Skip to main content

Mineral Dust Emissions at Metalliferous Mine Sites

  • Chapter
  • First Online:
Environmental Indicators in Metal Mining

Abstract

Mineral dusts produced from mining activities pose a risk to human health and the surrounding environment. The particle size distribution of dust is important for determining environmental, occupational health and physiological impacts. Dust is generally thought of as particulates with a diameter of between 1 and 60 μm, but it can be further divided into nuisance dust or total suspended particulates , fugitive dust, inhalable dust, thoracic dust, and respirable dust. This review considers aspects of mineral dust related to the mining of metalliferous ores including: (a) sources of mineral dust at mine sites (i.e. land clearing, drilling and blasting, transport operations, crushing, milling , screening, stockpiles); (b) control measures to reduce dust generation; (c) monitoring techniques; (d) mineral dust characterization to quantify particle concentration, size and morphology and chemical composition; and (e) prediction of mineral dust properties. Predicting the physical and mineralogical characteristics of dust is important for effective dust management and control strategies. At present, there are no appropriate testing procedures available to predict the chemical and mineralogical properties of mineral dust from mining operations. Further work is required to understand mineral fractionation according to grain size and to provide a rapid test methodology that would predict dust composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy and environmental impact. Elements 2:335–341

    Article  Google Scholar 

  • Amphonsah-Dacosta FA (1997) Cost-effective strategies for dust control in an opencast coal mine. MSc. Thesis, University of the Witwatersrand  

    Google Scholar 

  • Australian Standard AS 3580.97:1990 (1990) Methods for sampling and analysis of ambient air. Method 9.7: Determination of suspended particulate matter—PM10 dichotomous sampler—Gravimetric method. Standards Australia, Sydney

    Google Scholar 

  • Badr T, Harion JL (2007) Effect of aggregate storage piles configuration on dust emissions. Atmos Environ 41:360–368

    Article  Google Scholar 

  • Beccaceci S et al (2010) CPEA 28: Airborne particulate concentrations and numbers in the United Kingdon (Phase 2). Annual Report 2010. NPL Report AS 65. Teddington. Middlesex. ISSN 1754-29-2928

    Google Scholar 

  • Berry RF, Hunt JH, McKnight SW (2011) Estimating mineralogy in bulk samples. In: Proceedings 1st AusIMM international geometallurgy conference, Brisbane, pp 153–156

    Google Scholar 

  • Berry RF, Hunt J and McKnight SW (2013) Mineral fractionation during crushing and grinding. AMIRA P843A technical report, vol 11, pp 112–131

    Google Scholar 

  • Best Practice Handbook on Air Borne Contaminants, Noise and Vibration (2009) Australian Government, Department of Resources, Energy and Tourism. http://www.ret.gov.au/resources/Documents/LPSDP/AirborneContaminantsNoiseVibrationHandbookweb.pdf

  • Biffi M, Belle BK (2003) Quantification of dust generating sources in gold and platinum mines. Safety in Mines Research Advisory Committee, GAP 802:28

    Google Scholar 

  • Boreland F, Lyle DM (2006) Lead in Broken Hill homes: effect of remediation on indoor lead levels. Environ Res 100:276–283

    Article  Google Scholar 

  • British Standards Institute (1993) Workplace atmospheres—size fraction definitions for measurement of airborne particles. BS EN 481:1993. Section 3.5. European Committee for Standardization

    Google Scholar 

  • Capareda S, Parnell C, Shaw B, Wanjura J (2005) Particle size distribution analysis of cotton gin dust and its impact of PM10 concentration measurement. In: Proceedings 2005 Beltwide cotton conferences. National Cotton Council, Memphis, TN

    Google Scholar 

  • Casuccio G, Schlaegle S, Lersch T, Huffman G, Chen Y, Shah N (2004) Measurement of fine particulate matter using electron microscopy techniques. Fuel Process Technol 85:763–779

    Article  Google Scholar 

  • Cattaneo A, Gualtieri AF, Artiolo G (2003) Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD. Phys Chem Miner 20:177–183

    Article  Google Scholar 

  • Cecala AB, O’Brien AD, Schall J, Colinet JF, Fox WR, Franta RJ, Joy J, Reed WR, Reeser PW, Rounds JR, Schultz MJ (2012) Dust control handbook for industrial minerals mining and processing. Report of investigations 9689, National Institute for Occupational Safety and Health

    Google Scholar 

  • Colinet J (2010) Sampling to quantify respirable dust generation. Best practices for dust control in metal/ non-metal mining, IC9521, NIOSH, pp 15–21

    Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114:471–492

    Article  Google Scholar 

  • Corriveau MC, Jamieson HE, Parsons MB, Campbell JL, Lanzirotti A (2011) Direct characterization of airborne particles associated with arsenic-rich mine tailings: particle size, mineralogy and texture. Appl Geochem 26:1639–1648

    Article  Google Scholar 

  • Criado JM, Ortega A, Real A, De Torres E (1984) Re-examination of the kinetics of the thermal dehydroxylation of kaolinite. Clay Miner 19:653–661

    Article  Google Scholar 

  • Das S, Hendry MJ (2011) Application of Raman Spectroscopy to identify iron minerals commonly found in mine wastes. Chem Geol 290:101–108

    Google Scholar 

  • DeNee PB (1972) Mine dust characterisation using the scanning electron microscope. Am Ind Hyg Assoc J 33:654–660

    Article  Google Scholar 

  • Dolgopova A, Weiss DJ, Seltmann R, Kober B, Mason TFD, Coles B, Stanley CJ (2006) Use of isotope ratios to assess sources of Pb and Zn dispersed in the environment during mining and ore processing within the Orlovka-Spokoinoe mining site (Russia). Appl Geochem 21:563–579

    Article  Google Scholar 

  • DSEWPC (2013) Air quality standards. http://www.environment.gov.au/atmosphere/airquality/standards.html

  • El Ghawabi SH, El Samra GH, Mehasseb H (1970) Talc pneumoconiosis. J Egypt Med Assoc 53:330–339

    Google Scholar 

  • Ferg EE, Loyson P, Gromer G (2008) The influence of particle size and composition on the quantification of airborne quartz analysis on filter paper. Ind Health 46:144–151

    Article  Google Scholar 

  • Fubini B, Zanetti G, Altilia S, Tiozzo R, Lison D, Safflotti U (1999) Relationship between surface properties and cellular responses to silica: studies with heat-treated cristobalite. Chem Res Toxicol 12:737–745

    Article  Google Scholar 

  • Ghosal S, Ebert JLK, Self SA (1995) Chemical composition and size distribution for fly ashes. Fuel Proc Technol 44:81–94

    Article  Google Scholar 

  • Ghose MK, Marjee SR (1998) Assessment of dust generation due to opencast coal mining—an Indian case study. Environ Monit Assess 61:255–263

    Google Scholar 

  • Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Tox 1:22

    Google Scholar 

  • Gualtieri AF, Mangano D, Lassinantti Gualtieri M, Ricchi A, Foresti E, Lesci G, Roveri N, Mariotti M, Pecchini G (2009) Ambient monitoring of asbestos in selected Italian living areas. J Environ Manage 90:3540–3552

    Article  Google Scholar 

  • Harris KE, Bunker KL, Strohmeier BR Hoch R, Lee RJ (2007) Discovering the true morphology of amphibole minerals: complementary TEM and FESEM characterization of particles in mixed mineral dust. In: Méndez-Villas A, Díaz J (eds) Modern Research and Educational Topics in Microscopy, FORMATEX, pp 643–650

    Google Scholar 

  • Herbst JA, Yi CL, Flintoff B (2003) Size reduction and liberation. In: Fuerstenau MC, Han KN (eds) Principals of mineral processing. SME, Colorado, pp 69–95

    Google Scholar 

  • Huertas JI, Camacho DA, Huertas ME (2012a) Standardized emissions inventory methodology for open pit mining. Environ Sci Pollut Res Int 19:2784–2794

    Article  Google Scholar 

  • Huertas J, Huertas ME, Solís DS (2012b) Characterization of airborne particles in an open pit mining region. Sci Total Environ 423:39–46

    Article  Google Scholar 

  • IARC (1997) International Agency for Research on Cancer. Silica. IARC Monograph 68 on the Evaluation of the carcinogenic risk of chemicals to humans

    Google Scholar 

  • International Organisation for Standardization ISO 7708:1995(E) (1995) Air quality—particle size fraction definitions for health-related sampling, Geneva

