Skip to main content

Genetics of (Premature) Coronary Artery Disease

  • Chapter
  • First Online:
Clinical Cardiogenetics

Abstract

Coronary artery disease (CAD) and its major complication, myocardial infarction (MI), remain the number one cause of death in industrialized society, causing approximately one in every six deaths in the United States in 2010. CAD is the clinical manifestation of a chronic pathomorphological process that occurs in the vascular wall. Carl Müller (1886–1983) was the first to identify a link between high plasma cholesterol, xanthoma, and premature coronary heart disease in 1939, providing early evidence of a genetic component of CAD and its association with cholesterol. Today, it is well established that CAD arises from the interaction of multiple genetic and environmental factors. Likewise, a multifactorial etiology applies to many of the underlying cardiovascular risk factors, including hypercholesterolemia, hypertension, diabetes mellitus, and smoking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292.

    Article  PubMed  Google Scholar 

  2. Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Müller C. Angina pectoris in hereditary xanthomatosis. Arch Intern Med. 1939;64(4):675–700.

    Article  Google Scholar 

  4. Schunkert H, Gotz A, Braund P, McGinnis R, Tregouet DA, Mangino M, et al. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation. 2008;117(13):1675–84.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Murabito JM, Pencina MJ, Nam BH, D’Agostino Sr RB, Wang TJ, Lloyd-Jones D, et al. Sibling cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults. JAMA. 2005;294(24):3117–23.

    Article  CAS  PubMed  Google Scholar 

  6. Myers RH, Kiely DK, Cupples LA, Kannel WB. Parental history is an independent risk factor for coronary artery disease: the Framingham Study. Am Heart J. 1990;120(4):963–9.

    Article  CAS  PubMed  Google Scholar 

  7. Lloyd-Jones DM, Nam BH, D’Agostino Sr RB, Levy D, Murabito JM, Wang TJ, et al. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA. 2004;291(18):2204–11.

    Article  CAS  PubMed  Google Scholar 

  8. Horne BD, Camp NJ, Muhlestein JB, Cannon-Albright LA. Identification of excess clustering of coronary heart diseases among extended pedigrees in a genealogical population database. Am Heart J. 2006;152(2):305–11.

    Article  PubMed  Google Scholar 

  9. Hengstenberg C, Holmer SR, Mayer B, Engel S, Schneider A, Lowel H, et al. Siblings of myocardial infarction patients are overlooked in primary prevention of cardiovascular disease. Eur Heart J. 2001;22(11):926–33.

    Article  CAS  PubMed  Google Scholar 

  10. Andresdottir MB, Sigurdsson G, Sigvaldason H, Gudnason V, Reykjavik CS. Fifteen percent of myocardial infarctions and coronary revascularizations explained by family history unrelated to conventional risk factors. The Reykjavik Cohort Study. Eur Heart J. 2002;23(21):1655–63.

    Article  CAS  PubMed  Google Scholar 

  11. Hawe E, Talmud PJ, Miller GJ, Humphries SE. Second Northwick Park Heart S. Family history is a coronary heart disease risk factor in the Second Northwick Park Heart Study. Ann Hum Genet. 2003;67(Pt 2):97–106.

    Article  CAS  PubMed  Google Scholar 

  12. Boer JM, Feskens EJ, Verschuren WM, Seidell JC, Kromhout D. The joint impact of family history of myocardial infarction and other risk factors on 12-year coronary heart disease mortality. Epidemiology. 1999;10(6):767–70.

    Article  CAS  PubMed  Google Scholar 

  13. Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med. 1994;330(15):1041–6.

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, Fan C, Topol SE, Topol EJ, Wang Q. Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science. 2003;302(5650):1578–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Erdmann J, Stark K, Esslinger UB, Rumpf PM, Koesling D, de Wit C, et al. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature. 2013;504(7480):432–6.

    Article  CAS  PubMed  Google Scholar 

  16. Stitziel NO, Peloso GM, Abifadel M, Cefalu AB, Fouchier S, Motazacker MM, et al. Exome sequencing in suspected monogenic dyslipidemias. Circ Cardiovasc Genet. 2015;8(2):343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schunkert H, Bourier F. Deciphering unexplained familial dyslipidemias: do we have the tools? Circ Cardiovasc Genet. 2015;8(2):250–2.

    Article  PubMed  Google Scholar 

  18. Lieb W, Mayer B, Konig IR, Borwitzky I, Gotz A, Kain S, et al. Lack of association between the MEF2A gene and myocardial infarction. Circulation. 2008;117(2):185–91.

