Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

Global Navigation Satellite System (GlossaryTerm

GNSS

) carrier-phase integer ambiguity resolution is the process of resolving the carrier-phase ambiguities as integers. It is the key to fast and high-precision GNSS parameter estimation and it applies to a great variety of GNSS models that are currently in use in navigation, surveying, geodesy and geophysics. The theory that underpins GNSS carrier-phase ambiguity resolution is the theory of integer inference. This theory and its practical application is the topic of the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADOP:

ambiguity dilution of precision

CMS:

constrained maximum success-rate

DD:

double-difference

FAR:

full ambiguity resolution

GNSS:

global navigation satellite system

GPS:

Global Positioning System

IB:

integer bootstrapping

ILS:

integer least-squares

InSAR:

interferometric synthetic aperture radar

IR:

integer rounding

LAMBDA:

least-squares ambiguity decorrelation adjustment

MMP:

minimum mean penalty

PAR:

partial ambiguity resolution

PDF:

probability density function

PMF:

probability mass function

VLBI:

very long baseline interferometry

References

  1. G. Strang, K. Borre: Linear Algebra, Geodesy, and GPS (Wellesley Cambridge Press, Wellesley 1997)

    Google Scholar 

  2. P.J.G. Teunissen, A. Kleusberg (Eds.): GPS for Geodesy, 2nd edn. (Springer, Berlin 1998)

    Google Scholar 

  3. A. Leick, L. Rapoport, D. Tatarnikov: GPS Satellite Surveying, 4th edn. (Wiley, Hoboken 2015)

    Google Scholar 

  4. B. Hofmann-Wellenhof, H. Lichtenegger, E. Wasle: GNSS Global Navigation Satellite Systems: GPS, GLONASS, Galileo & More (Springer, Berlin 2007)

    Google Scholar 

  5. P. Misra, P. Enge: Global Positioning System: Signals, Measurements, and Performance, 2nd edn. (Ganga-Jamuna Press, Lincoln 2011)

    Google Scholar 

  6. P.J.G. Teunissen: Towards a unified theory of GNSS ambiguity resolution, J. Global Position. Syst. 2(1), 1–12 (2003)

    Article  Google Scholar 

  7. P.J.G. Teunissen: Mixed Integer Estimation and Validation for Next Generation GNSS. In: Handbook of Geomathematics, Vol. 2, ed. by W. Freeden, M.Z. Nashed, T. Sonar (Springer, Heidelberg 2010) pp. 1101–1127

    Chapter  Google Scholar 

  8. C.C. Counselman, S.A. Gourevitch: Miniature interferometer terminals for earth surveying: ambiguity and multipath with Global Positioning System, IEEE Trans. Geosci. Remote Sens. GE-19(4), 244–252 (1981)

    Article  Google Scholar 

  9. B.W. Remondi: Global Positioning System carrier phase: description and use, J. Geodesy 59(4), 361–377 (1985)

    Google Scholar 

  10. R. Hatch: Dynamic differential GPS at the centimeter level, 4th Int. Geod. Symp. Satell. Position., Austin (Defense Mapping Agency / National Geodetic Survey, Silver Spring 1986) pp. 1287–1298

    Google Scholar 

  11. G. Blewitt: Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km, J. Geophys. Res. 94(B8), 10187–10203 (1989)

    Article  Google Scholar 

  12. E. Frei, G. Beutler: Rapid static positioning based on the fast ambiguity resolution approach FARA: Theory and first results, Manuscr. Geod. 15(6), 325–356 (1990)

    Google Scholar 

  13. J. Euler, H. Landau: Fast GPS ambiguity resolution on-the-fly for real-time applications, 6-th Int. Geodetic Symp. Satell. Posit., Columbus (Defense Mapping Agency, Springfield 1992) pp. 650–659

    Google Scholar 

  14. P.J.G. Teunissen: Least-squares estimation of the integer GPS ambiguities, Invited Lecture, Section IV Theory and Methodology, IAG General Meeting, Beijing (IAG, Budapest 1993)

    Google Scholar 

  15. T. Hobiger, M. Sekido, Y. Koyama, T. Kondo: Integer phase ambiguity estimation in next generation geodetic very long baseline interferometry, Adv. Space Res. 43(1), 187–192 (2009)

    Article  Google Scholar 

  16. B.M. Kampes, R.F. Hanssen: Ambiguity resolution for permanent scatterer interferometry, IEEE Trans. Geosci. Remote Sens. 42(11), 2446–2453 (2004)

    Article  Google Scholar 

  17. D. Catarino das Neves Viegas, S.R. Cunha: Precise positioning by phase processing of sound waves, IEEE Trans. Signal Process 55(12), 5731–5738 (2007)

    Article  Google Scholar 

  18. S. Verhagen, B. Li, P.J.G. Teunissen: Ps-LAMBDA: Ambiguity success rate evaluation software for interferometric applications, Comput. Geosci. 54, 361–376 (2013)

    Article  Google Scholar 

  19. P.J.G. Teunissen: On the integer normal distribution of the GPS ambiguities, Artif. Satell. 33(2), 49–64 (1998)

    Google Scholar 

  20. C.P. Robert, G. Casella: Monte Carlo Statistical Methods, Vol. 2 (Springer, New York 1999)

    Book  Google Scholar 

  21. P.J.G. Teunissen: The probability distribution of the GPS baseline for a class of integer ambiguity estimators, J. Geod. 73(5), 275–284 (1999)

    Article  Google Scholar 

  22. P.J.G. Teunissen: Success probability of integer GPS ambiguity rounding and bootstrapping, J. Geod. 72(10), 606–612 (1998)

    Article  Google Scholar 

  23. P.J.G. Teunissen: Influence of ambiguity precision on the success rate of GNSS integer ambiguity bootstrapping, J. Geod. 81(5), 351–358 (2007)

    Article  Google Scholar 

  24. P.J.G. Teunissen: ADOP based upper bounds for the bootstrapped and the least-squares ambiguity success-rates, Artif. Satell. 35(4), 171–179 (2000)

    Google Scholar 

  25. P.J.G. Teunissen: The invertible GPS ambiguity transformations, Manuscripta Geodaetica 20(6), 489–497 (1995)

    Google Scholar 

  26. P.J.G. Teunissen: A new method for fast carrier phase ambiguity estimation, IEEE PLANS’94, Las Vegas (IEEE, Piscataway 1994) pp. 562–573, doi:10.1109/PLANS.1994.303362

    Google Scholar 

  27. P.J.G. Teunissen: The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation, J. Geod. 70(1), 65–82 (1995)

    Article  Google Scholar 

  28. P. De Jonge, C.C.J.M. Tiberius: The LAMBDA method for integer ambiguity estimation: Implementation aspects, Publ. Delft Comput. Centre LGR-Ser. 12, 1–47 (1996)

    Google Scholar 

  29. P.J. De Jonge, C.C.J.M. Tibernius, P.J.G. Teunissen: Computational aspects of the LAMBDA method for GPS ambiguity resolution, Proc. ION GPS 1996, Kansas (ION, Virginia 1996) pp. 935–944

    Google Scholar 

  30. L.T. Liu, H.T. Hsu, Y.Z. Zhu, J.K. Ou: A new approach to GPS ambiguity decorrelation, J. Geod. 73(9), 478–490 (1999)

    Article  Google Scholar 

  31. E.W. Grafarend: Mixed integer-real valued adjustment (IRA) problems: GPS initial cycle ambiguity resolution by means of the LLL algorithm, GPS Solut. 4(2), 31–44 (2000)

    Article  Google Scholar 

  32. P. Xu: Random simulation and GPS decorrelation, J. Geod. 75(7), 408–423 (2001)

    Article  Google Scholar 

  33. P. Joosten, C. Tiberius: LAMBDA: FAQs, GPS Solut. 6(1), 109–114 (2002)

    Article  Google Scholar 

  34. J.G.G. Svendsen: Some properties of decorrelation techniques in the ambiguity space, GPS Solut. 10(1), 40–44 (2006)

    Article  Google Scholar 

  35. P.J.G. Teunissen: An optimality property of the integer least-squares estimator, J. Geod. 73(11), 587–593 (1999)

    Article  Google Scholar 

  36. P.J. de Jonge: A Processing Strategy for the Application of the GPS in Networks, Ph.D. Thesis (Delft University of Technology, Delft 1998)

    Google Scholar 

  37. X.W. Chang, X. Yang, T. Zhou: MLAMBDA: A modified LAMBDA method for integer least-squares estimation, J. Geod. 79(9), 552–565 (2005)

    Article  Google Scholar 

  38. C.C.J.M. Tiberius, P.J. De Jonge: Fast positioning using the LAMBDA method, 4th Int. Symp. on Differ. Satell. Navig. Syst. (DSNS’95), Bergen (1995) pp. 1–8

    Google Scholar 

  39. P.J. de Jonge, C.C.J.M. Tiberius: Integer estimation with the LAMBDA method, IAG Symp. No. 115, GPS Trends Terr. Airborne Spaceborne appl., Boulder, ed. by G. Beutler (Springer Verlag, Berlin 1996) pp. 280–284

    Chapter  Google Scholar 

  40. F. Boon, B. Ambrosius: Results of real-time applications of the LAMBDA method in GPS based aircraft landings, Int. Symp. on Kinemat. Syst. Geod., Geomat. Navig. (KIS’97), Banff (Dept. of Geomatics Engineering, Univ. of Calgary, Banff 1997) pp. 339–345

    Google Scholar 

  41. D. Odijk: Fast Precise GPS Positioning in the Presence of Ionospheric Delays, Ph.D. Thesis (Delft University of Technology, Delft 2002)

    Google Scholar 

  42. P.J.G. Teunissen, P.J. de Jonge, C.C.J.M. Tiberius: The least-squares ambiguity decorrelation adjustment: Its performance on short GPS baselines and short observation spans, J. Geod. 71(10), 589–602 (1997)

    Article  Google Scholar 

  43. Y.F. Tsai, J.C. Juang: Ambiguity resolution validation based on LAMBDA and eigen-decomposition, Proc. ION AM 2007, Cambridge (ION, Virginia 2001) pp. 299–304

    Google Scholar 

  44. D.B. Cox, J.D.W. Brading: Integration of LAMBDA ambiguity resolution with Kalman filter for relative navigation of spacecraft, Navigation 47(3), 205–210 (2000)

    Article  Google Scholar 

  45. S.C. Wu, Y.E. Bar-Sever: Real-time sub-cm differential orbit determination of two low-Earth orbiters with GPS bias-fixing, Proc. ION GNSS 2006, Fort Worth (ION, Virginia 2006) pp. 2515–2522

    Google Scholar 

  46. P.J. Buist, P.J.G. Teunissen, G. Giorgi, S. Verhagen: Instantaneous multi-baseline ambiguity resolution with constraints, Int. Symp. on GPS/GNSS, Tokyo, ed. by A. Yasuda (Japan Institute of Navigation, Tokyo 2008) pp. 862–871

    Google Scholar 

  47. C. Park, P.J.G. Teunissen: A new carrier phase ambiguity estimation for GNSS attitude determination systems, Int. Symp. on GPS/GNSS, Tokyo (2003) pp. 1–8

    Google Scholar 

  48. L. Dai, K.V. Ling, N. Nagarajan: Real-time attitude determination for microsatellite by LAMBDA method combined with Kalman filtering, 22nd AIAA Int. Commun. Satell. Syst. Conf. Exhib., Monterey (AIAA, Reston 2004) pp. 136–143

    Google Scholar 

  49. R. Monikes, J. Wendel, G.F. Trommer: A modified LAMBDA method for ambiguity resolution in the presence of position domain constraints, Proc. ION GNSS 2005, Long Beach (ION, Virginia 2005) pp. 81–87

    Google Scholar 

  50. G. Giorgi, P.J.G. Teunissen, P. Buist: A search and shrink approach for the baseline constrained LAMBDA method: Experimental results, Int. Symp. on GPS/GNSS, Tokyo, ed. by A. Yasuda (Japan Institute of Navigation, Tokyo 2008) pp. 797–806

    Google Scholar 

  51. B. Eissfeller, C.C.J.M. Tiberius, T. Pany, R. Biberger, T. Schueler, G. Heinrichs: Instantaneous ambiguity resolution for GPS/Galileo RTK positioning, J. Gyrosc. Navig. 38(3), 71–91 (2002)

    Google Scholar 

  52. F. Wu, N. Kubo, A. Yasuda: Performance evaluation of GPS augmentation using quasi-zenith satellite system, IEEE Trans. Aerosp. Electron. Syst. 40(4), 1249–1260 (2004)

    Article  Google Scholar 

  53. S. Ji, W. Chen, C. Zhao, X. Ding, Y. Chen: Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods, GPS Solut. 11(4), 259–268 (2007)

    Article  Google Scholar 

  54. S. Verhagen: The GNSS Integer Ambiguities: Estimation and Validation, Ph.D. Thesis (Delft University of Technology, Delft 2005)

    Google Scholar 

  55. S. Verhagen: On the reliability of integer ambiguity resolution, Navigation 52(2), 99–110 (2005)

    Article  Google Scholar 

  56. A. Hassibi, S. Boyd: Integer parameter estimation in linear models with applications to GPS, IEEE Trans. Signal Process. 46(11), 2938–2952 (1998)

    Article  Google Scholar 

  57. H.E. Thomsen: Evaluation of Upper and Lower Bounds on the Success Probability, Proc. ION GPS 2000, Salt Lake City (ION, Virginia 2000) pp. 183–188

    Google Scholar 

  58. S. Verhagen: On the approximation of the integer least-squares success rate: Which lower or upper bound to use?, J. Global Position. Syst. 2(2), 117–124 (2003)

    Article  Google Scholar 

  59. P.J.G. Teunissen, P. Joosten, C.C.J.M. Tiberius: Geometry-free ambiguity success rates in case of partial fixing, Proc. ION NTM 1999, San Diego (ION, Virginia 1999) pp. 201–207

    Google Scholar 

  60. B. Forsell, M. Martin Neira, R. Harris: Carrier phase ambiguity resolution in GNSS-2, Proc. ION GPS 1997, Kansas City (ION, Virginia 1997) pp. 1727–1736

    Google Scholar 

  61. R. Hatch, J. Jung, P. Enge, B. Pervan: Civilian GPS: the benefits of three frequencies, GPS Solut. 3(4), 1–9 (2000)

    Article  Google Scholar 

  62. P.J.G. Teunissen, P. Joosten, C.C.J.M. Tiberius: A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution, Proc. ION GPS 2002, Portland (ION, Virginia 2002) pp. 2799–2808

    Google Scholar 

  63. B. Li, Y. Feng, Y. Shen: Three carrier ambiguity resolution: Distance-independent performance demonstrated using semi-generated triple frequency GPS signals, GPS Solut. 14(2), 177–184 (2010)

    Article  Google Scholar 

  64. A. Parkins: Increasing GNSS RTK availability with a new single-epoch batch partial ambiguity resolution algorithm, GPS Solut. 15(4), 391–402 (2011)

    Article  Google Scholar 

  65. D.G. Lawrence: A new method for partial ambiguity resolution, Proc. ION ITM 2009, Anaheim (ION, Virginia 2009) pp. 652–663

    Google Scholar 

  66. P.J.G. Teunissen: Integer aperture GNSS ambiguity resolution, Artif. Satell. 38(3), 79–88 (2003)

    Google Scholar 

  67. P.J.G. Teunissen: Penalized GNSS Ambiguity Resolution, J. Geodesy 78(4), 235–244 (2004)

    Article  Google Scholar 

  68. P.J.G. Teunissen: GNSS ambiguity resolution with optimally controlled failure-rate, Artif. Satell. 40(4), 219–227 (2005)

    Google Scholar 

  69. S. Verhagen: Integer ambiguity validation: An open problem?, GPS Solut. 8(1), 36–43 (2004)

    Article  Google Scholar 

  70. S. Verhagen, P.J.G. Teunissen: New global navigation satellite system ambiguity resolution method compared to existing approaches, J. Guid. Control Dyn. 29(4), 981–991 (2006)

    Article  Google Scholar 

  71. S. Verhagen, P.J.G. Teunissen: The ratio test for future GNSS ambiguity resolution, GPS Solut. 17(4), 535–548 (2013)

    Article  Google Scholar 

  72. H.J. Euler, B. Schaffrin: On a measure for the dicernibility between different ambiguity solutions in the static kinematic GPS-mode, IAG Symp. No. 107 Kinemat. Syst. Geodesy Surv. Remote Sens., Tokyo, ed. by I.I. Mueller (Springer Verlag, New York, Berlin, Heidelberg 1991) pp. 285–295

    Google Scholar 

  73. H. Landau, H.J. Euler: On-the-fly ambiguity resolution for precise differential positioning, Proc. ION GPS 1992, Albuquerque (ION, Virginia 1992) pp. 607–613

    Google Scholar 

  74. H.Z. Abidin: Computational and Geometrical Aspects of On-The-Fly Ambiguity Resolution, Ph.D. Thesis (University of New Brunswick, New Brunswick 1993)

    Google Scholar 

  75. S. Han: Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning, J. Geodesy 71(6), 351–361 (1997)

    Article  Google Scholar 

  76. J. Wang, M.P. Stewart, M. Tsakiri: A discrimination test procedure for ambiguity resolution on-the-fly, J. Geodesy 72(11), 644–653 (1998)

    Article  Google Scholar 

  77. M. Wei, K.P. Schwarz: Fast ambiguity resolution using an integer nonlinear programming method, Proc. ION GPS 1995, Palm Springs (ION, Virginia 1995) pp. 1101–1110

    Google Scholar 

  78. P.J.G. Teunissen, S. Verhagen: The GNSS ambiguity ratio-test revisited: A better way of using it, Surv. Rev. 41(312), 138–151 (2009)

    Article  Google Scholar 

  79. P.J.G. Teunissen, S. Verhagen: Integer aperture estimation: A framework for GNSS ambiguity acceptance testing, Inside GNSS 6(2), 66–73 (2011)

    Google Scholar 

  80. P.J.G. Teunissen: The parameter distributions of the integer GPS model, J. Geodesy 76(1), 41–48 (2002)

    Article  Google Scholar 

  81. S. Verhagen, P.J.G. Teunissen: On the probability density function of the GNSS ambiguity residuals, GPS Solut. 10(1), 21–28 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The author is the recipient of an Australian Research Council Federation Fellowship (project number FF0883188). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J.G. Teunissen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Teunissen, P.J. (2017). Carrier Phase Integer Ambiguity Resolution. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_23

Download citation

Publish with us

Policies and ethics