Skip to main content
Log in

Calculations of heavy-ion track structure

  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

A Monte Carlo model is presented to study details of the energy deposition inside tracks of heavy charged particles in water vapor. The input data for most of the calculations based on the binary encounter approximation are double-differential cross sections for electron emission after heavy-ion impact. The paths of the liberated electrons are simulated, taking into account elastic scattering, ionization, and excitation. Each basic interaction of an electron or heavy ion is treated individually. Radial dose distributions and specific energy deposition are calculated for projectiles from protons to uranium in the energy range from one to several hundred megaelectron volts per unified atomic mass unit. Good agreement with measurements in tissue-equivalent gas and propane is obtained for light and medium-heavy projectiles, whereas for heavy projectiles such as uranium, deviations around a factor of 2–3 are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aufderheide E, Rink H, Hieber I, Kraft G (1985) Heavy ion effects on cellular DNA: strand break induction and repair. Int J Radiat Biol 5:779–790

    Google Scholar 

  2. Barkas WH (1963) Nuclear research emulsions (vol 1). Academic Press, New York

    Google Scholar 

  3. Barrett JL, Hays PB (1976) Spatial distribution of energy deposited in nitrogen by electrons. J Chem Phys 64(2):743–750

    Google Scholar 

  4. Benton EV (1968) Study of charged particle tracks in cellulose nitrate. US Naval Radiologic Defense Laboratory TR 68-14

  5. Berger MJ (1963) Monte Carlo calculation of the penetration and diffusion of fast charged particles. Methods Comp Phys 1:135–215

    Google Scholar 

  6. Berkowitz J (1979) Photoabsorption, photoionization, and photoelectron spectroscopy. Academic Press, New York

    Google Scholar 

  7. Bethe HA (1930) Zur Theorie des Durchganges schneller Korpuskularstrahlen durch Materie. Ann Phys (Leipzig) 5:325–400

    Google Scholar 

  8. Bonsen TF, Vriens L (1970) Angular distribution of electrons ejected by charged particles. Pbysica 47:307–319

    Google Scholar 

  9. Butts JJ, Katz R (1967) Theory of RBE for heavy ion bombardment of dry enzymes and viruses. Radiat Res 30:855–871

    Google Scholar 

  10. Chatterjee A, Holley WR (1991) Energy deposition mechanisms and biochemical aspects of DNA strand breaks by ionizing radiation. Int J Quant Chem 39:709–727

    Google Scholar 

  11. Chatterjee A, Schaefer HJ (1976) Microdosimetric structure of heavy ion tracks in tissue. Radiat Environ Biophys 13:215–227

    Google Scholar 

  12. Colautti P, Talp G, Tornielli G (1992) Measurements of ionization distributions at nonometre level. In: Chadwick KH, Moschini G, Varma MN (eds) Biophysical modelling or radiation effects. Adam Hilger, Brussels, pp 269–276

    Google Scholar 

  13. Combecher D (1980) Measurement of W values of low-energy electrons in several gases. Radiat Res 84:189–218

    Google Scholar 

  14. Grosswendt B, Waibel E (1978) Transport of low energy electrons in nitrogen and air. Nucl Instrum Methods 155:145–156

    Google Scholar 

  15. Grün AE (1957) Lumineszenz-photometrische Messungen der Energieabsorption im Strahlungsfeld von Electronenquellen. Z Naturforsch 12a:89–95

    Google Scholar 

  16. Heilmann J, Rink H, Taucher-Scholz G, Kraft G (1993) DNA strand break induction and rejoining and cellular recovery in mammalian cells after heavy-ion irradiation. Radiat Res 135:46–55

    Google Scholar 

  17. Kelbch CH, Olson RE, Schmidt S, Schmidt-Böcking H, Hagmann S (1989) Unexpected angular distribution of theδ-electron emission in 1.4 MeV/u U33+ rare gas collisions. J Phys B 22:2171–2178

    Google Scholar 

  18. Kieffer L (1971) Low-energy electron-collision cross-section data. Atomic Data 2:293

    Google Scholar 

  19. Kraft G (1987) Radiobiological effects of very heavy ions. Nucl Sci Appl 3:1–28

    Google Scholar 

  20. Metting NF, Rossi HH, Braby LA, Kliauga PJ, Howard J, Zaider M, Schimmerling W, Wong M, Rapkin M (1988) Microdosimetry near the trajectory of high-energy heavy ions. Radiat Res 116:183–195

    Google Scholar 

  21. Moliere G (1948) Theorie der Streuung schneller geladener Teilchen. Z Naturforsch 3a:78–97

    Google Scholar 

  22. Northcliffe LC, Schilling RF (1970) Range and stopping-power tables for heavy ions. Nucl Data Tables A 7:233

    Google Scholar 

  23. Opal JB, Beaty EC, Peterson WK (1972) Tables of secondary-electron-production cross sections. Atomic Data 4:209–253

    Google Scholar 

  24. Paretzke HG (1988) Simulation von Elektronenspuren im Energiebereich 0.01–10 keV in Wasserdampf. GSF-Forschungszentrum für Umwelt and Gesundheit, Bericht 24/88

    Google Scholar 

  25. Paretzke HG, Berger MJ (1978) Stopping power and energy degradation for electrons in water vapor. In: Booz J, Ebert HG (eds) Proceedings of the 6th symposium on microdosimetry. Harwood, Brussels, pp 749–758

  26. Rossi HH (1968) Microscopic energy distribution in irradiated matter. In: Attix FH, Roesch WC (eds) Radiation dosimetry (vol 1). Academic Press, New York, pp 43–92

    Google Scholar 

  27. Schmidt-Boecking H, Ramm U, Kraft G, Ullrich J, Berg H, Kelbch C, Olson RE, Dubois R, Hagmann S, Jiazhen F (1992)δ-Electron emission in fast heavy ion-atom collisions. Adv Space Res 12:7–15

    Google Scholar 

  28. Scholz M, Kraft G (1992) A parameter-free track structure model for heavy ion action cross section. In: Chadwick KH, Moschini G, Varma MN (eds) Biophysical modelling of radiation effects. Adam Hilger, Brussels, pp 185–192

    Google Scholar 

  29. Schutten, J, deHeer FJ, Moustafa HR, Boerboom AJH, Kistemaker J (1966) Gross- and partial-ionization cross sections for electrons on water vapor in the energy range 0.1–20 keV. J Chem Phys 44(10):3924–3928

    Google Scholar 

  30. Siegbahn K Nordling C, Johannson G, Hedman J, Hedén PF, Humrin K, Gelius U, Bergmark T, Werme LO, Manne R, Baer Y (1971) ESCA applied to free molecules. North Holland, Amsterdam, pp 82–85

    Google Scholar 

  31. Slater JC (1960) Quantum theory of atomic structure (vol 1). McGraw-Hill, New York

    Google Scholar 

  32. Toburen LH, Wilson WE (1977) Energy and angular distributions of electrons ejected from water vapor by 0.3–1.5 MeV protons. J Chem Phys 66(11):5202–5213

    Google Scholar 

  33. Toburen LH, Wilson WE, Popovich RJ (1980) Secondary electron emission from ionization of water vapor by 0.3- to 2.0-MeV He+ and He2+ ions. Radiat Res 82:27–44

    Google Scholar 

  34. Toburen LH, Braby LA, Metting NF, Kraft G, Scholz M, Kraske F, Schmidt-Böcking H, Dörner R, Seip R (1990) Radial distributions of energy deposited along charged particle tracks. Radiat Prot Dosimetry 31(1/4):199–203

    Google Scholar 

  35. Varma MN, Baum JW (1980) Energy deposition in nanometer regions by 377 MeV/Nucleon20Ne ions. Radiat Res 81:355–363

    Google Scholar 

  36. Varma MN, Paretzke HG, Baum JW, Lyman JT, Howard J (1976) Dose as a function of radial distance from a 930 MeV4He ion beam. In: Booz J, Ebert HG, Smith BGR (eds) Proceedings of the 5th symposium on microdosimetry. Luxembourg, Commission of the European Communities, pp 75–95

    Google Scholar 

  37. Varma MN, Baum JW, Kuehner AV (1977) Radial dose, LET, and W for160 ions in N2 and tissue-equivalent gases. Radiat Res 70:511–518

    Google Scholar 

  38. Varma MN, Baum JW, Kuehner AV (1980) Stopping power and radial dose distribution for 42 MeV bromine ions. Phys Med Biol 25/4:651–656

    Google Scholar 

  39. Trajmar S, Register DF, Chutjian A (1983) Electron scattering by molecules. II. Experimental methods and data. Phys. Rep 97/5:219–356

    Google Scholar 

  40. Wingate CL, Baum JW (1976) Measured radial distributions of dose and LET for alpha and proton beams in hydrogen and tissue-equivalent gas. Radiat Res 65:1–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krämer, M., Kraft, G. Calculations of heavy-ion track structure. Radiat Environ Biophys 33, 91–109 (1994). https://doi.org/10.1007/BF01219334

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01219334

Keywords

Navigation