Skip to main content

Signaling Mechanisms in l-DOPA-Induced Dyskinesia

  • Chapter
  • First Online:
The Basal Ganglia

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

  • 1799 Accesses

Abstract

l-DOPA-induced dyskinesia is a major complication of dopamine replacement therapy in Parkinson’s disease. Clinical and experimental studies indicate that this complication develops because of a substantial loss of dopaminergic afferents to the motor part of the striatum, causing both pre- and postsynaptic changes in the nigrostriatal system. Moreover, a number of non-dopaminergic neurotransmitters modulate both the risk and the severity of this motor complication of treatment. This chapter reviews molecular changes occurring in the dopamine-denervated striatum in animal models of l-DOPA-induced dyskinesia, which have been partly verified by human studies. We will review a wide scope of alterations ranging from the phenomenon of dopamine D1 receptor supersensitivity (which is key to abnormal signaling responses in striatal neurons) to the role played by glutamate receptors and the altered regulation of gene and protein expression. We will finally review the evidence for a gliovascular contribution to the pathogenesis of l-DOPA-induced dyskinesia. It is our hope that the pathophysiological insights derived from animal models of l-DOPA-induced dyskinesia will soon lead to new therapeutics for the suppression or prevention of this debilitating condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MR, Bychkov E, Gurevich VV et al (2008) Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. J Neurochem 104(6):1622–1636. doi:JNC5104

    Google Scholar 

  • Ahmed MR, Berthet A, Bychkov E et al (2010) Lentiviral overexpression of GRK6 alleviates L-dopa-induced dyskinesia in experimental Parkinson’s disease. Sci Transl Med 2(28):28ra28. doi:10.1126/scitranslmed.3000664

    Google Scholar 

  • Ahmed I, Bose SK, Pavese N et al (2011) Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain 134(Pt 4):979–986. doi:10.1093/brain/awr028

    Article  PubMed  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    Article  PubMed  Google Scholar 

  • Alcacer C, Santini E, Valjent E et al (2012) Galpha(olf) mutation allows parsing the role of cAMP-dependent and extracellular signal-regulated kinase-dependent signaling in L-3,4-dihydroxyphenylalanine-induced dyskinesia. J Neurosci 32(17):5900–5910. doi:10.1523/JNEUROSCI.0837-12.2012

    Article  PubMed  Google Scholar 

  • Alcacer C, Charbonnier-Beaupel F, Corvol JC et al (2014) Mitogen- and stress-activated protein kinase 1 is required for specific signaling responses in dopamine-denervated mouse striatum, but is not necessary for l-DOPA-induced dyskinesia. Neurosci Lett 583C:76–80. doi:10.1016/j.neulet.2014.09.018

    Article  Google Scholar 

  • Andersson M, Hilbertson A, Cenci MA (1999) Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson’s disease. Neurobiol Dis 6(6):461–474

    Article  PubMed  Google Scholar 

  • Andersson M, Konradi C, Cenci MA (2001) cAMP response element-binding protein is required for dopamine-dependent gene expression in the intact but not the dopamine-denervated striatum. J Neurosci 21(24):9930–9943

    PubMed  PubMed Central  Google Scholar 

  • Attwell D, Buchan AM, Charpak S et al (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243. doi:10.1038/nature09613

    Article  PubMed  PubMed Central  Google Scholar 

  • Aubert I, Guigoni C, Hakansson K et al (2005) Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol 57(1):17–26. doi:10.1002/ana.20296

    Article  PubMed  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16(1):1–13. doi:10.1016/j.nbd.2003.12.016

    Article  PubMed  Google Scholar 

  • Banke TG, Bowie D, Lee H et al (2000) Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J Neurosci 20:89–102

    PubMed  Google Scholar 

  • Barcia C, Bautista V, Sanchez-Bahillo A et al (2005) Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. J Neural Transm (Vienna) 112(9):1237–1248. doi:10.1007/s00702-004-0256-2

    Article  Google Scholar 

  • Bartels AL, Willemsen AT, Kortekaas R et al (2008) Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm (Vienna) 115(7):1001–1009. doi:10.1007/s00702-008-0030-y

    Article  Google Scholar 

  • Bastide MF, Dovero S, Charron G et al (2014) Immediate-early gene expression in structures outside the basal ganglia is associated to l-DOPA-induced dyskinesia. Neurobiol Dis 62:179–192. doi:10.1016/j.nbd.2013.09.020

    Article  PubMed  Google Scholar 

  • Bateup HS, Santini E, Shen W et al (2010) Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci U S A 107(33):14845–14850. doi:10.1073/pnas.1009874107

    Article  PubMed  PubMed Central  Google Scholar 

  • Berthet A, Porras G, Doudnikoff E et al (2009) Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of L-DOPA-induced dyskinesia. J Neurosci 29(15):4829–4835. pii:29/15/4829

    Google Scholar 

  • Bertler A, Falck B, Owman C et al (1966) The localization of monoaminergic blood-brain barrier mechanisms. Pharmacol Rev 18(1):369–385

    PubMed  Google Scholar 

  • Berton O, Guigoni C, Li Q et al (2009) Striatal overexpression of DeltaJunD resets L-DOPA-induced dyskinesia in a primate model of Parkinson disease. Biol Psychiatry 66(6):554–561. pii:S0006-3223(09)00447-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Bezard E, Ferry S, Mach U et al (2003) Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med 9(6):762–767

