Skip to main content

Magnetic Activated Cell Sorting of Human Spermatozoa

  • Chapter
  • First Online:
In Vitro Fertilization
  • 2084 Accesses

Abstract

Magnetic separation has been successfully applied to many aspects of both biomedical and biological research and also in clinical areas like cellular therapies for human autoimmune diseases, like rheumatoid arthritis, diabetes, multiple sclerosis, and systemic lupus erythematosus, and nucleic acid transfer as a transfection method to optimize conditions for virus-mediated gene delivery (therapy) by magnetofection. In the last decade, several studies have been carried out on the use of magnetic cell sorting in human reproduction, for decontamination of testicular cell suspensions in cancer patients and for elimination of apoptotic spermatozoa from human semen samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Apel M, UAO H, Miltenyi S, et al. Magnetic cell separation for research and clinical applications. In: Andrä W, Nowak H, editors. Magnetism in medicine: a handbook. 2nd ed. Weinheim: Wiley-Vch; 2007. p. 571.

    Google Scholar 

  2. Lande R, Giacomini E, Serafini B, et al. Characterization and recruitment of plasmacytoid dendritic cells in synovial fluid and tissue of patients with chronic inflammatory arthritis. J Immunol. 2004;173:2815–24.

    Article  CAS  PubMed  Google Scholar 

  3. Cipolletta C, Ryan KE, Hanna EV, et al. Activation of peripheral blood CD14+ monocytes occurs in diabetes. Diabetes. 2005;54(9):2779–86.

    Article  CAS  PubMed  Google Scholar 

  4. Bielekova B, Catalfamo M, Reichert-Scrivner S, et al. Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. P Natl Acad Sci USA. 2006;103(15):5941–6.

    Article  CAS  Google Scholar 

  5. Köller M, Zwölfer B, Steiner G, et al. Phenotypic and functional deficiencies of monocyte-derived dendritic cells in systemic lupus erythematosus (SLE) patients. Int Immunol. 2004;16(11):1595–604.

    Article  PubMed  Google Scholar 

  6. Plank C, Schillinger U, Scherer F, et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem. 2003;384:737–47.

    Article  CAS  PubMed  Google Scholar 

  7. Xenariou S, Griesenbach U, Ferrari S, et al. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo: magnetofection in the mouse nose. Gene Ther. 2006;13:1545–52.

    Article  CAS  PubMed  Google Scholar 

  8. Geens M, Van de Velde H, De Block G, et al. The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum Reprod. 2007;22(3):733–42.

    Article  CAS  PubMed  Google Scholar 

  9. Paasch U, Grunewald S, Fitzl G, et al. Deterioration of plasma membrane is associated with activated caspases in human spermatozoa. J Androl. 2003;24(2):246–52.

    Article  CAS  PubMed  Google Scholar 

  10. Paasch U, Grunewald S, Agarwal A, et al. Activation pattern of caspases in human spermatozoa. Fertil Steril. 2004;81(SUPPL1):802–9.

    Article  CAS  PubMed  Google Scholar 

  11. Said TM, Agarwal A, Grunewald S, et al. Evaluation of sperm recovery following annexin V magnetic-activated cell sorting separation. Reprod Biomed Online. 2006;13(3):336–9.

    Article  PubMed  Google Scholar 

  12. Chohan KR, Griffin JT, Lafromboise M, et al. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl. 2006;27(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  13. Manicardi GC, Bianchi PG, Pantano S, et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod. 1995;52:864–7.

    Article  CAS  PubMed  Google Scholar 

  14. Sakkas D, Moffatt O, Manicardi GC, et al. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod. 2002;66:1061–7.

    Article  CAS  PubMed  Google Scholar 

  15. Cocuzza M, Sikka SC, Athayde KS, et al. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol. 2007;33(5):603–21.

    Article  PubMed  Google Scholar 

  16. Uzunhisarcikli M, Kalender Y, Dirican K, et al. Acute, subacute and subchronic administration of methyl parathion-induced testicular damage in male rats and protective role of vitamins C and E. Pestic Biochem Phys. 2007;87:115–22.