    Google Scholar 

  • Jankovic A, Valery W, La Rosa D (2000) Fine grinding in Australian mineral industry. J Min Metall A 36:51–61

    Google Scholar 

  • Jones T, Blackmore P, Leach M, Berube K, Sexton K, Richards R (2002) Characterisation of airborne particles collected within and proximal to an open cast coalmine: South Wales, U.K. Environ Monit Assess 75:293–312

    Google Scholar 

  • Kandler K, Benker N, Bundke U, Cuevas E, Ebert M, Knippertz P, Rodriguez S, Schutz L, Weinbruch S (2007) Atmos Environ 41:8058–8074

    Article  Google Scholar 

  • Keeney L (2008) EQUOtip hardness testing: Aqqaluk (including a guide on how to use EQUOtip). AMIRA P843 2, pp 17.1–17.20

    Google Scholar 

  • Kojovic T, Michaux S, Walters S (2010) Development of new comminution testing methodologies for geometallurgical mapping of ore hardness and throughput. In: XXV international mineral processing congress IMPC conference, Brisbane

    Google Scholar 

  • Lapenas D, Gale P, Kennedy T, Rawlings W Jr, Dietrich P (1984) Kaolin Pnumoconiosis: radiologic, pathologic and minerlogic findings. Am Rev Respir Dis 130:282–288

    Google Scholar 

  • Laskina O, Young MA, Kleiber PD, Grassian VH (2013) Infrared extinction spectroscopy and micro-Raman spectroscopy of selected components of mineral dust with organic compounds. J Geophys Res Atmos 118:6593–6606

    Article  Google Scholar 

  • Lingard J, Gibson N (2011) Management, mitigation and monitoring of nuisance dust and PM10 emissions arising from the extractive industries: an overview. The Mineral Industry Research Organisation Didcot, Oxfordshire

    Google Scholar 

  • Madsen FA, Rose MC, Cee R (1995) Review of quartz analytical methodologies: present and future needs. Appl Occup Environ Hyg 10:991–1002

    Google Scholar 

  • Magiera T, Jablonska M, Strzyszcz Z, Rachwal M (2011) Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos Environ 45:4281–4290

    Article  Google Scholar 

  • Mankosa MJ, Adel GT, Yoon RH (1989) Effect of operating parameters in stirred ball mill grinding of coal. Powder Technol 59:255–260

    Article  Google Scholar 

  • McKee DJ, Chitombo GP, Morrell S (1995) The relationship between fragmentation in mining and comminution circuit throughput. Min Eng 8:1265–1274

    Article  Google Scholar 

  • McTanish GH, Lynch AW, Hales R (1997) Particle-size analysis of Aeolian dust, soils and sediments in very small quantities using a Coulter Multisizer. Earth Surf Process Land 22:1207–1216

    Article  Google Scholar 

  • Meza-Figueroa D, Maier RM, de la O-Villanueva M, Gómez-Alvarez A, Moreno-Zazueta A, Rivera J, Campillo A, Grandlic C, Anaya R, Palafox-Reyes J (2009) The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere 77:140–147

    Article  Google Scholar 

  • Michaux SP (2009) Sub-populations and patterns in blast induced fine fragmentation. Miner Eng 22(7–8):576–586

    Google Scholar 

  • Moreno T, Higuerasb P, Jonesc T, McDonald I, Gibbons W (2005) Size fractionation in mercury-bearing airborne particles (HgPM10) at Almaden, Spain: implications for inhalation hazards around old mines. Atmos Environ 39:6409–6419

    Article  Google Scholar 

  • Moreno T, Oldroyd A, McDonald I, Gibbons W (2007) Preferential fractionation of trace metals–metalloids into PM10 resuspended from contaminated gold mine tailings at Rodalquilar, Spain. Water Air Soil Pollut 179:93–105

    Article  Google Scholar 

  • Moreno N, Viana M, Pandolfi M, Alastuey A, Querol X, Chinchon S, Pinot JF (2009) Determination of direct and fugitive PM emissions in a Mediterranean harbor by means of classic and novel tracer methods. J Environ Manage 91:133–141

    Article  Google Scholar 

  • Moser P, Olsson M, Ouchterlony F, Grasedieck A (2003) Comparison of the blast fragmentation from lab-scale and full-scale tests at Bararp. Proceedings of EFEE 2nd world conference on explosives and blasting technique. Czech Republic, Prague, pp 449–458

    Chapter  Google Scholar 

  • Nimis PL, Lazzarin A, Lazzarin G, Skert N (2000) Biomonitoring of trace elements with lichens in Veneto (NE Italy). Sci Total Environ 255:97–111

    Article  Google Scholar 

  • NIOSH (National Institute for Occupational Safety and Health) (2002) NIOSH hazard review: health effects of occupational exposure to respirable crystalline silica. US Department of Health and Human Services, Centers for Disease Control and Prevention, DHHS (NIOSH) Publication No. 2002-129

    Google Scholar 

  • National Research Council (2004) Research Priorities for Airborne Particulate Matter. The National Academies Press, Washington

    Google Scholar 

  • National Pollutant Inventory (2012) Emission estimation technique manual for explosives detonation and firing ranges. January 2012. Department of Sustainability, Environment, Water, Population and Communities. ISBN 978-0-642-55384-3

    Google Scholar 

  • Pachauri T, Singla V, Satsangi A, Lakhani A, Kumari KM (2013) Characterization of major pollution events (dust, haze, and two festival events) at Agra, India. Environ Sci Pollut Res Int 20:5737–5752

    Article  Google Scholar 

  • Pandey JK (2012) Dust control practices in the Indian mining industry. In: 12th coal operators’ conference University of Wollongong & the Australasian Institute of Mining and Metallurgy, pp 185–192

    Google Scholar 

  • Panigrahi DC, Pandey JK, Udaybhanu G (2006) Pattern of hexa-valent chromium in air borne respirable dust generated at various workplaces in open cast chromite mines. Environ Monit Assess 114:211–223

    Article  Google Scholar 

  • Parra S, Bravo MA, Quiroz W, Moreno T, Karanasiou A, Font O, Vidal V, Cereceda F (2014) Distribution of trace elements in particle size fractions for contaminated soils by a copper smelting from different zones of the Puchuncaví Valley (Chile). Chemosphere 111:513–521

    Article  Google Scholar 

  • Patashnick H, Rupprecht EG (1991) Continuous PM-10 measurement using the tapered element oscillating microbalance. J Air Waste Manag Assoc 41:1079–1083

    Article  Google Scholar 

  • Petavratzi E, Kingman S, Lowndes I (2005) Particulates from mining operations: A review of sources, effects and regulations. Mineral Eng 18:1183–1199

    Google Scholar 

  • Plumlee GS, Ziegler TL (2003) The medical geochemistry of dusts, soils, and other earth materials: Treatise Geochem 9(7):263–310

    Google Scholar 

  • Reynolds L, Jones T, Berube K, Wise H, Richards R (2003) Toxicity of airborne dust generated by opencast coal mining. Mineral Mag 67:141–152

    Article  Google Scholar 

  • Richards RJ, Wusteman FS (1974) The effects of silica dust and alveolar macrophages on lung fibroblasts grown in vitro. Life Sci 14:355–364

    Article  Google Scholar 

  • Rinaudo C, Gastaldi D, Belluso E (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can Mineral 41:883–890

    Article  Google Scholar 

  • Ross M, Nolam RP, Langer AM, Cooper WC (1993) Health effects of mineral dusts other than asbestos. In: Guthrie GD, Mossman BT (eds) Health Effects of Mineral Dusts. Rev Mineral 28:361–409. Mineralogical Society of America, Washington

    Google Scholar 

  • Safe Work Australia (2012) Guidance on the interpretation of workplace exposure standards for airborne contaminants. ISBN 978-0-642-33396-4

    Google Scholar 

  • Sakurai T, Ohno H, Horikawa S, Iizuka Y, Uchida T, Hondoh T (2010) A technique for measuring microparticles in polar ice using micro-Raman spectroscopy. Int J Spectrosc. doi:10.1155/2010/384956

    Google Scholar 

  • Silva AV, Almeida AM, Freitas MC, Marques AM, Silva AI, Ramos CA, Pinheiro T (2012) INAA and PIXE characterisation of heavy metals and rare earth element emissions from phosphorate handling in harbours. J Radioanal Nucl Chem 294:277–281

    Article  Google Scholar 

  • Sloof JE, Wolterbeek HT (1991) National trace-element air pollution monitoring survey using epiphytic lichens. Lichenologist 23:139–165

    Article  Google Scholar 

  • Shanker R, Sahu AP, Dogra RKS, Zaidi SH (1975) Effects of intertracheal injection of mica dust on the lymph nodes of guinea pigs. Toxicol 5:193–199  

    Google Scholar 

  • Stephens C, Ahern M (2001) Worker and community health impacts related to mining operations internationally: a rapid review of the literature. Mining, mineral and sustainable development working paper no 25

    Google Scholar 

  • Suhartono L, Cornilsen BC, Johnson JH, Carlson DH (1996) Quantitative measurement of diesel particulate matter in an underground coal mine using laser raman spectroscopy. Appl Occup Environ Hyg 11:790–798

    Article  Google Scholar 

  • Sweenten JM, Parnell CB, Shaw BW, Auvermann BW (1998) Particle size distribution of cattle feedlot dust emission. Trans ASAE 41:1477–1481

    Article  Google Scholar 

  • Sze S-K, Siddique N, Sloan JJ, Escribano R (2001) Raman spectroscopic characterization of carbonaceous aerosols. Atmos Environ 35:561–568

    Article  Google Scholar 

  • US EPA (1986) Airborne asbestos health assessment update. EPA/6000-8-84/003F

    Google Scholar 

  • US EPA (1999) Compendium method for the determination of inorganic compounds in ambient air. EPA/625/R-96/010a. United States EPA, Office of Research and Development, Washington, DC

    Google Scholar 

  • US EPA (2004) Section 11.19.2, crushed stone processing and pulverized mineral processing. AP 42, fifth edition, volume 1, chapter 11. Mineral Products Industry, http://www.epa.gov/ttn/chief/ap42/ch11/

  • US EPA (2006) Section 13.2.4, aggregate handling and storage piles (fugitive dust sources). AP 42, fifth edition, volume 1, chapter 13: miscellaneous sources. http://www.epa.gov/ttn/chief/ap42/index.html

  • Vassilev S, Vassileva C (2004) Methods for characterization of composition of fly ash from coal-fired power station: a critical overview. Energy Fuel 19:1084–1098

    Article  Google Scholar 

  • Volkwein JC, Vinson RP, McWilliams LJ, Tuchman DP, Mishchler SE (2004) Performance of a new personal respirable dust monitor for mine use. Report investigations 9663, NIOSH publication no. 2004-151

    Google Scholar 

  • Volkwein JC, Vinson RP, Page SJ, McWilliams LJ, Joy GJ, Mischler SE, Tuchman DP (2006) Laboratory and field performance of a continuously measuring personal respirable dust monitor. Report of investigations 9669. NIOSH publication no. 2006-145

    Google Scholar 

  • White EW, DeNee PB (1972) Characterisation of coal mine dust by computer processing of scanning electron microscope information. Annals of the New York Academy of Sciences 200, Coal Workers’ Pneumoconiosis, pp 666–675

    Google Scholar 

  • WHO (1999) Hazard prevention and control in the work environment: airborne dust. Protection of the human environment occupational health and environmental health series, Geneva, 1999. World Health Organization WHO/SDE/OEH/99.14

    Google Scholar 

  • WHO (2000) Air quality guidelines for Europe, 2nd edn. World Health Organization, Copenhagen

    Google Scholar 

  • WHO (2006) Air quality guidelines global update 2005. World Health Organization, Copenhagen

    Google Scholar 

  • Williamson BJ, Udachin V, Purvis OW, Spiro B, Cressey G, Jones GC (2004) Characterisation of airborne particulate pollution in the Cu smelter and former mining town of Karabash, south Ural mountains of Russia. Environ Monit Assess 98:235–259

    Article  Google Scholar 

  • Williamson BJ, Purvis OW, Mikhailova IN, Spiro B, Udachin V (2008) The lichen transplant methodology in the source apportionment of metal deposition around a copper smelter in the former mining town of Karabash, Russia. Environ Monit Assess 141:227–236

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taryn L. Noble .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Noble, T.L., Parbhakar-Fox, A., Berry, R.F., Lottermoser, B. (2017). Mineral Dust Emissions at Metalliferous Mine Sites. In: Lottermoser, B. (eds) Environmental Indicators in Metal Mining. Springer, Cham. https://doi.org/10.1007/978-3-319-42731-7_16

Download citation

Publish with us

Policies and ethics