    Article  PubMed  Google Scholar 

  • Bezard E, Gross CE, Qin L et al (2005) L-DOPA reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain. Neurobiol Dis 18:323–335

    Article  PubMed  Google Scholar 

  • Bordet R, Ridray S, Carboni S et al (1997) Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc Natl Acad Sci U S A 94(7):3363–3367

    Article  PubMed  PubMed Central  Google Scholar 

  • Bordet R, Ridray S, Schwartz JC et al (2000) Involvement of the direct striatonigral pathway in levodopa-induced sensitization in 6-hydroxydopamine-lesioned rats. Eur J Neurosci 12(6):2117–2123. pii:ejn089

    Article  PubMed  Google Scholar 

  • Borgkvist A, Usiello A, Greengard P et al (2007) Activation of the cAMP/PKA/DARPP-32 signaling pathway is required for morphine psychomotor stimulation but not for morphine reward. Neuropsychopharmacology 32(9):1995–2003. doi:1301321

    Google Scholar 

  • Bortolanza M, Cavalcanti-Kiwiatkoski R, Padovan-Neto FE et al (2015) Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson’s disease. Neurobiol Dis 73:377–387. doi:10.1016/j.nbd.2014.10.017, pii:S0969-9961(14)00330-1

    Article  PubMed  Google Scholar 

  • Buck K, Voehringer P, Ferger B (2010) Site-specific action of L-3,4-dihydroxyphenylalanine in the striatum but not globus pallidus and substantia nigra pars reticulata evokes dyskinetic movements in chronic L-3,4-dihydroxyphenylalanine-treated 6-hydroxydopamine-lesioned rats. Neuroscience 166(2):355–358. doi:10.1016/j.neuroscience.2009.12.032, pii:S0306-4522(09)02067-3

    Article  PubMed  Google Scholar 

  • Cai G, Wang HY, Friedman E (2002) Increased dopamine receptor signaling and dopamine receptor-G protein coupling in denervated striatum. J Pharmacol Exp Ther 302(3):1105–1112. doi:10.1124/jpet.102.036673

    Article  PubMed  Google Scholar 

  • Calabresi P, Picconi B, Tozzi A et al (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30(5):211–219

    Article  PubMed  Google Scholar 

  • Calon F, Morissette M, Goulet M et al (1999) Chronic D1 and D2 dopaminomimetic treatment of MPTP-denervated monkeys: effects on basal ganglia GABA(A)/benzodiazepine receptor complex and GABA content. Neurochem Int 35(1):81–91. pii:S0197-0186(99)00064-9

    Article  PubMed  Google Scholar 

  • Calon F, Morissette M, Ghribi O et al (2002) Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Prog Neuropsychopharmacol Biol Psychiatry 26(1):127–138

    Article  PubMed  Google Scholar 

  • Cao X, Yasuda T, Uthayathas S et al (2010) Striatal overexpression of DeltaFosB reproduces chronic levodopa-induced involuntary movements. J Neurosci 30(21):7335–7343. doi:10.1523/JNEUROSCI.0252-10.2010

    Article  PubMed  PubMed Central  Google Scholar 

  • Carta AR, Tronci E, Pinna A et al (2005) Different responsiveness of striatonigral and striatopallidal neurons to L-DOPA after a subchronic intermittent L-DOPA treatment. Eur J Neurosci 21(5):1196–1204. doi:10.1111/j.1460-9568.2005.03944.x

    Article  PubMed  Google Scholar 

  • Carta M, Lindgren HS, Lundblad M et al (2006) Role of striatal L-DOPA in the production of dyskinesia in 6-hydroxydopamine lesioned rats. J Neurochem 96(6):1718–1727. doi:10.1111/j.1471-4159.2006.03696.x, pii:JNC3696

    Article  PubMed  Google Scholar 

  • Carta AR, Frau L, Pinna A et al (2008) Behavioral and biochemical correlates of the dyskinetic potential of dopaminergic agonists in the 6-OHDA lesioned rat. Synapse 62(7):524–533. doi:10.1002/syn.20527

    Article  PubMed  Google Scholar 

  • Carvey PM, Chen EY, Lipton JW et al (2005) Intra-parenchymal injection of tumor necrosis factor-alpha and interleukin 1-beta produces dopamine neuron loss in the rat. J Neural Transm (Vienna) 112(5):601–612. doi:10.1007/s00702-004-0222-z

    Article  Google Scholar 

  • Cenci MA, Konradi C (2010) Maladaptive striatal plasticity in L-DOPA-induced dyskinesia. Prog Brain Res 183:209–233. doi:10.1016/S0079-6123(10)83011-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Cenci MA, Lindgren HS (2007) Advances in understanding L-DOPA-induced dyskinesia. Curr Opin Neurobiol 17(6):665–671. doi:10.1016/j.conb.2008.01.004, pii:S0959-4388(08)00006-8

    Article  PubMed  Google Scholar 

  • Cenci MA, Lee CS, Bjorklund A (1998) L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci 10(8):2694–2706

    Article  PubMed  Google Scholar 

  • Cerovic M, Bagetta V, Pendolino V et al (2014) Derangement of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and extracellular signal-regulated kinase (ERK) dependent striatal plasticity in L-DOPA-induced dyskinesia. Biol Psychiatry 77(2):106–115. doi:10.1016/j.biopsych.2014.04.002

    Article  PubMed  Google Scholar 

  • Chappell WH, Steelman LS, Long JM et al (2011) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2(3):135–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Charbonnier-Beaupel F, Malerbi M, Alcacer C et al (2015) Gene expression analyses identify Narp contribution in the development of L-DOPA-induced dyskinesia. J Neurosci 35(1):96–111

    Article  PubMed  Google Scholar 

  • Chase TN, Oh JD (2000) Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism. Trends Neurosci 23(10 Suppl):S86–S91

    Article  PubMed  Google Scholar 

  • Corvol JC, Muriel MP, Valjent E et al (2004) Persistent increase in olfactory type G-protein alpha subunit levels may underlie D1 receptor functional hypersensitivity in Parkinson disease. J Neurosci 24(31):7007–7014

    Article  PubMed  Google Scholar 

  • Crittenden JR, Cantuti-Castelvetri I, Saka E et al (2009) Dysregulation of CalDAG-GEFI and CalDAG-GEFII predicts the severity of motor side-effects induced by anti-parkinsonian therapy. Proc Natl Acad Sci U S A 106(8):2892–2896. doi:10.1073/pnas.0812822106, pii:0812822106

    Article  PubMed  PubMed Central  Google Scholar 

  • Darmopil S, Martin AB, De Diego IR et al (2009) Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry 66(6):603–613. doi:10.1016/j.biopsych.2009.04.025, pii:S0006-3223(09)00509-5

    Article  PubMed  Google Scholar 

  • Decressac M, Bjorklund A (2013) mTOR inhibition alleviates L-DOPA-induced dyskinesia in parkinsonian rats. J Parkinsons Dis 3(1):13–17. doi:10.3233/JPD-120155

    PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285

    Article  PubMed  Google Scholar 

  • Desai Bradaric B, Patel A, Schneider JA et al (2012) Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm (Vienna) 119(1):59–71. doi:10.1007/s00702-011-0684-8

    Article  Google Scholar 

  • Desdouits F, Cheetham JJ, Huang HB et al (1995) Mechanism of inhibition of protein phosphatase 1 by DARPP-32: studies with recombinant DARPP-32 and synthetic peptides. Biochem Biophys Res Commun 206(2):652–658. pii:S0006291X85710923

    Article  PubMed  Google Scholar 

  • Ding Y, Won L, Britt JP et al (2011) Enhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkinsonian mice. Proc Natl Acad Sci U S A 108(2):840–845. doi:10.1073/pnas.1006511108

    Article  PubMed  Google Scholar 

  • El Atifi-Borel M, Buggia-Prevot V, Platet N et al (2009) De novo and long-term l-Dopa induce both common and distinct striatal gene profiles in the hemiparkinsonian rat. Neurobiol Dis 34(2):340–350. doi:10.1016/j.nbd.2009.02.002

    Article  PubMed  Google Scholar 

  • Engeln M, Bastide MF, Toulme E et al (2014) Selective inactivation of striatal FosB/DeltaFosB-expressing neurons alleviates L-Dopa-induced dyskinesia. Biol Psychiatry 79(5):354–361. doi:10.1016/j.biopsych.2014.07.007

    Article  PubMed  Google Scholar 

  • Farre D, Munoz A, Moreno E et al (2014) Stronger dopamine D receptor-mediated neurotransmission in dyskinesia. Mol Neurobiol 52(3):1408–1420. doi:10.1007/s12035-014-8936-x

    Article  PubMed  Google Scholar 

  • Fasano S, Bezard E, D’Antoni A et al (2010) Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa-induced dyskinesia. Proc Natl Acad Sci U S A 107(50):21824–21829. doi:10.1073/pnas.1012071107, pii:1012071107

    Article  PubMed  PubMed Central  Google Scholar 

  • Faucheux BA, Bonnet AM, Agid Y et al (1999) Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet 353(9157):981–982. doi:10.1016/S0140-6736(99)00641-8, pii:S0140-6736(99)00641-8

    Article  PubMed  Google Scholar 

  • Feyder M, Bonito-Oliva A, Fisone G (2011) L-DOPA-induced dyskinesia and abnormal signaling in striatal medium spiny neurons: focus on dopamine D1 receptor-mediated transmission. Front Behav Neurosci 5:71. doi:10.3389/fnbeh.2011.00071

    Article  PubMed  PubMed Central  Google Scholar 

  • Feyder M, Sodersten E, Santini E et al (2014) A role for mitogen- and stress-activated kinase 1 in L-DOPA-induced dyskinesia and FosB expression. Biol Psychiatry 79(5):362–371. doi:10.1016/j.biopsych.2014.07.019

    Article  PubMed  PubMed Central  Google Scholar 

  • Fieblinger T, Graves SM, Sebel LE et al (2014a) Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia. Nat Commun 5:5316. doi:10.1038/ncomms6316, pii:ncomms6316

    Article  PubMed  PubMed Central  Google Scholar 

  • Fieblinger T, Sebastianutto I, Alcacer C et al (2014b) Mechanisms of dopamine D1 receptor-mediated ERK1/2 activation in the Parkinsonian striatum and their modulation by metabotropic glutamate receptor type 5. J Neurosci 34(13):4728–4740. doi:10.1523/JNEUROSCI.2702-13.2014

    Article  PubMed  Google Scholar 

  • Fienberg AA, Hiroi N, Mermelstein PG et al (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281(5378):838–842

    Article  PubMed  Google Scholar 

  • Fink JS, Weaver DR, Rivkees SA et al (1992) Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Brain Res Mol Brain Res 14(3):186–195

    Article  PubMed  Google Scholar 

  • Fino E, Glowinski J, Venance L (2005) Bidirectional activity-dependent plasticity at corticostriatal synapses. J Neurosci 25(49):11279–11287. doi:10.1523/JNEUROSCI.4476-05.2005, pii:25/49/11279

    Google Scholar 

  • Fiorentini C, Rizzetti MC, Busi C et al (2006) Loss of synaptic D1 dopamine/N-methyl-D-aspartate glutamate receptor complexes in L-DOPA-induced dyskinesia in the rat. Mol Pharmacol 69(3):805–812. doi:10.1124/mol.105.016667

    PubMed  Google Scholar 

  • Fiorentini C, Busi C, Gorruso E et al (2008) Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol Pharmacol 74(1):59–69. doi:10.1124/mol.107.043885, pii:mol.107.043885

    Article  PubMed  Google Scholar 

  • Fiorentini C, Mattanza C, Collo G et al (2011) The tyrosine phosphatase Shp-2 interacts with the dopamine D(1) receptor and triggers D(1) -mediated Erk signaling in striatal neurons. J Neurochem 117(2):253–263. doi:10.1111/j.1471-4159.2011.07196.x

    Article  PubMed  Google Scholar 

  • Fiorentini C, Savoia P, Savoldi D et al (2013a) Persistent activation of the D1R/Shp-2/Erk1/2 pathway in l-DOPA-induced dyskinesia in the 6-hydroxy-dopamine rat model of Parkinson’s disease. Neurobiol Dis 54:339–348. doi:10.1016/j.nbd.2013.01.005

    Article  PubMed  Google Scholar 

  • Fiorentini C, Savoia P, Savoldi D et al (2013b) Receptor heteromers in Parkinson’s disease and L-DOPA-induced dyskinesia. CNS Neurol Disord Drug Targets 12(8):1101–1113. pii:CNSNDDT-EPUB-55794

    PubMed  Google Scholar 

  • Fisone G, Bezard E (2011) Molecular mechanisms of l-DOPA-induced dyskinesia. Int Rev Neurobiol 98:95–122. doi:10.1016/B978-0-12-381328-2.00004-3

    Article  PubMed  Google Scholar 

  • Gardoni F, Picconi B, Ghiglieri V et al (2006) A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. J Neurosci 26(11):2914–2922

    Article  PubMed  Google Scholar 

  • Gardoni F, Sgobio C, Pendolino V et al (2012) Targeting NR2A-containing NMDA receptors reduces L-DOPA-induced dyskinesias. Neurobiol Aging 33(9):2138–2144. doi:10.1016/j.neurobiolaging.2011.06.019

    Article  PubMed  Google Scholar 

  • Gerfen CR (2003) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum animal model of Parkinson’s disease. Neuroscientist 9(6):455–462. doi:10.1177/1073858403255839

    Article  PubMed  Google Scholar 

  • Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466. doi:10.1146/annurev-neuro-061010-113641

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerfen CR, Engber TM, Mahan L et al (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  PubMed  Google Scholar 

  • Gerfen CR, Miyachi S, Paletzki R et al (2002) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2 kinase. J Neurosci 22:5042–5054

    PubMed  Google Scholar 

  • Geurts M, Hermans E, Cumps J et al (1999) Dopamine receptor-modulated [35S]GTPgammaS binding in striatum of 6-hydroxydopamine-lesioned rats. Brain Res 841(1–2):135–142. pii:S0006-8993(99)01812-0

    Article  PubMed  Google Scholar 

  • Gong S, Zheng C, Doughty ML et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925. doi:10.1038/nature02033, pii:nature02033

    Article  PubMed  Google Scholar 

  • Graybiel AM (1990) The basal ganglia and the initiation of movement. Rev Neurol (Paris) 146(10):570–574

    Google Scholar 

  • Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294(5544):1024–1030

    Article  PubMed  Google Scholar 

  • Greengard P, Allen PB, Nairn AC (1999) Beyond the dopamine receptor: the DARPP-32/Protein phosphatase-1 cascade. Neuron 23(3):435–447

    Article  PubMed  Google Scholar 

  • Guigoni C, Doudnikoff E, Li Q et al (2007) Altered D(1) dopamine receptor trafficking in parkinsonian and dyskinetic non-human primates. Neurobiol Dis 26(2):452–463. doi:10.1016/j.nbd.2007.02.001, pii:S0969-9961(07)00039-3

    Article  PubMed  Google Scholar 

  • Halje P, Tamte M, Richter U et al (2012) Levodopa-induced dyskinesia is strongly associated with resonant cortical oscillations. J Neurosci 32(47):16541–16551. doi:10.1523/JNEUROSCI.3047-12.2012, pii:32/47/16541

    Google Scholar 

  • Hallett PJ, Dunah AW, Ravenscroft P et al (2005) Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology 48(4):503–516

    Article  PubMed  Google Scholar 

  • Heiman M, Heilbut A, Francardo V et al (2014) Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia. Proc Natl Acad Sci U S A 111(12):4578–4583. doi:10.1073/pnas.1401819111

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemmings HC Jr, Greengard P, Tung HY et al (1984) DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 310(5977):503–505

    Article  PubMed  Google Scholar 

  • Henry B, Duty S, Fox SH et al (2003) Increased striatal pre-proenkephalin B expression is associated with dyskinesia in Parkinson’s disease. Exp Neurol 183(2):458–468

    Article  PubMed  Google Scholar 

  • Herve D, Trovero F, Blanc G et al (1992) Autoradiographic identification of D1 dopamine receptors labelled with [3H]dopamine: distribution, regulation and relationship to coupling. Neuroscience 46(3):687–700. pii:0306-4522(92)90155-U

    Article  PubMed  Google Scholar 

  • Herve D, Levi-Strauss M, Marey-Semper I et al (1993) G(olf) and Gs in rat basal ganglia: possible involvement of G(olf) in the coupling of dopamine D1 receptor with adenylyl cyclase. J Neurosci 13(5):2237–2248

    PubMed  Google Scholar 

  • Hetman M, Gozdz A (2004) Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem 271(11):2050–2055. doi:10.1111/j.1432-1033.2004.04133.x, pii:EJB4133

    Article  PubMed  Google Scholar 

  • Hirano S, Asanuma K, Ma Y et al (2008) Dissociation of metabolic and neurovascular responses to levodopa in the treatment of Parkinson’s disease. J Neurosci 28(16):4201–4209. doi:10.1523/JNEUROSCI.0582-08.2008. pii:28/16/4201

    Google Scholar 

  • Hope B, Kosofsky B, Hyman SE et al (1992) Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc Natl Acad Sci U S A 89(13):5764–5768

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurley MJ, Mash DC, Jenner P (2001) Dopamine D(1) receptor expression in human basal ganglia and changes in Parkinson’s disease. Brain Res Mol Brain Res 87(2):271–279

    Article  PubMed  Google Scholar 

  • Inyushin MY, Huertas A, Kucheryavykh YV et al (2012) L-DOPA uptake in astrocytic endfeet enwrapping blood vessels in rat brain. Parkinsons Dis 2012:321406. doi:10.1155/2012/321406

    PubMed  PubMed Central  Google Scholar 

  • Jenner P (2008) Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci 9(9):665–677. doi:10.1038/nrn2471, pii:nrn2471

    Article  PubMed  Google Scholar 

  • Johnson KA, Conn PJ, Niswender CM (2009) Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS Neurol Disord Drug Targets 8(6):475–491. pii:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Emson PC (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10(10):3421–3438

    PubMed  Google Scholar 

  • Kebabian JW, Greengard P (1971) Dopamine-sensitive adenyl cyclase: possible role in synaptic transmission. Science 174(4016):1346–1349

    Article  PubMed  Google Scholar 

  • Kebabian JW, Calne DB, Kebabian PR (1977) Lergotrile mesylate: an in vivo dopamine agonist which blocks dopamine receptors in vitro. Commun Psychopharmacol 1(4):311–318

    PubMed  Google Scholar 

  • Klawans HL, Goetz C, Nausieda PA et al (1977) Levodopa-induced dopamine receptor hypersensitivity. Trans Am Neurol Assoc 102:80–83

    PubMed  Google Scholar 

  • Kobylecki C, Cenci MA, Crossman AR et al (2010) Calcium-permeable AMPA receptors are involved in the induction and expression of l-DOPA-induced dyskinesia in Parkinson’s disease. J Neurochem 114(2):499–511. doi:10.1111/j.1471-4159.2010.06776.x

    Article  PubMed  Google Scholar 

  • Kobylecki C, Crossman AR, Ravenscroft P (2013) Alternative splicing of AMPA receptor subunits in the 6-OHDA-lesioned rat model of Parkinson’s disease and L-DOPA-induced dyskinesia. Exp Neurol 247:476–484. doi:10.1016/j.expneurol.2013.01.019, pii:S0014-4886(13)00032-0

    Article  PubMed  Google Scholar 

  • Konradi C, Westin JE, Carta M et al (2004) Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol Dis 17(2):219–236. doi:10.1016/j.nbd.2004.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Kousik SM, Napier TC, Carvey PM (2012) The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Front Pharmacol 3:121. doi:10.3389/fphar.2012.00121

    Article  PubMed  PubMed Central  Google Scholar 

  • Krueger BK, Forn J, Walters JR et al (1976) Stimulation by dopamine of adenosine cyclic 3′,5′-monophosphate formation in rat caudate nucleus: effect of lesions of the nigro-neostriatal pathway. Mol Pharmacol 12(4):639–648

    PubMed  Google Scholar 

  • Kyosseva SV (2004) Mitogen-activated protein kinase signaling. Int Rev Neurobiol 59:201–220. doi:10.1016/S0074-7742(04)59008-6, pii:S0074774204590086

    Article  PubMed  Google Scholar 

  • Le Moine C, Tison F, Bloch B (1990) D2 dopamine receptor gene expression by cholinergic neurons in the rat striatum. Neurosci Lett 117(3):248–252. pii:0304-3940(90)90671-U

    Article  PubMed  Google Scholar 

  • Lebel M, Chagniel L, Bureau G et al (2010) Striatal inhibition of PKA prevents levodopa-induced behavioural and molecular changes in the hemiparkinsonian rat. Neurobiol Dis 38(1):59–67. doi:10.1016/j.nbd.2009.12.027, pii:S0969-9961(09)00382-9

    Article  PubMed  Google Scholar 

  • Levey AI, Hersch SM, Rye DB et al (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A 90(19):8861–8865

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Carter J, Gao X et al (2005) The neuroplasticity-associated arc gene is a direct transcriptional target of early growth response (Egr) transcription factors. Mol Cell Biol 25(23):10286–10300. doi:10.1128/MCB.25.23.10286-10300.2005

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindgren HS, Ohlin KE, Cenci MA (2009) Differential involvement of D1 and D2 dopamine receptors in L-DOPA-induced angiogenic activity in a rat model of Parkinson’s disease. Neuropsychopharmacology 34(12):2477–2488. doi:10.1038/npp.2009.74, pii:npp200974

    Article  PubMed  Google Scholar 

  • Lortet S, Lacombe E, Boulanger N et al (2013) Striatal molecular signature of subchronic subthalamic nucleus high frequency stimulation in parkinsonian rat. PLoS One 8(4):e60447. doi:10.1371/journal.pone.0060447, pii:PONE-D-12-36103

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundblad M, Picconi B, Lindgren H et al (2004) A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 16(1):110–123

    Article  PubMed  Google Scholar 

  • Mangiavacchi S, Wolf ME (2004) D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase A. J Neurochem 88:1261–1271

    Article  PubMed  Google Scholar 

  • Marcellino D, Ferre S, Casado V et al (2008) Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem 283(38):26016–26025. doi:10.1074/jbc.M710349200, pii:M710349200

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcotte ER, Sullivan RM, Mishra RK (1994) Striatal G-proteins: effects of unilateral 6-hydroxydopamine lesions. Neurosci Lett 169(1–2):195–198

    Article  PubMed  Google Scholar 

  • Matsuo H, Tsukada S, Nakata T et al (2000) Expression of a system L neutral amino acid transporter at the blood-brain barrier. Neuroreport 11(16):3507–3511

    Article  PubMed  Google Scholar 

  • McClung CA, Ulery PG, Perrotti LI et al (2004) DeltaFosB: a molecular switch for long-term adaptation in the brain. Brain Res Mol Brain Res 132(2):146–154. doi:10.1016/j.molbrainres.2004.05.014

    Article  PubMed  Google Scholar 

  • Mellone M, Gardoni F (2013) Modulation of NMDA receptor at the synapse: promising therapeutic interventions in disorders of the nervous system. Eur J Pharmacol 719(1–3):75–83. doi:10.1016/j.ejphar.2013.04.054

    Article  PubMed  Google Scholar 

  • Mishra RK, Gardner EL, Katzman R et al (1974) Enhancement of dopamine-stimulated adenylate cyclase activity in rat caudate after lesions in substantia nigra: evidence for denervation supersensitivity. Proc Natl Acad Sci U S A 71(10):3883–3887

    Article  PubMed  PubMed Central  Google Scholar 

  • Missale C, Nash SR, Robinson SW et al (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225

    PubMed  Google Scholar 

  • Moratalla R, Robertson HA, Graybiel AM (1992) Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum. J Neurosci 12(7):2609–2622

    PubMed  Google Scholar 

  • Munoz A, Garrido-Gil P, Dominguez-Meijide A et al (2014) Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson’s disease. Involvement of vascular endothelial growth factor and interleukin-1beta. Exp Neurol 261:720–732. doi:10.1016/j.expneurol.2014.08.019, pii:S0014-4886(14)00271-4

    Article  PubMed  Google Scholar 

  • Oh JD, Del Dotto P, Chase TN (1997) Protein kinase A inhibitor attenuates levodopa-induced motor response alterations in the hemi-parkinsonian rat. Neurosci Lett 228(1):5–8, pii:S0304394097003558

    Article  PubMed  Google Scholar 

  • Ohlin KE, Francardo V, Lindgren HS et al (2011) Vascular endothelial growth factor is upregulated by L-dopa in the parkinsonian brain: implications for the development of dyskinesia. Brain 134(Pt 8):2339–2357. doi:10.1093/brain/awr165, pii:awr165

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohlin KE, Sebastianutto I, Adkins CE et al (2012) Impact of L-DOPA treatment on regional cerebral blood flow and metabolism in the basal ganglia in a rat model of Parkinson’s disease. Neuroimage 61(1):228–239. doi:10.1016/j.neuroimage.2012.02.066, pii:S1053-8119(12)00251-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostergaard L, Aamand R, Gutierrez-Jimenez E et al (2013) The capillary dysfunction hypothesis of Alzheimer’s disease. Neurobiol Aging 34(4):1018–1031. doi:10.1016/j.neurobiolaging.2012.09.011, pii:S0197-4580(12)00467-8

    Article  PubMed  Google Scholar 

  • Park HY, Kang YM, Kang Y et al (2014) Inhibition of adenylyl cyclase type 5 prevents l-DOPA-induced dyskinesia in an animal model of Parkinson’s disease. J Neurosci 34(35):11744–11753. doi:10.1523/JNEUROSCI.0864-14.2014

    Article  PubMed  Google Scholar 

  • Pavon N, Martin AB, Mendialdua A et al (2006) ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry 59(1):64–74

