Skip to main content

Introduction to Modern Immunology

  • Chapter
  • First Online:
Immunotherapy for Gastrointestinal Cancer

Abstract

More than a century ago, the Nobel Prize for Physiology or Medicine (1908) was awarded jointly to Ilya Mechnikov and Paul Ehrlich “in recognition of their work on immunity” and it was around this time that Ehrlich expounded his hypothesis that the immune system may play a role in the control of tumours [1]. However his suggestion was actually preceded by work carried out by a young New York bone surgeon, William Coley (1862–1936) who had read about a patient who underwent dramatic regression of a neck tumour after developing erysipelas, a skin infection caused by streptococcus pyogenes. Coley subsequently observed that his own patients who developed post-operative infection after surgery seemed to gain some improvement in outcome with respect to their underlying sarcomatous tumours. He believed that these infections may have stimulated the immune system in a way that rendered it more capable of recognising and attacking the cancer. He developed Coley’s toxin comprising killed bacteria, provided by Robert Koch, and he injected this into his patients, reporting a complete regression rate in inoperable sarcomas of approximately 10 % [2]. Although the use of Coley’s toxin declined rapidly in the 1950s with the flourishing of cytotoxic drugs and radiotherapy, there are still clinics today that use a variation of this agent comprising Streptococcus pyogenes and Serratia marcescens. Despite some scepticism about Coley’s methods and a general feeling in the early part of the twentieth century that recognition and rejection of ‘self’ tumours by the immune system would be impossible, this work formed the basis of the subsequent development and use of bacille Calmette-Guerin in the treatment of superficial bladder cancer in the 1970s, which is still recognised as a very effective form of treatment today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ehrlich P. Über den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd. 1909;5:273–90.

    Google Scholar 

  2. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am J Med Sci. 1893;105:487–511.

    Article  Google Scholar 

  3. Burnet FM, Fenner F, editors. The production of antibodies. London: Macmillan; 1949.

    Google Scholar 

  4. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172:603–6.

    Article  CAS  PubMed  Google Scholar 

  5. Prehn RT, Main JM. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst. 1957;18:769–78.

    CAS  PubMed  Google Scholar 

  6. Burnet FM. Immunological aspects of malignant disease. Lancet. 1967;1:1171–4.

    Article  CAS  PubMed  Google Scholar 

  7. Stutman O. Chemical carcinogenesis in nude mice: comparison between nude mice from homozygous matings and heterozygous matings and effect of age and carcinogen dose. J Natl Cancer Inst. 1979;62:353–8.

    CAS  PubMed  Google Scholar 

  8. Zinkernagel RM. Thymus and lymphohemopoietic cells: their role in T cell maturation in selection of T cells’ H-2 restriction specificity and in H-2 linked Ir gene control. Immunol Rev. 1978;42:224–70.

    Article  CAS  PubMed  Google Scholar 

  9. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–65.

    Article  CAS  PubMed  Google Scholar 

  10. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  11. Pham SM, Kormos RL, Landreneau RJ, et al. Solid tumours after heart transplantation: lethality of lung cancer. Ann Thorac Surg. 1995;60:1623–6.

    Article  CAS  PubMed  Google Scholar 

  12. Frisch M, Biggar RJ, Engels EA, Goedert JJ. Association of cancer with AIDS-related immunosuppression in adults. JAMA. 2001;285:1736–45.

    Article  CAS  PubMed  Google Scholar 

  13. Collett D, Mumford L, Banner NR, Neuberger J, Watson C. Comparison of the incidence of malignancy in recipients of different types of organ: a UK registry audit. Am J Transplant. 2010;10:1889–96.

    Article  CAS  PubMed  Google Scholar 

  14. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density and location of immune cells within human colorectal tumours predict clinical outcome. Science. 2006;313:1960–4.

    Article  CAS  PubMed  Google Scholar 

  15. Bernard A, Boumsell L. Human leukocyte differentiation antigens. Presse Med. 1984;13(38):2311–6.

    CAS  PubMed  Google Scholar 

  16. Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM. Reciprocal expression of interferon γ or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med. 1989;169:59–72.

    Article  CAS  PubMed  Google Scholar 

  17. Becattini S, Latorre D, Mele F, et al. Functional heterogeneity of human memory CD4+ T cell clones primed by pathogens or vaccines. Science. 2015;347:400–6.

    Article  CAS  PubMed  Google Scholar 

  18. Bates GJ, Fox SB, Han C, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol. 2006;24:5373–80.

    Article  PubMed  Google Scholar 

  19. Gao Q, Qiu SJ, Zhou J, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25:2586–93.

    Article  PubMed  Google Scholar 

  20. Frey DM, Droeser RA, Viehl CT, et al. High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer. 2010;126:2635–43.

    CAS  PubMed  Google Scholar 

  21. Cho Y, Miyamoto M, Kato K, et al. CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res. 2003;63(7):1555–9.

    CAS  PubMed  Google Scholar 

  22. Schumacher K, Haensch W, Roefzaad C, Schlag PM. Prognostic significance of activated CD8+ cells infiltrations within esophageal carcinomas. Cancer Res. 2001;61:3932–6.

    CAS  PubMed  Google Scholar 

  23. van Sandick JW, Boermeester MA, Gisbertz SS, et al. Lymphocyte subsets and Th1/Th2 immune responses in patients with adenocarcinoma of the oesophagus or oesophagogastric junction: relation to pTNM stage and clinical outcome. Cancer Immunol Immunother. 2003;52:617–24.

    Article  PubMed  Google Scholar 

  24. Lv L, Pan K, Li XD, et al. The accumulation and prognosis value of tumor infiltrating IL-17 producing cells in esophageal squamous cell carcinoma. PLoS One. 2011;6:e18219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ubukata H, Motohashi G, Tabuchi T, Nagata H, Konishi S, Tabuchi T. Evaluations of interferon-γ/interleukin-4 ratio and neutrophil/lymphocyte ratio as prognostic indicators in gastric cancer patients. J Surg Oncol. 2010;102(7):742–7.

    Article  PubMed  Google Scholar 

  26. Chen JG, Xia JC, Liang XT, et al. Intratumoral expression of IL-17 and its prognostic role in gastric adenocarcinoma patients. Int J Biol Sci. 2011;7(1):53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tosolini M, Kirilovsky A, Mlecnik B, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71(4):1263–71.

    Article  CAS  PubMed  Google Scholar 

  28. Camus M, Tosolini M, Mlecnik B, et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res. 2009;69(6):2685–93.

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Duan Y, Cheng X, Chen X, et al. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun. 2011;407(2):348–54.

    Article  CAS  PubMed  Google Scholar 

  30. Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, Sargent DJ, et al. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology. 2009;137(4):1270–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oldham RK, Herberman RB. Evaluation of cell-mediated cytotoxic reactivity against tumour antigens with 125I-iododeoxyuridine labelled target cells. J Immunol. 1973;111:862–71.

    CAS  PubMed  Google Scholar 

  32. Kiesling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity and distribution according to genotype. Eur J Immunol. 1975;5:112–7.

    Article  Google Scholar 

  33. Smyth MJ, Hayakawa Y, Takeda K, Yagita H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer. 2002;2:850–61.

    Article  CAS  PubMed  Google Scholar 

  34. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2001;29:235–71.

    Article  Google Scholar 

  35. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral blood lymphocytes and cancer incidence; an 11 year follow-up study of a general population. Lancet. 2000;356:1795–9.

    Article  CAS  PubMed  Google Scholar 

  36. Halama N, Braun M, Kahlert C, et al. Natural killer cells are scarce in colorectal carcinoma tissue despite high levels of chemokines and cytokines. Clin Cancer Res. 2011;17:678–89.

    Article  CAS  PubMed  Google Scholar 

  37. Karlhofer FM, Ribaudo RK, Yokoyama WM. MHC class I alloantigen specificity of Ly-49+ IL-2 activated natural killer cells. Nature. 1992;358:66–70.

    Article  CAS  PubMed  Google Scholar 

  38. Cosman D, Müllberg J, Sutherland CL, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity. 2001;14:123–33.

    Article  CAS  PubMed  Google Scholar 

  39. Raulet DH, Guerra N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol. 2009;9:568–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brennan P, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol. 2013;13:101–17.

    Article  CAS  PubMed  Google Scholar 

  41. Kawano T, Cui J, Koezuka Y, et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science. 1997;278:1626–9.

    Article  CAS  PubMed  Google Scholar 

  42. Nowak M, Arredouani MS, Tun-Kyi A, et al. Defective NKT cell activation by CD1d + TRAMP prostate tumor cells is corrected by interleukin-12 with α-galactosylceramide. PLoS One. 2010;5:e11311.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Song L, Asgharzadeh S, Salo J, et al. Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest. 2009;119:1524–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garbilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–68.

    Article  Google Scholar 

  45. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarisation: tumour-associated macrophages as a paradigm for polarised M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.

    Article  CAS  PubMed  Google Scholar 

  47. Peng W, Li C, Wen TF, Yan LN, et al. Neutrophil to lymphocyte ratio changes predict small hepatocellular carcinoma survival. J Surg Res. 2014;192:402–8.

    Article  PubMed  Google Scholar 

  48. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20:300–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fridlander ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009;16:183–94.

    Article  Google Scholar 

  50. Pasero C, Gravis G, Guerin M, et al. Inherent and tumor-driven immune tolerance in the prostate microenvironment impairs natural killer cell antitumor activity. Cancer Res. 2016;76:2153–65.

    Article  CAS  PubMed  Google Scholar 

  51. Pinzon-Charry A, Ho CS, Maxwell T, et al. Numerical and functional defects of blood dendritic cells in early- and late-stage breast cancer. Br J Cancer. 2007;97:1251–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ormandy LA, Farber A, Cantz T, et al. Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma. World J Gastroenterol. 2006;12:3275–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bellone G, Carbone A, Smirne C, et al. Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol. 2006;177:3448–60.

    Article  CAS  PubMed  Google Scholar 

  54. Yang M, Ma C, Liu S, et al. HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol Cell Biol. 2010;88:165–71.

    Article  CAS  PubMed  Google Scholar 

  55. Novitskiy SV, Ryzhov S, Zaynagetdinov R, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood. 2008;112:1822–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Norian LA, Rodriguez PC, O’Mara LA. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism. Cancer Res. 2009;69:3086–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leone P, Shin E-C, Perosa F, et al. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst. 2013;105:1172–87.

    Article  CAS  PubMed  Google Scholar 

  58. Hirata T, Yamamoto H, Taniguchi H, et al. Characterization of the immune escape phenotype of human gastric cancers with and without high-frequency microsatellite instability. J Pathol. 2007;211:516–23.

    Article  CAS  PubMed  Google Scholar 

  59. Hasim A, Abudala M, Aimiduo R, et al. Post-transcriptional and epigenetic regulation of antigen processing machinery (APM) components and HLA-I in cervical cancers from Uighur women. PLoS One. 2012;7:e44952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kloor M, Becker C, Benner A, et al. Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res. 2005;65:6418–24.

    Article  CAS  PubMed  Google Scholar 

  61. Dierssen JW, de Miranda NF, Ferrone S, et al. HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression. BMC Cancer. 2007;7:33.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Atkins D, Breuckmann A, Schmahl GE, et al. MHC class I antigen processing pathway defects, ras mutations and disease stage in colorectal carcinoma. Int J Cancer. 2004;109:265–73.

    Article  CAS  PubMed  Google Scholar 

  63. Cabrera CM, Jiminenz P, Cabrera T, et al. Total loss of MHC class I in colorectal tumours can be explained by two molecular pathways: beta-2-microglobulin inactivation in MSI-positive tumours and LMP2/TAP2 downregulation in MSI-negative tumours. Tissue Antigens. 2003;61:211–9.

    Article  CAS  PubMed  Google Scholar 

  64. Watson NF, Ramage JM, Terme M, et al. Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with poor prognosis. Int J Cancer. 2006;118:6–10.

    Article  CAS  PubMed  Google Scholar 

  65. Scarpa M, Scarpa M, Castagliuolo I. CD80 down-regulation is associated to aberrant DNA methylation in non-inflammatory colon carcinogenesis. BMC Cancer. 2016;16:388.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hua D, Sun J, Mao Y, Chen LJ, Wu YY, Zhang XG. B7-H1 expression is associated with expansion of regulatory T cells in colorectal carcinoma. World J Gastroenterol. 2012;18:971–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shi SJ, Wang LJ, Wang GD, et al. B7-H1 expression is associated with poor prognosis in colorectal carcinoma and regulates the proliferation and invasion of HCT116 colorectal cancer cells. PLoS One. 2013;8:e76012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sellitto A, Galizia G, De Fanis U, et al. Behaviour of circulating CD4 + CD25 + FoxP3 regulatory T cells in colon cancer patients undergoing surgery. J Clin Immunol. 2011;31:1095–104.

    Article  CAS  PubMed  Google Scholar 

  69. Facciabene A, Peng X, Hagemann IS, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature. 2011;475:226–30.

    Article  CAS  PubMed  Google Scholar 

  70. Bonnertz A, Weitz J, Pietsch DH, et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumour antigens in patients with colorectal cancer. J Clin Invest. 2009;119:3311–21.

    Google Scholar 

  71. Qian BZ, Pollard JW. Macrophage diversity enhances tumour progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. DeNardo DG, Barreto JB, Andreu P, et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009;16:91–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.

    Article  CAS  PubMed  Google Scholar 

  74. Torroella-Kouri M, Silvera R, Rodriguez D, et al. Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Res. 2009;69:4800–9.

    Article  CAS  PubMed  Google Scholar 

  75. Kuang DM, Zhao Q, Peng C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206:1327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31:318–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nozawa H, Chiu C, Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A. 2006;103:12493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Houghton AM, Rzymkiewicz DM, Ji H, et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med. 2010;16:219–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gabrilovich DI, Bronte V, Chen SH, et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 2007;67:425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70:68–77.

    Article  CAS  PubMed  Google Scholar 

  81. Mazzoni A, Bronte V, Visintin A, et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol. 2002;168:689–95.

    Article  CAS  PubMed  Google Scholar 

  82. Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol. 2009;183:937–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 2008;68:5439–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tangye SG. Staying alive: regulation of plasma cell survival. Trends Immunol. 2011;32(12):595–602.

    Article  CAS  PubMed  Google Scholar 

  85. Villadangos JA, Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol. 2007;7:543–55. doi:10.1038/nri2103.

    Article  CAS  PubMed  Google Scholar 

  86. Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 2007;7:329–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Kerr MBChB(Hons), FRCP(UK), PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kerr, R. (2017). Introduction to Modern Immunology. In: Kerr, D., Johnson, R. (eds) Immunotherapy for Gastrointestinal Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-43063-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43063-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43061-4

  • Online ISBN: 978-3-319-43063-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics