983) Phylogeny and classification of birds based on the data of DNA-DNA hybridization. Curr Ornithol 1:245–292

    Article  Google Scholar 

  • Thomas WK, Pääbo S, Villablanca FX, Wilson AC (1990) Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. J Mol Evol 31:101–112

    Article  CAS  PubMed  Google Scholar 

  • Van De Kamp T, Vagovic P, Baumbach T, Riedel A (2011) A biological screw in a beetle’s leg. Science 333(6038):52. doi:10.1126/science.1204245, PMID 21719669

    Article  PubMed  Google Scholar 

  • Wissenschaftsrat (2011) Empfehlungen zu Forschungsinfrastrukturen. Köln

    Google Scholar 

  • Zinenko O, Sovic M, Joger U, Gibbs L (2016) Hybrid origin of European Vipers (Vipera orlovi and V. magnifica) from Caucasus determined using genomic scale DNA markers. BMC Evol Biol 16:76. doi: 10.1186/s12862-016-0647-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Joger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joger, U. (2018). Research Collections in Germany: Modern Trends in Methods of Sorting, Preserving, and Research. In: Beck, L. (eds) Zoological Collections of Germany. Natural History Collections. Springer, Cham. https://doi.org/10.1007/978-3-319-44321-8_3

Download citation

Publish with us

Policies and ethics