    Article  CAS  PubMed  Google Scholar 

  19. Guella I, Rimoldi V, Asselta R, Ardissino D, Francolini M, Martinelli N, et al. Association and functional analyses of MEF2A as a susceptibility gene for premature myocardial infarction and coronary artery disease. Circ Cardiovasc Genet. 2009;2(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  20. Wobst J, Kessler T, Dang TA, Erdmann J, Schunkert H. Role of sGC-dependent NO signalling and myocardial infarction risk. J Mol Med. 2015;93(4):383–94.

    Article  CAS  PubMed  Google Scholar 

  21. Hanafy KA, Martin E, Murad F. CCTeta, a novel soluble guanylyl cyclase-interacting protein. J Biol Chem. 2004;279(45):46946–53.

    Article  CAS  PubMed  Google Scholar 

  22. Consortium CAD, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1):25–33.

    Google Scholar 

  23. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wobst J, Rumpf PM, Dang TA, Segura-Puimedon M, Erdmann J, Schunkert H. Molecular variants of soluble guanylyl cyclase affecting cardiovascular risk. CircJ. 2015;79(3):463–9.

    Article  Google Scholar 

  25. Fischer M, Broeckel U, Holmer S, Baessler A, Hengstenberg C, Mayer B, et al. Distinct heritable patterns of angiographic coronary artery disease in families with myocardial infarction. Circulation. 2005;111(7):855–62.

    Article  PubMed  Google Scholar 

  26. Fischer M, Mayer B, Baessler A, Riegger G, Erdmann J, Hengstenberg C, et al. Familial aggregation of left main coronary artery disease and future risk of coronary events in asymptomatic siblings of affected patients. Eur Heart J. 2007;28(20):2432–7.

    Article  PubMed  Google Scholar 

  27. Broeckel U, Hengstenberg C, Mayer B, Maresso K, Gaudet D, Seda O, et al. A locus on chromosome 10 influences C-reactive protein levels in two independent populations. Hum Genet. 2007;122(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  28. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357(5):443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316(5830):1488–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491–3.

    Article  CAS  PubMed  Google Scholar 

  32. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Article  Google Scholar 

  33. Xing C, Huang J, Hsu YH, DeStefano AL, Heard-Costa NL, Wolf PA, et al Evaluation of power of the Illumina HumanOmni5M-4v1 BeadChip to detect risk variants for human complex diseases. Eur J Hum Genet. 2016;24(7):1029–34.

    Google Scholar 

  34. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11(7):499–511.

    Article  CAS  PubMed  Google Scholar 

  35. The Genomes Project C. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.

    Article  Google Scholar 

  36. Porcu E, Sanna S, Fuchsberger C, Fritsche LG. Genotype imputation in genome-wide association studies. Curr Protoc Hum Genet. 2013;Chapter 1:Unit 1 25.

    Google Scholar 

  37. Bjorkegren JL, Kovacic JC, Dudley JT, Schadt EE. Genome-wide significant loci: how important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. J Am Coll Cardiol. 2015;65(8):830–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6(4):e1000888.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. Genome Res. 2012;22(9):1748–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Braenne I, Civelek M, Vilne B, Di Narzo A, Johnson AD, Zhao Y, et al. Prediction of causal candidate genes in coronary artery disease loci. Arterioscler Thromb Vasc Biol. 2015;35(10):2207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller CL, Pjanic M, Quertermous T. From Locus Association to Mechanism of Gene Causality: the devil is in the details. Arterioscler Thromb Vasc Biol. 2015;35(10):2079–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Helgadottir A, Thorleifsson G, Magnusson KP, Gretarsdottir S, Steinthorsdottir V, Manolescu A, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  44. Matarin M, Brown WM, Singleton A, Hardy JA, Meschia JF; ISGS investigators. Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21. Stroke. 2008;39(5):1586–9.

    Google Scholar 

  45. Gschwendtner A, Bevan S, Cole JW, Plourde A, Matarin M, Ross-Adams H, et al. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol. 2009;65(5):531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen HH, Almontashiri NA, Antoine D, Stewart AF. Functional genomics of the 9p21.3 locus for atherosclerosis: clarity or confusion? Curr Cardiol Rep. 2014;16(7):502.

    Article  PubMed  Google Scholar 

  47. Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, et al. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet. 2008;17(6):806–14.

    Article  CAS  PubMed  Google Scholar 

  48. Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Mohlke KL, et al. INK4/ARF transcript expression is associated with chromosome 9p21 variants linked to atherosclerosis. PLoS One. 2009;4(4):e5027.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jarinova O, Stewart AF, Roberts R, Wells G, Lau P, Naing T, et al. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol. 2009;29(10):1671–7.

    Article  CAS  PubMed  Google Scholar 

  50. Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature. 2010;464(7287):409–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature. 2011;470(7333):264–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Holdt LM, Teupser D. Recent studies of the human chromosome 9p21 locus, which is associated with atherosclerosis in human populations. Arterioscler Thromb Vasc Biol. 2012;32(2):196–206.

    Article  CAS  PubMed  Google Scholar 

  53. Hannou SA, Wouters K, Paumelle R, Staels B. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol Metab. 2015;26(4):176–84.

    Article  CAS  PubMed  Google Scholar 

  54. Samani NJ, Braund PS, Erdmann J, Gotz A, Tomaszewski M, Linsel-Nitschke P, et al. The novel genetic variant predisposing to coronary artery disease in the region of the PSRC1 and CELSR2 genes on chromosome 1 associates with serum cholesterol. J Mol Med. 2008;86(11):1233–41.

    Article  CAS  PubMed  Google Scholar 

  55. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 2008;6(5):e107.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nielsen MS, Jacobsen C, Olivecrona G, Gliemann J, Petersen CM. Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase. J Biol Chem. 1999;274(13):8832–6.

    Article  CAS  PubMed  Google Scholar 

  57. Nilsson SK, Christensen S, Raarup MK, Ryan RO, Nielsen MS, Olivecrona G. Endocytosis of apolipoprotein A-V by members of the low density lipoprotein receptor and the VPS10p domain receptor families. J Biol Chem. 2008;283(38):25920–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Linsel-Nitschke P, Heeren J, Aherrahrou Z, Bruse P, Gieger C, Illig T, et al. Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis. 2010;208(1):183–9.

    Article  CAS  PubMed  Google Scholar 

  59. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kjolby M, Nielsen MS, Petersen CM. Sortilin, encoded by the cardiovascular risk gene SORT1, and its suggested functions in cardiovascular disease. Curr Atheroscler Rep. 2015;17(4):1–9.

    Article  CAS  Google Scholar 

  61. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reilly MP, Li M, He J, Ferguson JF, Stylianou IM, Mehta NN, et al. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet. 2011;377(9763):383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. O’Donnell CJ, Kavousi M, Smith AV, Kardia SL, Feitosa MF, Hwang SJ, et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation. 2011;124(25):2855–64.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang L, Zheng J, Bai X, Liu B, Liu CJ, Xu Q, et al. ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res. 2009;104(5):688–98.

    Article  CAS  PubMed  Google Scholar 

  65. Pu X, Xiao Q, Kiechl S, Chan K, Ng FL, Gor S, et al. ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am J Hum Genet. 2013;92(3):366–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Du Y, Gao C, Liu Z, Wang L, Liu B, He F, et al. Upregulation of a disintegrin and metalloproteinase with thrombospondin motifs-7 by miR-29 repression mediates vascular smooth muscle calcification. Arterioscler Thromb Vasc Biol. 2012;32(11):2580–8.

    Article  CAS  PubMed  Google Scholar 

  67. Kessler T, Zhang L, Liu Z, Yin X, Huang Y, Wang Y, et al. ADAMTS-7 inhibits re-endothelialization of injured arteries and promotes vascular remodeling through cleavage of thrombospondin-1. Circulation. 2015;131(13):1191–201.

    Article  CAS  PubMed  Google Scholar 

  68. Bauer RC, Tohyama J, Cui J, Cheng L, Yang J, Zhang X, et al. Knockout of Adamts7, a novel coronary artery disease locus in humans, reduces atherosclerosis in mice. Circulation. 2015;131(13):1202–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Erbilgin A, Civelek M, Romanoski CE, Pan C, Hagopian R, Berliner JA, et al. Identification of CAD candidate genes in GWAS loci and their expression in vascular cells. J Lipid Res. 2013;54(7):1894–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ouyang T, Bai RY, Bassermann F, von Klitzing C, Klumpen S, Miething C, et al. Identification and characterization of a nuclear interacting partner of anaplastic lymphoma kinase (NIPA). J Biol Chem. 2003;278(32):30028–36.

    Article  CAS  PubMed  Google Scholar 

  71. Bassermann F, von Klitzing C, Munch S, Bai RY, Kawaguchi H, Morris SW, et al. NIPA defines an SCF-type mammalian E3 ligase that regulates mitotic entry. Cell. 2005;122(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  72. Bassermann F, Peschel C, Duyster J. Mitotic entry: a matter of oscillating destruction. Cell Cycle. 2005;4(11):1515–7.

    Article  CAS  PubMed  Google Scholar 

  73. Kunnas T, Nikkari ST. Association of Zinc Finger, C3HC-Type Containing 1 (ZC3HC1) rs11556924 genetic variant with hypertension in a finnish population, the TAMRISK Study. Medicine (Baltimore). 2015;94(32):e1221.

