Skip to main content

Action Video-Game Training and Its Effects on Perception and Attentional Control

  • Chapter
  • First Online:
Cognitive Training

Abstract

Over the past four decades, video games have become a ubiquitous part of modern culture. Interestingly, although such games have often been thought of as mindless entertainment, a substantial body of research has demonstrated that video games have the potential to significantly impact a variety of human abilities and behaviors. While these effects cut widely across many disciplines, including those in education, psychology, and neuroscience, this chapter focuses on the positive impact that playing one specific subtype of video game—known as “action video games”—has on perceptual and attentional processing. Here we discuss methodological issues in assessing the impact of action gaming on perceptual and attentional skills, the empirical findings themselves, potential mechanistic/neural underpinnings of these effects, and possible practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, C. A., Shibuya, A., Ihori, N., Swing, E. L., Bushman, B. J., Sakamoto, A., et al. (2010). Violent video game effects on aggression, empathy, and prosocial behavior in eastern and western countries: A meta-analytic review. Psychological Bulletin, 136(2), 151.

    Article  PubMed  Google Scholar 

  • Bavelier, D., Achtman, R. L., Mani, M., & Föcker, J. (2012a). Neural bases of selective attention in action video game players. Vision Research, 61, 132–143.

    Article  PubMed  Google Scholar 

  • Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012b). Brain plasticity through the life span: Learning to learn and action video games. Annual Review of Neuroscience, 35, 391–416.

    Article  PubMed  Google Scholar 

  • Bejjanki, V. R., Zhang, R., Li, R., Pouget, A., Green, C. S., Lu, Z. L., et al. (2014). Action video game play facilitates the development of better perceptual templates. Proceedings of the National Academy of Sciences, 111(47), 16961–16966.

    Article  Google Scholar 

  • Buckley, D., Codina, C., Bhardwaj, P., & Pascalis, O. (2010). Action video game players and deaf observers have larger Goldmann visual fields. Vision Research, 50(5), 548–556.

    Article  PubMed  Google Scholar 

  • Donohue, S. E., Woldorff, M. G., & Mitroff, S. R. (2010). Video game players show more precise multisensory temporal processing abilities. Attention, Perception, & Psychophysics, 72(4), 1120–1129.

    Article  Google Scholar 

  • Dye, M. W., Green, C. S., & Bavelier, D. (2009). Increasing speed of processing with action video games. Current Directions in Psychological Science, 18(6), 321–326.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dye, M. W., & Bavelier, D. (2010). Differential development of visual attention skills in school-age children. Vision Research, 50(4), 452–459.

    Article  PubMed  Google Scholar 

  • Entertainment Software Association. (2015). Essential facts about the computer and video game industry. Retrieved July 22, 2015, from http://www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf/

  • Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850–855.

    Article  PubMed  Google Scholar 

  • Fiorentini, A., & Berardi, N. (1980). Perceptual learning specific for orientation and spatial frequency. Nature, 287, 43–44.

    Article  PubMed  Google Scholar 

  • Gozli, D. G., Bavelier, D., & Pratt, J. (2014). The effect of action video game playing on sensorimotor learning: Evidence from a movement tracking task. Human Movement Science, 38, 152–162.

    Article  Google Scholar 

  • Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537.

    Article  PubMed  Google Scholar 

  • Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: The case of action video game players. Cognition, 101(1), 217–245.

    Article  PubMed  Google Scholar 

  • Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychological Science, 18(1), 88–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Green, C. S., Pouget, A., & Bavelier, D. (2010). Improved probabilistic inference as a general learning mechanism with action video games. Current Biology, 20(17), 1573–1579.

    Article  PubMed  PubMed Central  Google Scholar 

  • Green, C. S., Strobach, T., & Schubert, T. (2014). On methodological standards in training and transfer experiments. Psychological Research, 78(6), 756–772.

    Article  PubMed  Google Scholar 

  • Hubert-Wallander, B., Green, C. S., Sugarman, M., & Bavelier, D. (2011). Changes in search rate but not in the dynamics of exogenous attention in action videogame players. Attention, Perception, & Psychophysics, 73(8), 2399–2412.

    Article  Google Scholar 

  • Hutchinson, C. V., & Stocks, R. (2013). Selectively enhanced motion perception in core video gamers. Perception, 42(6), 675–677.

    Article  PubMed  Google Scholar 

  • Krishnan, L., Kang, A., Sperling, G., & Srinivasan, R. (2013). Neural strategies for selective attention distinguish fast-action video game players. Brain Topography, 26(1), 83–97.

    Article  PubMed  Google Scholar 

  • Li, R. W., Ngo, C., Nguyen, J., & Levi, D. M. (2011). Video-game play induces plasticity in the visual system of adults with amblyopia. PLoS Biol, 9(8), 1793.

    Article  Google Scholar 

  • Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12(5), 549–551.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, R., Polat, U., Scalzo, F., & Bavelier, D. (2010). Reducing backward masking through action game training. Journal of Vision, 10(14), 33.

    Article  PubMed  Google Scholar 

  • McKinley, R. A., McIntire, L. K., & Funke, M. A. (2011). Operator selection for unmanned aerial systems: Comparing video game players and pilots. Aviation, Space, and Environmental Medicine, 82(6), 635–642.

    Article  PubMed  Google Scholar 

  • Mishra, J., Zinni, M., Bavelier, D., & Hillyard, S. A. (2011). Neural basis of superior performance of action videogame players in an attention-demanding task. The Journal of Neuroscience, 31(3), 992–998.

    Article  PubMed  Google Scholar 

  • Pohl, C., Kunde, W., Ganz, T., Conzelmann, A., Pauli, P., & Kiesel, A. (2014). Gaming to see: Action video gaming is associated with enhanced processing of masked stimuli. Frontiers in Psychology, 5, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagi, D. (2011). Perceptual learning in Vision Research. Vision Research, 51(13), 1552–1566.

    Article  PubMed  Google Scholar 

  • Schlickum, M. K., Hedman, L., Enochsson, L., Kjellin, A., & Felländer-Tsai, L. (2009). Systematic video game training in surgical novices improves performance in virtual reality endoscopic surgical simulators: A prospective randomized study. World Journal of Surgery, 33(11), 2360–2367.

    Article  PubMed  Google Scholar 

  • Schubert, T., Finke, K., Redel, P., Kluckow, S., Müller, H., & Strobach, T. (2015). Video game experience and its influence on visual attention parameters: An investigation using the framework of the Theory of Visual Attention (TVA). Acta Psychologica, 157, 200–214.

    Article  PubMed  Google Scholar 

  • Spence, I., & Feng, J. (2010). Video games and spatial cognition. Review of General Psychology, 14(2), 92.

    Article  Google Scholar 

  • Stafford, T., & Dewar, M. (2014). Tracing the trajectory of skill learning with a very large sample of online game players. Psychological Science, 25(2), 511–518.

    Article  PubMed  Google Scholar 

  • Van Ravenzwaaij, D., Boekel, W., Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. J. (2014). Action video games do not improve the speed of processing in simple perceptual tasks. Journal of Experimental Psychology: General, 143(5), 1794–1805.

    Article  Google Scholar 

  • West, G. L., Stevens, S. A., Pun, C., & Pratt, J. (2008). Visuospatial experience modulates attentional capture: Evidence from action video game players. Journal of Vision, 8(16), 13.

    Article  PubMed  Google Scholar 

  • Wilms, I. L., Petersen, A., & Vangkilde, S. (2013). Intensive video gaming improves encoding speed to visual short-term memory in young male adults. Acta Psychologica, 142(1), 108–118.

    Article  PubMed  Google Scholar 

  • Wu, S., Cheng, C. K., Feng, J., D’Angelo, L., Alain, C., & Spence, I. (2012). Playing a first-person shooter video game induces neuroplastic change. Journal of Cognitive Neuroscience, 24(6), 1286–1293.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Shawn Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Green, C.S., Gorman, T., Bavelier, D. (2016). Action Video-Game Training and Its Effects on Perception and Attentional Control. In: Strobach, T., Karbach, J. (eds) Cognitive Training. Springer, Cham. https://doi.org/10.1007/978-3-319-42662-4_10

Download citation

Publish with us

Policies and ethics