    Article  PubMed  Google Scholar 

  • Penit-Soria J, Durand C, Besson MJ et al (1997) Levels of stimulatory G protein are increased in the rat striatum after neonatal lesion of dopamine neurons. Neuroreport 8(4):829–833

    Article  PubMed  Google Scholar 

  • Picconi B, Centonze D, Hakansson K et al (2003) Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci 6(5):501–506. doi:10.1038/nn1040

    PubMed  Google Scholar 

  • Picconi B, Bagetta V, Ghiglieri V et al (2011) Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain 134(Pt 2):375–387. doi:10.1093/brain/awq342, pii:awq342

    Article  PubMed  Google Scholar 

  • Pifl C, Reither H, Hornykiewicz O (1992) Functional sensitization of striatal dopamine D1 receptors in the 6-hydroxydopamine-lesioned rat. Brain Res 572:87–93

    Article  PubMed  Google Scholar 

  • Pisani V, Stefani A, Pierantozzi M et al (2012) Increased blood-cerebrospinal fluid transfer of albumin in advanced Parkinson’s disease. J Neuroinflammation 9:188. doi:10.1186/1742-2094-9-188, pii:1742-2094-9-188

    Article  PubMed  PubMed Central  Google Scholar 

  • Porras G, De Deurwaerdere P, Li Q et al (2014) L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum. Sci Rep 4:3730. doi:10.1038/srep03730, pii:srep03730

    Article  PubMed  PubMed Central  Google Scholar 

  • Rangel-Barajas C, Silva I, Lopez-Santiago LM et al (2011) L-DOPA-induced dyskinesia in hemiparkinsonian rats is associated with up-regulation of adenylyl cyclase type V/VI and increased GABA release in the substantia nigra reticulata. Neurobiol Dis 41(1):51–61. doi:10.1016/j.nbd.2010.08.018

    Article  PubMed  Google Scholar 

  • Rascol O (2000) Medical treatment of levodopa-induced dyskinesias. Ann Neurol 47(4 Suppl 1):S179–S188

    PubMed  Google Scholar 

  • Rascol O, Nutt JG, Blin O et al (2001) Induction by dopamine D-1 receptor agonist ABT-431 of dyskinesia similar to levodopa in patients with Parkinson disease. Arch Neurol 58(2):249–254

    Article  PubMed  Google Scholar 

  • Rascol O, Perez-Lloret S, Ferreira JJ (2015) New treatments for levodopa-induced motor complications. Mov Disord 30(11):1451–1460. doi:10.1002/mds.26362

    Article  PubMed  Google Scholar 

  • Renkin EM (1985) B. W. Zweifach Award lecture. Regulation of the microcirculation. Microvasc Res 30(3):251–263

    Article  PubMed  Google Scholar 

  • Robertson GS, Robertson HA (1989) Evidence that L-dopa-induced rotational behavior is dependent on both striatal and nigral mechanisms. J Neurosci 9(9):3326–3331

    PubMed  Google Scholar 

  • Rouillard C, Bedard PJ, Falardeau P et al (1987) Behavioral and biochemical evidence for a different effect of repeated administration of L-dopa and bromocriptine on denervated versus non-denervated striatal dopamine receptors. Neuropharmacology 26(11):1601–1606

    Article  PubMed  Google Scholar 

  • Ruiz-DeDiego I, Mellstrom B, Vallejo M et al (2015) Activation of DREAM (downstream regulatory element antagonistic modulator), a calcium-binding protein, reduces L-DOPA-induced dyskinesias in mice. Biol Psychiatry 77(2):95–105. doi:10.1016/j.biopsych.2014.03.023, pii:S0006-3223(14)00224-8

    Article  PubMed  Google Scholar 

  • Sandoval KE, Witt KA (2008) Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32(2):200–219. doi:10.1016/j.nbd.2008.08.005, pii:S0969-9961(08)00192-7

    Article  PubMed  Google Scholar 

  • Santini E, Valjent E, Usiello A et al (2007) Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci 27(26):6995–7005. doi:10.1523/JNEUROSCI.0852-07.2007

    Article  PubMed  Google Scholar 

  • Santini E, Alcacer C, Cacciatore S et al (2009a) L-DOPA activates ERK signaling and phosphorylates histone H3 in the striatonigral medium spiny neurons of hemiparkinsonian mice. J Neurochem 108(3):621–633. doi:10.1111/j.1471-4159.2008.05831.x, pii:JNC5831

    Article  PubMed  Google Scholar 

  • Santini E, Heiman M, Greengard P et al (2009b) Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia. Sci Signal 2(80):ra36. doi:10.1126/scisignal.2000308, pii:2/80/ra36

    Google Scholar 

  • Santini E, Sgambato-Faure V, Li Q et al (2010) Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in L-DOPA-induced dyskinesia. PLoS One 5(8):e12322. doi:10.1371/journal.pone.0012322

    Article  PubMed  PubMed Central  Google Scholar 

  • Santini E, Feyder M, Gangarossa G et al (2012) Dopamine- and cAMP-regulated phosphoprotein of 32-kDa (DARPP-32)-dependent activation of extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin complex 1 (mTORC1) signaling in experimental parkinsonism. J Biol Chem 287(33):27806–27812. doi:10.1074/jbc.M112.388413, pii:M112.388413

    Article  PubMed  PubMed Central  Google Scholar 

  • Savasta M, Dubois A, Benavides J et al (1988) Different plasticity changes in D1 and D2 receptors in rat striatal subregions following impairment of dopaminergic transmission. Neurosci Lett 85(1):119–124

    Article  PubMed  Google Scholar 

  • Schuster S, Nadjar A, Guo JT et al (2008) The 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor lovastatin reduces severity of L-DOPA-induced abnormal involuntary movements in experimental Parkinson’s disease. J Neurosci 28(17):4311–4316

    Article  PubMed  Google Scholar 

  • Sgambato-Faure V, Cenci MA (2012) Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog Neurobiol 96(1):69–86. doi:10.1016/j.pneurobio.2011.10.005

    Article  PubMed  Google Scholar 

  • Sgambato-Faure V, Buggia V, Gilbert F et al (2005) Coordinated and spatial upregulation of arc in striatonigral neurons correlates with L-dopa-induced behavioral sensitization in dyskinetic rats. J Neuropathol Exp Neurol 64(11):936–947

    Article  PubMed  Google Scholar 

  • Shinotoh H, Inoue O, Hirayama K et al (1993) Dopamine D1 receptors in Parkinson’s disease and striatonigral degeneration: a positron emission tomography study. J Neurol Neurosurg Psychiatry 56(5):467–472

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverdale MA, Kobylecki C, Hallett PJ et al (2010) Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate. Synapse 64(2):177–180. doi:10.1002/syn.20739

    Article  PubMed  Google Scholar 

  • Stoof JC, Kebabian JW (1981) Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 294:366–368

    Article  PubMed  Google Scholar 

  • Subramaniam S, Napolitano F, Mealer RG et al (2012) Rhes, a striatal-enriched small G protein, mediates mTOR signaling and L-DOPA-induced dyskinesia. Nat Neurosci 15(2):191–193. doi:10.1038/nn.2994

    Article  Google Scholar 

  • Tong J, Fitzmaurice PS, Ang LC et al (2004) Brain dopamine-stimulated adenylyl cyclase activity in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 55:125–129

    Article  PubMed  Google Scholar 

  • Turjanski N, Lees AJ, Brooks DJ (1997) In vivo studies on striatal dopamine D1 and D2 site binding in L-dopa-treated Parkinson’s disease patients with and without dyskinesias. Neurology 49(3):717–723

    Article  PubMed  Google Scholar 

  • Valjent E, Corvol JC, Pages C et al (2000) Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J Neurosci 20(23):8701–8709

    PubMed  Google Scholar 

  • Valjent E, Pascoli V, Svenningsson P et al (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci U S A 102(2):491–496

    Article  PubMed  Google Scholar 

  • Van Gerpen JA, Kumar N, Bower JH et al (2006) Levodopa-associated dyskinesia risk among Parkinson disease patients in Olmsted County, Minnesota, 1976-1990. Arch Neurol 63(2):205–209. doi:10.1001/archneur.63.2.205, pii:63/2/205

    Google Scholar 

  • Visanji NP, Fox SH, Johnston T et al (2009) Dopamine D3 receptor stimulation underlies the development of L-DOPA-induced dyskinesia in animal models of Parkinson’s disease. Neurobiol Dis 35(2):184–192. doi:10.1016/j.nbd.2008.11.010, pii:S0969-9961(08)00299-4

    Article  PubMed  Google Scholar 

  • Von Voigtlander PF, Boukma SJ, Johnson GA (1973) Dopaminergic denervation supersensitivity and dopamine stimulated adenyl cyclase activity. Neuropharmacology 12(11):1081–1086

    Article  Google Scholar 

  • Wade LA, Katzman R (1975) Synthetic amino acids and the nature of L-DOPA transport at the blood-brain barrier. J Neurochem 25(6):837–842

    Article  PubMed  Google Scholar 

  • Wang Y, Kilic E, Kilic U et al (2005) VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena. Brain 128(Pt 1):52–63. doi:10.1093/brain/awh325, pii:awh325

    PubMed  Google Scholar 

  • Westin JE, Lindgren HS, Gardi J et al (2006) Endothelial proliferation and increased blood-brain barrier permeability in the basal ganglia in a rat model of 3,4-dihydroxyphenyl-L-alanine-induced dyskinesia. J Neurosci 26(37):9448–9461. doi:10.1523/JNEUROSCI.0944-06.2006, pii:26/37/9448

    Google Scholar 

  • Westin JE, Vercammen L, Strome EM et al (2007) Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry 62(7):800–810

    Article  PubMed  PubMed Central  Google Scholar 

  • Won L, Ding Y, Singh P et al (2014) Striatal cholinergic cell ablation attenuates L-DOPA induced dyskinesia in Parkinsonian mice. J Neurosci 34(8):3090–3094. doi:10.1523/JNEUROSCI.2888-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Xanthos DN, Sandkuhler J (2014) Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 15(1):43–53. doi:10.1038/nrn3617, pii:nrn3617

    Article  PubMed  Google Scholar 

  • Zhuang X, Belluscio L, Hen R (2000) G(olf)alpha mediates dopamine D1 receptor signaling. J Neurosci 20(16):RC91

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Alcacer Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alcacer, C., Francardo, V., Cenci, M.A. (2016). Signaling Mechanisms in l-DOPA-Induced Dyskinesia. In: Soghomonian, JJ. (eds) The Basal Ganglia. Innovations in Cognitive Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-42743-0_8

Download citation

Publish with us

Policies and ethics