    Article  CAS  Google Scholar 

  74. Lopez-Mejias R, Genre F, Garcia-Bermudez M, Corrales A, Gonzalez-Juanatey C, Llorca J, et al. The ZC3HC1 rs11556924 polymorphism is associated with increased carotid intima-media thickness in patients with rheumatoid arthritis. Arthritis Res Ther. 2013;15(5):R152.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yamase Y, Kato K, Horibe H, Ueyama C, Fujimaki T, Oguri M, et al. Association of genetic variants with atrial fibrillation. Biol Reprod. 2016;4(2):178–82.

    Google Scholar 

  76. Tregouet DA, Konig IR, Erdmann J, Munteanu A, Braund PS, Hall AS, et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet. 2009;41(3):283–5.

    Article  CAS  PubMed  Google Scholar 

  77. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–28.

    Article  CAS  PubMed  Google Scholar 

  78. Schunkert H. Family or SNPs: what counts for hereditary risk of coronary artery disease? Eur Heart J. 2016;37(6):568–71.

    Article  PubMed  Google Scholar 

  79. Braenne I, Reiz B, Medack A, Kleinecke M, Fischer M, Tuna S, et al. Whole-exome sequencing in an extended family with myocardial infarction unmasks familial hypercholesterolemia. BMC Cardiovasc Disord. 2014;14:108.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Braenne I, Kleinecke M, Reiz B, Graf E, Strom T, Wieland T, et al Systematic analysis of variants related to familial hypercholesterolemia in families with premature myocardial infarction. Eur J Hum Genet. 2016;24(2):191–7.

    Google Scholar 

  81. Lin C, Chu CM, Lin J, Yang HY, Su SL. Gene-gene and gene-environment interactions in meta-analysis of genetic association studies. PLoS One. 2015;10(4):e0124967.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mascheretti S, Bureau A, Trezzi V, Giorda R, Marino C. An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia. Hum Genet. 2015;134(7):749–60.

    Article  CAS  PubMed  Google Scholar 

  83. Kessler T, Kaess B, Bourier F, Erdmann J, Schunkert H. Genetic analyses as basis for a personalized medicine in patients with coronary artery disease. Herz. 2014;39(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  84. Kessler T, Vilne B, Schunkert H. The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol Med. 2016;8(7):688–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Myocardial Infarction G, Investigators CAEC. Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med. 2016;374(12):1134–44.

    Google Scholar 

  86. Do R, Stitziel NO, Won HH, Jorgensen AB, Duga S, Angelica Merlini P, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518(7537):102–6.

    Article  CAS  PubMed  Google Scholar 

  87. Alkuraya FS. Human knockout research: new horizons and opportunities. Trends Genet. 2015;31(2):108–15.

    Article  CAS  PubMed  Google Scholar 

  88. Kathiresan S. Myocardial Infarction Genetics C. A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med. 2008;358(21):2299–300.

    Article  CAS  PubMed  Google Scholar 

  89. Myocardial Infarction Genetics Consortium I, Stitziel NO, Won HH, Morrison AC, Peloso GM, Do R, et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med. 2014;371(22):2072–82.

    Article  Google Scholar 

  90. Tg, Hdl Working Group of the Exome Sequencing Project NHL, Blood I, Crosby J, GM P, PL A, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371(1):22–31.

    Article  Google Scholar 

  91. Dewey FE, Gusarova V, O’Dushlaine C, Gottesman O, Trejos J, Hunt C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374(12):1123–33.

    Google Scholar 

  92. Nioi P, Sigurdsson A, Thorleifsson G, Helgason H, Agustsdottir AB, Norddahl GL, et al. Variant ASGR1 associated with a reduced risk of coronary artery disease. N Engl J Med. 2016;374(22):2131–41.

    Google Scholar 

  93. Kathiresan S. Developing medicines that mimic the natural successes of the human genome: lessons from NPC1L1, HMGCR, PCSK9, APOC3, and CETP. J Am Coll Cardiol. 2015;65(15):1562–6.

    Article  PubMed  Google Scholar 

  94. Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield MJ, Devlin JJ, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385(9984):2264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. MacLellan WR, Wang Y, Lusis AJ. Systems-based approaches to cardiovascular disease. Nat Rev Cardiol. 2012;9(3):172–84.

    Article  CAS  PubMed  Google Scholar 

  96. Schadt EE, Bjorkegren JL. NEW: network-enabled wisdom in biology, medicine, and health care. Sci Transl Med. 2012;4(115):115rv1.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanette Erdmann PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Erdmann, J., Schunkert, H. (2016). Genetics of (Premature) Coronary Artery Disease. In: Baars, H., Doevendans, P., Houweling, A., van Tintelen, J. (eds) Clinical Cardiogenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-44203-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44203-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44202-0

  • Online ISBN: 978-3-319-44203-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics