Skip to main content

DNA from Museum Specimens

  • Chapter
Ancient DNA

Abstract

The use of museum collections as a source of DNA offers many unique advantages. A diverse collection of taxonomically identified specimens located in one place creates a range of opportunities for evolutionary and ecological research while avoiding costly field studies. Recorded specimen sexes and collection dates enable population, ecological, pathological, and genetic studies to be calibrated with time offering valuable temporal evolutionary insights (Thomas et al. 1990). Many museum studies can complement molecular work; morphological studies can suggest phylogenetic relationships for molecular testing, and archaeological studies and carbon-dated specimens provide an important temporal and spatial framework for ancient DNA (aDNA) studies. The polymerase chain reaction (PCR) is revolutionizing the role of the museum in science by drastically enhancing the amount of information that can be obtained from museum collections. Although the DNA recoverable from these specimens is generally less than 500 base pairs (bp) in length, the ability of PCR to selectively amplify targeted sequences, and to jump damaged points in the DNA (Pääbo et al. 1989) permits larger regions of DNA to be amplified and sequenced. Consequently, a range of genetic material evolving at rates fast enough to distinguish between individuals, and slow enough to examine large scale systematic relationships, has become the latest tool for biological investigation of museum collections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarenga H (1983) Uma ave ratitae do Paleoceno Brasileiro. Bol Mus Nac Geol 41:1–7

    Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  • Audley-Charles MG (1987) Dispersal of Gondwanaland: Relevance to evolution of the angiosperms. In: Whitmore TC (ed) Biogeographical Evolution of the Malay Archipelago. Oxford: Clarendon Press, pp. 5–25

    Google Scholar 

  • Cabot EL, Beckenbach AT (1989) Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput Appl Biosci 5:233–234

    PubMed  CAS  Google Scholar 

  • Cooper A, Mourer-Chauviré C, Chambers GK, von Haeseler A, Wilson AC, Pääbo S (1992) Independent origins of New Zealand moas and kiwis. Proc Natl Acad Sci USA 89:8741–8744

    Article  PubMed  CAS  Google Scholar 

  • Cracraft J (1974) Phylogeny and evolution of the ratite birds. Ibis 116:494–521

    Article  Google Scholar 

  • Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome: A novel gene order in higher vertebrates. J Mol Biol 212:599–634

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H (1991) DNA typing of museum birds. Nature 354:113

    Article  PubMed  CAS  Google Scholar 

  • Fleming CA (1979) The Geological History of New Zealand and its Life. Auckland: Auckland University Press

    Google Scholar 

  • Hagelberg E, Clegg JB (1991) Isolation and characterization of DNA from archaeological bone. Proc R Soc Lond B 244:45–50

    Article  CAS  Google Scholar 

  • Hall LM, Ashworth C, Bartsiokas A, Jones DS (1993) Experiments on inhibition problems in old tissues. Ancient DNA Newsletter 1(2):9–10 Roy Zoo Soc Lon

    Google Scholar 

  • Higuchi R (1989) Simple and rapid preparation of samples for PCR. In: Erlich HE (ed) PCR Technology: Principles and Applications for DNA Amplification. New York: Stockton Press, pp. 31–38

    Google Scholar 

  • Horie CV (1987) Materials for Conservation: Organic Consolidants, Adhesives and Coatings. London: Butterworths

    Google Scholar 

  • Houde P (1986) Ostrich ancestors found in the Northern Hemisphere suggest new hypothesis of ratite origins. Nature 324:563–565

    Article  Google Scholar 

  • Houde P, Haubold H (1987) Palaeotis weigelti restudied: a small Middle Eocene ostrich (Aves: Struthioniformes). Palaeovertebrata 17:27–42

    Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  PubMed  CAS  Google Scholar 

  • Kwok S, Kellogg DE, McKinney N, Spasic D, Goda L, Levenson C, Sninsky JJ (1990) Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency virus type 1 model studies. Nucl Acids Res 18:999–1005

    Article  PubMed  CAS  Google Scholar 

  • Lee HC, Pagliaro EM, Berka KM, Folk NL, Anderson DT, Ruano G, Keith TP, Phipps P, Herrin GL, Garner DD, Gaensslen RE (1991) Genetic markers in human bone. I. Deoxyribonucleic Acid (DNA) Analysis. J For Sci 36:320–330

    CAS  Google Scholar 

  • Mayes CL, Lawyer LA, Sandwell DT (1990) Tectonic history and new isochron chart of the South Pacific. J Geophys Res 95:8543–8567

    Article  Google Scholar 

  • Neefs JM, Van de Peer Y, Hendriks L, De Wachter R (1990) Compilation of small ribosomal subunit RNA sequences. Nucl Acids Res 18:2237–2317

    Article  PubMed  CAS  Google Scholar 

  • Olson SL (1985) The fossil record of birds. In: Farner DS, King JR, Parkes KC (eds) Avian Biology: Volume VIII. Orlando: Academic, pp. 79–238

    Google Scholar 

  • Pääbo S (1985) Molecular cloning of ancient Egyptian mummy DNA. Nature 314:644–645

    Article  PubMed  Google Scholar 

  • Pääbo S (1989) Ancient DNA: Extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci USA 86:1939–1943

    Article  PubMed  Google Scholar 

  • Pääbo S (1990) Amplifying ancient DNA. In: Innis MA, et al. (eds) PCR Protocols: A Guide to Methods and Applications. San Diego: Academic Press, pp. 159–166

    Google Scholar 

  • Pääbo S, Gifford JA, Wilson AC (1988) Mitochondrial DNA sequences from a 7,000-year old brain. Nucl Acids Res 16:9775–9787

    Article  PubMed  Google Scholar 

  • Pääbo S, Higuchi RG, Wilson AC (1989) Ancient DNA and the Polymerase Chain Reaction: The emerging field of molecular archaeology. J Biol Chem 264:9709–9712

    PubMed  Google Scholar 

  • Penny D, Hendy MD, Steel MA (1992) Progress with methods for constructing evolutionary trees. TREE 7:1–12

    Google Scholar 

  • Ruano G, Kidd KK (1989) Biphasic amplification of very dilute DNA samples via “booster” PCR. Nucl Acids Res 17:5407

    Article  PubMed  CAS  Google Scholar 

  • Sibley CG, Ahlquist JE (1981) The phylogeny and relationships of the ratite birds as indicated by DNA-DNA hybridization. In: Scudder GGE, Reveal JL (eds) Evolution Today. Proc. 2nd Intern. Congr. Syst. Evol. Biol. Pittsburgh, P.A.: Carnegie-Mellon University, pp. 301–335

    Google Scholar 

  • Swofford DL (1989) PAUP: Phylogenetic Analysis Using Parsimony, version 3.0 g. Champaign, Ill.: Illinois Natural History Survey

    Google Scholar 

  • Taylor TG (1970) How an eggshell is made. Sci Am 222:89–95

    Article  Google Scholar 

  • Thomas RH, Schaffner W, Wilson AC, Pääbo S (1989) DNA phylogeny of the extinct marsupial wolf. Nature 340:465–467

    Article  PubMed  CAS  Google Scholar 

  • Thomas WK, Pääbo S, Villablanca FX, Wilson AC (1990) Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. J Mol Evol 31:101–112

    Article  PubMed  CAS  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    PubMed  CAS  Google Scholar 

  • Wilson K (1988) Preparation of genomic DNA from bacteria. In: Ausubel FM et al. (eds) Current Protocols in Molecular Biology. New York: Wiley, sec. 2.4.1–2.4.5

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Cooper, A. (1994). DNA from Museum Specimens. In: Herrmann, B., Hummel, S. (eds) Ancient DNA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4318-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4318-2_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94308-4

  • Online ISBN: 978-1-4612-4318-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics