Skip to main content

Nano-Biofungicides: Emerging Trend in Insect Pest Control

  • Chapter
  • First Online:
Advances and Applications Through Fungal Nanobiotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Application of pesticides, which encompasses insecticides, fungicides, herbicides, nematicides etc., being used for plant defence mechanisms, embarrasses pest organisms. Although, pesticides eliminate the problem of pests, the use of synthetic pesticides has resulted in unsustainable management of our soil resources. This can be explained as due to the development of resistance by the pest organisms on continuous exposure to the pesticides, thus posing a challenge which leads to development of new classes of pesticides. These pesticides, apart from targeting the pest organisms, causes undesirable effects to all matrices of the environment-viz, soil, water, air, biota etc., Hence, the need for the development of ecofriendly pesticides becomes immediate inevitability. However, there is no one single method for efficient command on insect pests. Among the various classes of pesticides, fungicides form a major group of domineering plant diseases of fungal origin, either by inhibiting the growth of the fungi or by complete biocidal activity. The significance of fungicides is due to the fact that fungal diseases stands first in crop thrashing world wide. Currently, apart from the existing synthetic fungicides in the market, biofungicides occupies an unique position in controlling target diseases of fungal origin. An advanced technology in the field of biopesticides is the employment of engineered nanomaterials. These nanomaterials are more reactive can conjugate with biofungicides forming covalent bonds. This unique property of nanomaterials are exploited to manage the plant-pest chain. Therefore, this manuscript focus on nanobiofungicides as a powerful alternative for eco-friendly management of insect pests, in the coming decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam KA (2013) Nanoplatforms for plant pathogenic fungi management. Fungal Genom Biol 2, e10

    Google Scholar 

  • Abd-Elsalam KA, Alghuthaymi MA (2015) Nanobiofungicides: are they the next-generation of fungicides? J Nanotech Mater Sci 2:1–3

    Google Scholar 

  • Acharyulu NPS, Dubey RS, Swaminadham V, Kalyani RL, Kollu P, Pammi SV (2014) Green synthesis of Cuo nanoparticles using Phyllanthus amarus leaf extract and their antibacterial activity against multidrug resistance bacteria. Int J Eng Res Technol 3:639–641

    Google Scholar 

  • Adil SF, Assal ME, Khan M (2015) Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Trans 44:9709–9717

    Article  CAS  PubMed  Google Scholar 

  • Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28(3):1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236

    Google Scholar 

  • Arumugama A, Karthikeyan C, Hameed ASH, Gopinath K, Gowri S, Karthika V (2015) Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng 49:408–415

    Article  CAS  Google Scholar 

  • Awwad AM, Albiss BA, Salem NM (2015) Antibacterial activity of synthesized copper oxide nanoparticles using Malva sylvestris leaf extract. SMU Med J 2:91–100

    Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A (2009) Nanoparticles from drug delivery to insect pest control. Akshar 1(1):1–7

    Google Scholar 

  • Bhattacharyya A, Bhaumik A, Nandi M, Viraktamath S, Kumar R, Nayak A, Chowdhury MU, Mandal S (2009) Nano—a new frontier in present century. Advances Life Sci 3:18–23

    Google Scholar 

  • Bhattacharyya A, Bhaumik A, Usha Rani P, Mandal S, Epidi TT (2010) Nano-particles—a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    CAS  Google Scholar 

  • Bhattacharyya A, Antoney PU, Raja Naika H, Reddy SJ, Adeyemi MM, Omkar (2015) Nanotechnology and butterflies: a mini review. J Appl Biosci 41: 27–32

    Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  CAS  PubMed  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. Bioessays 28(8):799–808

    Article  PubMed  Google Scholar 

  • Chan YS, Mashitah MD (2012) Optimization of process parameter in bioreduction of Ag nanoparticles by Pycnoporus sanguineus. In: Proceeding of international conference on advanced material engineering and technology (ICAMET 2012). Bayview Beach Resort, Penang, Malaysia, 28–30 Nov 2012

    Google Scholar 

  • Channabasava A, Lakshman HC, Jorquera MA (2015) Effect of fungicides on association of arbuscular mycorrhiza fungus Rhizophagus fasciculatus and growth of Proso millet (Panicum miliaceum L.). J Soil Sci Plant Nutr 15:35–45

    Google Scholar 

  • Durán A, Nombela C (2004) Fungal cell wall biogenesis: building a dynamic interface with the environment. Microbiology 150:3099–3103

    Article  CAS  PubMed  Google Scholar 

  • Francis R, Keinath A (2010) Biofungicides and Chemicals for Managing Diseases in Organic Vegetable Production. Clemson Cooperative Extension Information Leaflet 88. (http://www.clemson.edu/psapublishing/PAGES/PLNTPATH/IL88.pdf)

  • Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240

    Article  CAS  PubMed  Google Scholar 

  • Gawai DU (2015) Antifungal activity of essential oil of cymbopogon citratus stapf against different Fusarium species. Bionano Frontier 8(2):186–189

    Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim. Acta Mol Biomol Spectrosc 106:170–174

    Article  CAS  Google Scholar 

  • Gupta S, Dikshit AK (2010) Biopesticides: an ecofriendly approach for pest control. J Biopesticides 3:186–188

    Google Scholar 

  • Hemath Naveen KS, Kumar G, Karthik L, Bhaskara Rao KV (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res 2:161–167

    Google Scholar 

  • Ingle A, Duran N, Rai M (2014) Bioactivity, mechanism of action and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Jo YK, Kim BH, Jung GH (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  Google Scholar 

  • Joselito D, Soytong K (2014) Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. J Agr Tech 10(4):823–831

    Google Scholar 

  • Kah M, Beulke S, Tiede K (2013) Nano-pesticides: state of knowledge, environmental fate and exposure modelling. Crit Rev Environ Sci Technol 43(16):1823–1867

    Article  CAS  Google Scholar 

  • Kargara H, Ghasemi F, Darroudid M (2015) Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays. Ceram Int 41:1589–1594

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20

    Article  CAS  PubMed  Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306

    Article  CAS  PubMed  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445

    Article  CAS  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011a) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiol 39:194–199

    Article  CAS  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011b) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiol 39:26–32

    Article  CAS  Google Scholar 

  • Lee KJ, Park SH, Govarthanan M (2013) Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett 105:128–131

    Article  CAS  Google Scholar 

  • Leng P, Zhang Z, Pan G, Zhao M (2011) Applications and development trends in biopesticides. Afr J Biotechnol 10(86):19864–19873

    CAS  Google Scholar 

  • Manimaran M (2015) A review on nanotechnology and its implications in agriculture and food industry. Asian J Plant Sci Res 5:13–15

    Google Scholar 

  • Mishra S, Singh BR, Singh A (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5), e97881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483

    Article  CAS  PubMed  Google Scholar 

  • OECD and Allianz (2008) Report in cooperation with the OECD International Futures Programme. http://www.oecd.org/dataoecd/32/1/44108334.pdf

  • Parveen A, Rao S (2015) Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J Cluster Sci 26:693–701

    Article  CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A 73:374–381

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart, Article ID 963961, doi:10.1155/2014/963961

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2015) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol. doi:10.1002/wnan.1363

    Google Scholar 

  • Ragaei M, Sabry Al-Kazafy H (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3:528–545

    Google Scholar 

  • Rai M and Duran N (eds.) (2011) Metal nanoparticles in microbiology. Springer, Berlin/Heidelberg, doi:10.1007/978-3-642-18312-6_1

    Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Rahuman AA, Priyamvada B, Khanna VG, Kumar DK, Sujin PJ (2012) Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater Lett 68:115–117

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P (2008) A method for preparing auto capped nanoparticles such as CdS in continuous flow columns. Indian Patent Application No. 1395/Del/2008

    Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29

    Article  CAS  PubMed  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83–92

    Google Scholar 

  • Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root engineering, vol 40. Springer, Berlin/Heidelberg, pp 3–22

    Chapter  Google Scholar 

  • Singh A, Singh NB, Hussain I, Singh H, Singh SC (2015a) Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Invent 4:25–40

    Google Scholar 

  • Singh S, Singh BK, Yadav SM, Gupta AK (2015b) Applications of nanotechnology in agricultural and their role in disease management. Res Nanosci Nanotechnol 5:1–5

    Article  Google Scholar 

  • Siqueira JF, Rocas IN, Lopes HP, Elias CN, de Uzeda Milton (2002) Fungal infection of the radicular dentin. J Endod 28:770–773

    Google Scholar 

  • Usta C (2013) Microorganisms in biological pest control—a review (bacterial toxin application and effect of environmental factors). In: Silva-Opps M (ed) Current progress in biological research. InTech, doi:10.5772/55786

    Google Scholar 

  • Valentine NB, Wahl JH, Kingsley MT, Wahl KL (2002) Direct surface analysis of fungal species by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 16:1352–1357. doi:10.1002/rcm.721

    Article  CAS  PubMed  Google Scholar 

  • Vardhana J, Kathiravan G (2015) Biosynthesis of silver nanoparticles by endophytic fungi Pestaloptiopsis pauciseta isolated from the leaves of Psidium guajava Linn. Int J Pharm Sci Rev Res 31:29–31

    CAS  Google Scholar 

  • Vijayalakshmi C, Chellaram C, Kumar SL (2015) Modern approaches of nanotechnology in agriculture—a review. Biosci Biotechnol Res Asia 12:327–331

    Article  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37:2099–2120

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atanu Bhattacharyya or Ram Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhattacharyya, A., Duraisamy, P., Govindarajan, M., Buhroo, A.A., Prasad, R. (2016). Nano-Biofungicides: Emerging Trend in Insect Pest Control. In: Prasad, R. (eds) Advances and Applications Through Fungal Nanobiotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42990-8_15

Download citation

Publish with us

Policies and ethics