    Article  CAS  Google Scholar 

  17. Saleh RA, Agarwal A, Nada EA, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79:1597–605.

    Article  PubMed  Google Scholar 

  18. Agarwal A, Desai N, Makker K, et al. Effects of radiofrequency electromagnetic waves (FR-EMV) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92(4):1318–25.

    Article  PubMed  Google Scholar 

  19. Cinar C, Yazici C, Ergünsu S, et al. Genetic diagnosis in infertile men with numerical and constitutional sperm abnormalities. Genet Test. 2008;12(2):195–202.

    Article  CAS  PubMed  Google Scholar 

  20. Dubey A, Dayal MB, Frankfurter D, et al. The influence of sperm morphology on preimplantation genetic diagnosis cycles outcome. Fertil Steril. 2008;89(6):1665–9.

    Article  PubMed  Google Scholar 

  21. Kirkpatrick G, Ferguson KA, Gao H, et al. A comparison of sperm aneuploidy rates between infertile men with normal and abnormal karyotypes. Hum Reprod. 2008;23(7):1679–83.

    Article  PubMed  Google Scholar 

  22. Huzsar G, Vigue L. Correlation between the rate of lipid peroxidation and cellular maturity as measured by creatine kinase activity in human spermatozoa. J Androl. 1994;15:71–7.

    Google Scholar 

  23. Aziz N, Said T, Paasch U, et al. The relationship between human sperm apoptosis, morphology and the sperm deformity index. Hum Reprod. 2007;22(5):1413–9.

    Article  PubMed  Google Scholar 

  24. Sakkas D, Seli E. Sperm DNA and embryo development. In: Elder K, Cohen J, editors. Human preimplantation embryo selection. London: Informa Healthcare; 2007. p. 325–35.

    Chapter  Google Scholar 

  25. Sakkas D. Novel technologies for selecting the best sperm for in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2013;99(4):1023–9.

    Article  PubMed  Google Scholar 

  26. Ashgar W, Velasco V, Kingsley JL, et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Health Mater. 2014;3(10):1–18.

    Google Scholar 

  27. Bartoov B, Berkovitz A, Eltes F. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med. 2001;345(14):1067–8.

    Article  CAS  PubMed  Google Scholar 

  28. Huzsar G, Ozenci CC, Cayli S, et al. Hyaluronic acid binding by human sperm indicates cellular maturity, viability, and unreacted acrosomal status. Fertil Steril. 2003;79(Suppl 3):1616–24.

    Google Scholar 

  29. Simon L, Murphy K, Aston K, et al. Micro-electrophoresis: a noninvasive method of sperm selection based on membrane charge. Fertil Steril. 2015;103(2):361–6.

    Article  CAS  PubMed  Google Scholar 

  30. Wang X. Apoptosis. In: Alberts B, Johnson A, Lewis J, et al. edtiors. Molecular biology of the cell. 5th ed. New York, NY: Garland Sci; 2008. p. 1115–30.

    Google Scholar 

  31. Dirican EK, Ozgun OD, Akarsu S, et al. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Gen. 2008;25(8):375–81.

    Article  Google Scholar 

  32. Grunewald S, Baumann T, Paasch U, et al. Capacitation and acrosome reaction in nonapoptotic human spermatozoa. Ann N Y Acad Sci. 2006;1090:138–46.

    Article  PubMed  Google Scholar 

  33. Paasch U, Grunewald S, Glander HJ. Sperm selection in assisted reproductive techniques. Soc Reprod Fertil. 2007;65:515–25.

    Google Scholar 

  34. Said TM, Agarwal A, Zborowski M, et al. Utility of magnetic separation as a molecular sperm preparation technique. J Androl. 2008;29(2):134–42.

    Article  PubMed  Google Scholar 

  35. Hipler UC, Schreiber G, Wollina U. Reactive oxygen species in human semen: investigations and measurements. Arch Androl. 1998;40(1):67–78.

    Article  CAS  PubMed  Google Scholar 

  36. Glander HJ, Schiller J, Süß R, et al. Deterioration of spermatozoa plasma membrane is associated with an increase of sperm lyso-phosphatidylcholines. Andrologia. 2002;34(6):360–6.

    Article  CAS  PubMed  Google Scholar 

  37. Winkle T, Gagsteiger F, Ditzel N. Reduction of apoptotic spermatozoa within the ejaculate by means of the MACS system. Journal fur Fertilitat und Reproduktion. 2007;17(1):19–21.

    Google Scholar 

  38. Grunewald S, Miska W, Miska G, et al. Molecular glass wool filtration as a new tool for sperm preparation. Hum Reprod. 2007;22(5):1405–12.

    Article  CAS  PubMed  Google Scholar 

  39. de Vantéry AC, Lucas H, Chardonnens D, et al. Removal of spermatozoa with externalized phosphatidylserine from sperm preparation in human assisted medical procreation: effects on viability, motility and mitochondrial membrane potential. Reprod Biol Endocrin. 2009;7:1.

    Article  Google Scholar 

  40. Vendrell X, Ferrer M, Garcia-Mengual E, et al. Correlation between aneuploidy, apoptotic markers and DNA fragmentation in spermatozoa from normozoospermic patients. Reprod Biomed Online. 2014;28:492–502.

    Article  CAS  PubMed  Google Scholar 

  41. Delbes G, Herrero MB, Troeung ET, et al. The use of complimentary assays to evaluate the enrichment of human sperm quality in asthenoteratozoospermic and teratozoospermic samples processed with Annexin-V magnetic activated cell sorting. Andrology. 2013;1:698–706.

    Article  CAS  PubMed  Google Scholar 

  42. Paasch U, Grunewald S, Glander HJ. Transduction of apoptotic signals in ejaculated spermatozoa after cryopreservation via activation of caspases. Journal fur Fertilitat und Reproduktion. 2003;13(2):22–31.

    Google Scholar 

  43. Paasch U, Grunewald S, Wuendrich K, et al. Immunomagnetic removal of cryo-damaged human spermatozoa. Asian J Androl. 2005;7(1):61–9.

    Article  PubMed  Google Scholar 

  44. Grunewald S, Paasch U, Said TM, et al. Magnetic-activated cell sorting before cryopreservation preserves mitochondrial integrity in human spermatozoa. Cell Tissue Bank. 2006;7(2):99–104.

    Article  PubMed  Google Scholar 

  45. Said T, Agarwal A, Grunewald S, et al. Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction: an in vitro model. Biol Reprod. 2006;74(3):530–7.

    Article  CAS  PubMed  Google Scholar 

  46. Grunewald S, Reinhardt M, Blumenauer V, et al. Increased sperm chromatin decondensation in selected nonapoptotic spermatozoa of patients with male infertility. Fertil Steril. 2009;92(2):572–7.

    Article  PubMed  Google Scholar 

  47. Lee TH, Liu CH, Shih YT, et al. Magnetic-activated cell sorting for human sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility. Hum Reprod. 2010;25(4):839–46.

    Article  CAS  PubMed  Google Scholar 

  48. Hoogendijk CF, Kruger TF, Bouic PJ, et al. A novel approach for the selection of human sperm using annexin V-binding and flow cytometry. Fertil Steril. 2009;91(4):1285–92.

    Article  PubMed  Google Scholar 

  49. Dirican EK, Vicdan K, Işık AZ, et al. [Results of the microinjection treatments after eliminating apoptotic spermatozoa] (Article in Turkish: Apoptotik spermlerin elimine edilmesi ile uygulanan mikroenjeksiyon tedavilerinin sonuçları.) 2nd. Natl Cong Reprod Endocrinol Infertility. 2006;SS-18:222–3.

    Google Scholar 

  50. Kahraman S, Polat G, Samli M, et al. Multiple pregnancies obtained by testicular spermatid injection in combination with intracytoplasmic sperm injection. Hum Reprod. 1998;13(1):104–10.

    Article  CAS  PubMed  Google Scholar 

  51. Balaban B, Yakin K, Urman B, et al. Pronuclear morphology predicts embryo development and chromosome constitution. Reprod Biomed Online. 2004;8(6):695–700.

    Article  PubMed  Google Scholar 

  52. Farfalli VI, Magli MC, Ferraretti AP, et al. Role of aneuploidy on embryo implantation. Gynecol Obstet Investig. 2007;64(3):161–5.

    Article  CAS  Google Scholar 

  53. Sakkas D, Seli E, Bizzaro D, et al. Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodeling during spermatogenesis. Reprod Biomed Online. 2003;7(4):428–32.

    Article  PubMed  Google Scholar 

  54. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  55. Rawe VY, Alvarez CR, Uriondo HW, et al. ICSI outcome using annexin V columns to select non-apoptotic spermatozoa. ASRM. 2009;O-250:S73–4.

    Google Scholar 

  56. Rawe VY, Boudri HU, Sedó CA, et al. Healthy baby born after reduction of sperm DNA fragmentation using cell sorting before ICSI. Reprod Biomed Online. 2010;20:320–3.

    Article  PubMed  Google Scholar 

  57. Herrero MB, Delbes G, Chung JT, et al. Case report: the use of annexin V coupled with magnetic activated cell sorting in cryopreserved spermatozoa from a male cancer survivor: healthy twin newborns after two previous ICSI failures. J Assist Reprod Genet. 2013;30:1415–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lukaszuk K, Wcislo M, Liss J, et al. First pregnancy, somatic and psychological status of a 4-year-old child born following Annexin V TESA sperm separation. Am J Perinatol Rep. 2015;5:e105–8.

    Article  Google Scholar 

  59. Troya J, Zorilla I. Annexin V-MACS in infertile couples as method for separation of sperm without DNA fragmentation. JBRA. 2015;19(2):66–9.

    Google Scholar 

  60. McDowell S, Kroon B, Ford E, et al. Advanced sperm selection techniques for assisted reproduction. Cochrane Database Syst Rev. 2014;10:1–27.

    Google Scholar 

  61. Romany L, Garrido N, Cobo A, et al. Obstetric and perinatal outcome of babies born from sperm selected by MACS from a randomized controlled trial. J Assist Reprod Genet. 2017;34(2):201–7. https://doi.org/10.1007/s10815-016-0838-6.

    Article  PubMed  Google Scholar 

  62. Gil M, Sar-Shalom V, Sivira YM, et al. Sperm selection using magnetic activated cell sorting (MACS) is assisted reproduction: a systematic review and meta-analysis. J Assist Reprod Genet. 2013;30:479–85.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Romany L, Garrido N, Motato Y, et al. Removal of annexin V–positive sperm cells for intracytoplasmic sperm injection in ovum donation cycles does not improve reproductive outcome: a controlled and randomized trial in unselected males. Fertil Steril. 2014;102(6):1567–75.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Review Questions

Review Questions

  1. 1.

    What is the purpose of eliminating apoptotic spermatozoa prior to assisted reproduction?

  2. 2.

    Explain the depletion and enrichment techniques in magnetic cell sorting technologies.

  3. 3.

    What are the advantages of sperm selection in terms of improving assisted reproduction outcome?

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dirican, E.K. (2019). Magnetic Activated Cell Sorting of Human Spermatozoa. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) In Vitro Fertilization. Springer, Cham. https://doi.org/10.1007/978-3-319-43011-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43011-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43010-2

  • Online ISBN: 978-3-319-43011-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics