Skip to main content
Log in

On methodological standards in training and transfer experiments

  • Review
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The past two decades have seen a tremendous surge in scientific interest in the extent to which certain types of training—be it aerobic, athletic, musical, video game, or brain trainer—can result in general enhancements in cognitive function. While there are certainly active debates regarding the results in these domains, what is perhaps more pressing is the fact that key aspects of methodology remain unsettled. Here we discuss a few of these areas including expectation effects, test–retest effects, the size of the cognitive test battery, the selection of control groups, group assignment methods, difficulties in comparing results across studies, and in interpreting null results. Specifically, our goal is to highlight points of contention as well as areas where the most commonly utilized methods could be improved upon. Furthermore, because each of the sub-areas above (aerobic training through brain training) share strong similarities in goal, theoretical framework, and experimental approach, we seek to discuss these issues from a general perspective that considers each as members of the same broad “training” domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addelman, S. (1969). The generalized randomized block design. The American Statistician, 23(4), 35–36.

    Google Scholar 

  • Ahissar, M., Nahum, M., Nelken, I., & Hochstein, S. (2009). Reverse hierarchies and sensory learning. Philosophical Transactions of the Royal Society B, 364, 285–299.

    Google Scholar 

  • Ball, K. K., & Sekuler, R. (1982). A specific and enduring improvement in visual motion discrimination. Science, 218, 697–698.

    PubMed  Google Scholar 

  • Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637.

    PubMed  Google Scholar 

  • Baumeister, R. F., Bratslavsky, E., Muraven, M., & Tice, D. M. (1998). Ego depletion: Is the active self a limited resource? Journal of Personality and Social Psychology, 74(5), 1252–1265.

    PubMed  Google Scholar 

  • Bavelier, D., Achtman, R. L., Mani, M., & Focker, J. (2011). Neural bases of selective attention in action video game players. Vision Research,. doi:10.1016/j.visres.2011.08.007.

    PubMed  PubMed Central  Google Scholar 

  • Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: Learning to learn and action video games. Annual Review of Neuroscience, 35, 391–416.

    PubMed  Google Scholar 

  • Bavelier, D., Levi, D. M., Li, R. W., Dan, Y., & Hensch, T. K. (2010). Removing brakes on adult brain plasticity: From molecular to behavioral interventions. Journal of Neuroscience, 30(45), 14964–14971.

    PubMed  PubMed Central  Google Scholar 

  • Bergman Nutley, S., Soderqvist, S., Bryde, S., Thorell, L. B., Humphreys, K., & Klingberg, T. (2011). Gains in fluid intelligence after training non-verbal reasoning in 4-year-old children: A controlled, randomized study. Developmental Science, 14(3), 591–601.

    PubMed  Google Scholar 

  • Blumenthal, J. A., Emery, C. F., Madden, D. J., Schniebolk, S., Walsh-Riddle, M., George, L. K., et al. (1991). Long-term effects of exercise on psychological functioning in older men and women. Journal of Gerontology: Psychological Sciences, 46, 352–361.

    Google Scholar 

  • Boot, W. R., Blakely, D. P., & Simons, D. J. (2011). Do action video games improve perception and cognition. Frontiers in Cognition, 2, 226.

    Google Scholar 

  • Boot, W. R., Champion, M., Blakely, D. P., Wright, T., Souders, D. J., & Charness, N. (2013a). Video games as a means to reduce age-related cognitive decline: Attitudes, compliance, and effectiveness. Frontiers in Psychology, 4, 31. doi:10.3389/fpsyg.2013.00031.

    PubMed  PubMed Central  Google Scholar 

  • Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129, 387–398.

    PubMed  Google Scholar 

  • Boot, W. R., Simons, D. J., Stothart, C., & Stutts, C. (2013b). The pervasive problem with placebos in psychology: Why active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Science, 8(4), 445–454.

    Google Scholar 

  • Brehmer, Y., Westerberg, H., & Backman, L. (2012). Working-memory training in younger and older adults: Training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6, 63. doi:10.3389/fnhum.2012.00063.

    PubMed  PubMed Central  Google Scholar 

  • Brooks, J. L. (2012). Counterbalancing for serial order carryover effects in experimental condition orders. [Research Support, Non-U.S. Gov’t]. Psychological Methods, 17(4), 600–614. doi:10.1037/a0029310.

    PubMed  Google Scholar 

  • Bryant, D. C. N., & Deluca, J. (2004). Objective measurement of cognitive fatigue in multiple sclerosis. Rehabilitation Psychology, 49(2), 114–122.

    Google Scholar 

  • Campbell, D. T., & Stanley, J. (1966). Experimental and quasi-experimental designs for research. Chicago: Rand McNally.

    Google Scholar 

  • Castel, A. D., Pratt, J., & Drummond, E. (2005). The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta Psychologica (Amst), 119(2), 217–230.

    Google Scholar 

  • Chen, L. H., & Lee, W. C. (2011). Two-way minimization: A novel treatment allocation method for small trials. PLoS One, 6(12), e28604.

    PubMed  PubMed Central  Google Scholar 

  • Clark, K., Fleck, M. S., & Mitroff, S. R. (2011). Enhanced change detection performance reveals improved strategy use in avid action video game players. Acta Psychologica (Amst), 136(1), 67–72. doi:10.1016/j.actpsy.2010.10.003.

    Google Scholar 

  • Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125–130.

    PubMed  Google Scholar 

  • Colom, R., Martinez-Molina, A., Shih, P., & Santacreu, J. (2010). Intelligence, working memory, and multitasking performance. Intelligence, 38, 543–551.

    Google Scholar 

  • Colzato, L. S., van den Wildenberg, W. P. M., Zmigrod, S., & Hommel, B. (2013). Action video gaming and cognitive control: Playing first person shooter games is associated with improvement in working memory, but not action inhibition. Psychological Research, 77, 234–239.

    PubMed  Google Scholar 

  • Cook, T., & Campbell, D. T. (1979). Quasi-experimental design. Chicago: Rand McNally.

    Google Scholar 

  • Davis, C. L., Tomporowski, P. D., McDowell, J. E., Austin, B. P., Miller, P. H., Yanasak, N. E., et al. (2011). Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychology, 30(1), 91–98.

    PubMed  PubMed Central  Google Scholar 

  • Detterman, D. K., & Sternberg, R. J. (1993). Transfer on trial: Intelligence, cognition, and instruction. Norwood: Ablex Publishing Corporation.

    Google Scholar 

  • Donohue, S. E., Woldorff, M. G., & Mitroff, S. R. (2010). Video game players show more precise multisensory temporal processing abilities. Attention, Perception and Psychophysics, 72(4), 1120–1129.

    PubMed  PubMed Central  Google Scholar 

  • Dosher, B. A., & Lu, Z. (2007). The functional form of performance improvements in perceptual learning: Learning rates and transfer. Psychological Science, 18(6), 531–539.

    PubMed  Google Scholar 

  • Dye, M. W. G., & Bavelier, D. (2010). Differential development of visual attention skills in school-age children. Vision Research, 50(4), 452–459.

    PubMed  PubMed Central  Google Scholar 

  • Dye, M. W. G., Green, C. S., & Bavelier, D. (2009). The development of attention skills in action video game players. Neuropsychologia, 47, 1780–1789.

    PubMed  PubMed Central  Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331.

    Google Scholar 

  • Ericsson, K. A., Krampe, R. T., & Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363–406.

    Google Scholar 

  • Fahle, M. (2004). Perceptual learning: A case for early selection. Journal of Vision, 4(10), 879–890.

    PubMed  Google Scholar 

  • Feldt, L. S. A. (1958). A comparison of the precision of three experimental designs employing a concomitant variable. Psychometrika, 23, 335–353.

    Google Scholar 

  • Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850–855.

    PubMed  Google Scholar 

  • Ferguson, C. J. (2007). The good, the bad, and the ugly: A meta-analytic review of positive and negative effects of violent video games. The Psychiatric Quarterly, 78(4), 309–316.

    PubMed  Google Scholar 

  • Fiorentini, A., & Berardi, N. (1980). Perceptual learning specific for orientation and spatial frequency. Nature, 287, 43–44.

    PubMed  Google Scholar 

  • Franceschini, S., Gori, S., Ruffino, M., Viola, S., Molteni, M., & Facoetti, A. (2013). Action video games make dyslexic children read better. Current Biology, 23(6), 462–466.

    PubMed  Google Scholar 

  • Friedmann, T., & Roblin, R. (1972). Gene therapy for human genetic disease? Science, 175(4025), 949–955.

    PubMed  Google Scholar 

  • Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537.

    PubMed  Google Scholar 

  • Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: The case of action video game players. Cognition, 101(1), 217–245.

    PubMed  PubMed Central  Google Scholar 

  • Green, C. S., & Bavelier, D. (2008). Exercising your brain: A review of human brain plasticity and training-induced learning. Psychology and Aging, 23(4), 692–701.

    PubMed  PubMed Central  Google Scholar 

  • Green, C. S., & Bavelier, D. (2012). Learning, attentional control and action video games. Current Biology, 22, R197–R206.

    PubMed  PubMed Central  Google Scholar 

  • Green, C. S., Pouget, A., & Bavelier, D. (2010). Improved probabilistic inference as a general mechanism for learning with action video games. Current Biology, 23, 1573–1579.

    Google Scholar 

  • Herzog, M. H., & Fahle, M. (1997). The role of feedback in learning a vernier discrimination task. Vision Research, 37, 2133–2141.

    PubMed  Google Scholar 

  • Hill, R. D., Storandt, M., & Malley, M. (1993). The impact of long-term exercise training on psychological function in older adults. Journal of Gerontology, 48, 12–17.

    Google Scholar 

  • Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58–65.

    PubMed  Google Scholar 

  • Holtzer, R., Shuman, M., Mahoney, J. R., Lipton, R., & Verghese, J. (2011). Cognitive fatigue defined in the context of attention networks. Neuropsychology, Development, and Cognition: Section B, Aging, Neuropsychology and Cognition, 18(1), 108–128. doi:10.1080/13825585.2010.517826.

    Google Scholar 

  • Huber, O. (2009). The psychological experiment: An introduction (in German). Bern: Hans Huber.

    Google Scholar 

  • Hubert-Wallander, B., Green, C. S., Sugarman, M., & Bavelier, D. (2011). Changes in search rate but not in the dynamics of exogenous attention in action videogame players. Attention, Perception, and Psychophysics, 73(8), 2399–2412.

    Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833.

    Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108, 10081–10086.

    Google Scholar 

  • James, W. (1890). The principles of psychology (Vol. I). New York: Dover Publications Inc.

    Google Scholar 

  • Jeter, P. E., Dosher, B. A., Petrov, A., & Lu, Z. L. (2009). Task precision at transfer determines specificity of perceptual learning. Journal of Vision, 9(3), 1–13.

    PubMed  Google Scholar 

  • Kahan, B. C., & Morris, T. P. (2012a). Improper analysis of trials randomised using stratified blocks or minimisation. Statistics in Medicine, 31(4), 328–340. doi:10.1002/sim.4431.

    PubMed  Google Scholar 

  • Kahan, B. C., & Morris, T. P. (2012b). Reporting and analysis of trials using stratified randomisation in leading medical journals: Review and reanalysis. [Research Support, Non-U.S. Gov’t Review]. BMJ, 345, e5840. 10.1136/bmj.e5840.

    PubMed  PubMed Central  Google Scholar 

  • Klauer, K. C., & Mierke, J. (2005). Task-set inertia, attitude accessibility, and compatibility-order effects: New evidence for a task-set switching account of the implicit association test effect. Personality and Social Psychology Bulletin, 31(2), 208–217. doi:10.1177/0146167204271416.

    PubMed  Google Scholar 

  • Klingberg, T. (2010). Training and plasticity of working memory [Review]. Trends in Cognitive Sciences, 14(7), 317–324. doi:10.1016/j.tics.2010.05.002.

    PubMed  Google Scholar 

  • Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlstrom, K., et al. (2005). Computerized training of working memory in children with ADHD—A randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177–186.

    PubMed  Google Scholar 

  • Kray, J., & Lindenberger, U. (2000). Adult age differences in task switching. Psychology and Aging, 15, 126–147.

    PubMed  Google Scholar 

  • Krishnan, L., Kang, A., Sperling, G., & Srinivasan, R. (2013). Neural strategies for selective attention distinguish fast-action video game players. Brain Topography, 26(1), 83–97. doi:10.1007/s10548-012-0232-3.

    PubMed  PubMed Central  Google Scholar 

  • Kristjansson, A. (2013). The case for causal influences of action video game play upon vision and attention. Attention, Perception, and Psychophysics, 75(4), 667–672.

    Google Scholar 

  • Li, R. W., Ngo, C., Nguyen, J., & Levi, D. M. (2011). Video-game play induces plasticity in the visual system of adults with amblyopia. PLoS Biology, 9(8), e1001135.

    PubMed  PubMed Central  Google Scholar 

  • Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12(5), 549–551.

    PubMed  PubMed Central  Google Scholar 

  • Liepelt, R., Strobach, T., Frensch, P. A., & Schubert, T. (2011). Improved intertask coordination after extensive dual-task practice. The Quarterly Journal of Experimental Psychology, 64(7), 1251–1272.

    PubMed  Google Scholar 

  • Loosli, S. V., Buschkuehl, M., Perrig, W. J., & Jaeggi, S. M. (2012). Working memory training improves reading processes in typically developing children. Child Neuropsychology, 18(1), 62–78.

    PubMed  Google Scholar 

  • Lorant-Royer, S., Munch, C., Mescle, H., & Lieury, A. (2010). Kawashima vs “Super Mario”! Should a game be serious in order to stimulate cognitive aptitudes? European Review of Applied Psychology, 60(4), 221–232.

    Google Scholar 

  • Mann, D. T., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-cognitive expertise in sport: A meta-analysis. Journal of Sport and Exercise Psychology, 29(4), 457–478.

    PubMed  Google Scholar 

  • Melby-Lervag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291.

    PubMed  Google Scholar 

  • Mishra, J., Zinni, M., Bavelier, D., & Hillyard, S. A. (2011). Neural basis of superior performance of action videogame players in an attention-demanding task. Journal of Neuroscience, 31(3), 992–998.

    PubMed  Google Scholar 

  • Muraven, M., & Baumeister, R. F. (2000). Self-regulation and depletion of limited resources: Does self-control resemble a muscle. Psychological Bulletin, 126(2), 247–259.

    PubMed  Google Scholar 

  • Neufeld, K. A. (1986). Understanding of selected pre-number concepts: Relationships to a formal music program. Alberta Journal of Educational Research, 32(2), 132–139.

    Google Scholar 

  • Nichols, A. L., & Maner, J. K. (2008). The good-subject effect: Investigating participant demand characteristics. The Journal of General Psychology, 135(2), 151–165.

    PubMed  Google Scholar 

  • Nouchi, R., Taki, Y., Takeuchi, H., Hashizume, H., Nozawa, T., Kambara, T., et al. (2013). Brain training game boosts executive functions, working memory and processing speed in the young adults: A randomized controlled trial. PLoS ONE, 8(2), e55518. doi:10.1371/journal.pone.0055518.

    PubMed  PubMed Central  Google Scholar 

  • Orne, M. T. (1962). On the social psychology of the psychological experiment: With particular reference to demand characteristics and their implications. American Psychologist, 17, 776–783.

    Google Scholar 

  • Osgood, C. E. (1949). The similarity paradox in human learning: A resolution. Psychological Review, 56(3), 132–143.

    PubMed  Google Scholar 

  • Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., et al. (2010). Putting brain training to the test. Nature, 465(7299), 775–778.

    PubMed  PubMed Central  Google Scholar 

  • Plous, S. (1993). The psychology of judgment and decision making. New York: McGraw-Hill Education.

    Google Scholar 

  • Pocock, S. J., & Simon, R. (1975). Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics, 31, 103–115.

    PubMed  Google Scholar 

  • Rabipour, S., & Raz, A. (2012). Training the brain: Fact and fad in cognitive and behavioral remediation. Brain and Cognition, 79, 159–179.

    PubMed  Google Scholar 

  • Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., et al. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 359–379.

    Google Scholar 

  • Rutherford, A. (2010). Brain-training games don’t work. The Guardian. Retrieved from http://www.theguardian.com

  • Saghaei, M. (2011). An overview of randomization and minimization programs for randomized clinical trials. Journal of Medical Signals and Sensors, 1(1), 55–61.

    PubMed  PubMed Central  Google Scholar 

  • Salminen, T., Strobach, T., & Schubert, T. (2012). On the impacts of working memory training on executive functioning. Front Hum Neurosci, 6, 166. doi:10.3389/fnhum.2012.00166.

    PubMed  PubMed Central  Google Scholar 

  • Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychological Science, 15(8), 511–514.

    PubMed  Google Scholar 

  • Schlickum, M. K., Hedman, L., Enochsson, L., Kjellin, A., & Fellander-Tsai, L. (2009). Systematic video game training in surgical novices improves performance in virtual reality endoscopic surgical simulators: A prospective randomized study. World Journal of Surgery, 33(11), 2360–2367.

    PubMed  Google Scholar 

  • Schmeichel, B. J. (2007). Attention control, memory updating, and emotion regulation temporarily reduce the capacity for executive control. Journal of Experimental Psychology: General, 136(2), 241–255. doi:10.1037/0096-3445.136.2.241.

    Google Scholar 

  • Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–217.

    Google Scholar 

  • Schmiedek, F., Lovden, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2. doi:10.3389/fnagi.2010.00027.

  • Schubert, T., & Strobach, T. (2012). Video game experience and optimized executive control skills—On false positives and false negatives: Reply to Boot and Simons (2012). Acta Psychologica, 141(2), 278–280.

    Google Scholar 

  • Seitz, A. R., Nanez, J. E, Sr, Holloway, S., Tsushima, Y., & Watanabe, T. (2006). Two cases requiring external reinforcement in perceptual learning. Journal of Vision, 6(9), 966–973.

    PubMed  Google Scholar 

  • Sheridan, C. (2011). Gene therapy finds its niche. Nature Biotechnology, 29(2), 121–128. doi:10.1038/nbt.1769.

    PubMed  Google Scholar 

  • Shipstead, Z., Hicks, K. L., & Engle, R. W. (2012a). Cogmed working memory training: Does the evidence support the claims? Journal of Applied Research in Memory and Cognition, 1, 185–193.

    Google Scholar 

  • Shipstead, Z., Redick, T. S., & Engle, R. W. (2012b). Is working memory training effective? Psychological Bulletin, 138(4), 623–654.

    Google Scholar 

  • Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge: Harvard University Press.

    Google Scholar 

  • Smith, R. L. (1984). Sequential treatment allocation using biased coin designs. Journal of the Royal Statistical Society: Series B, 46, 519–543.

    Google Scholar 

  • Smith, G. E., Housen, P., Yaffe, K., Ruff, R., Kennison, R. F., Mahncke, H. W., et al. (2009). A cognitive training program based on principles of brain plasticity: Results from Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) study. Journal of the American Geriatrics Society, 57(4), 594–603.

    PubMed  PubMed Central  Google Scholar 

  • Spence, I., Yu, J. J., Feng, J., & Marshman, J. (2009). Women match men when learning a spatial skill. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(4), 1097–1103.

    PubMed  Google Scholar 

  • Strobach, T., Frensch, P. A., & Schubert, T. (2012a). Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychologica, 140(1), 13–24.

    PubMed  Google Scholar 

  • Strobach, T., Frensch, P. A., Soutschek, A., & Schubert, T. (2012b). Investigation on the improvement and transfer of dual-task coordination skills. Psychological Research, 76(6), 794–811.

    PubMed  Google Scholar 

  • Taatgen, N. A. (2013). The nature and transfer of cognitive skills. Psychological Review, 120(3), 439–471.

    PubMed  Google Scholar 

  • Taves, D. R. (1974). Minimization: A new method of assigning patients to treatment and control groups. Clinical Pharmacology and Therapeutics, 15, 443–453.

    PubMed  Google Scholar 

  • Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental function upon the efficiency of other functions. Psychological Review, 8, 247–261.

    Google Scholar 

  • Tremblay, S., Houle, G., & Ostry, D. J. (2008). Specificity of speech motor learning. Journal of Neuroscience, 28(10), 2426–2434.

    PubMed  Google Scholar 

  • Trick, L. M., Jaspers-Fayer, F., & Sethi, N. (2005). Multiple-object tracking in children: The “Catch the Spies” task. Cognitive Development, 20(3), 373–387.

    Google Scholar 

  • Vaughn, K. (2000). Music and mathematics: Modest support for the oft-claimed relationship. Journal of Aesthetic Education, 34(3/4), 149–166.

    Google Scholar 

  • von Bastian, C. C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69, 36–58.

    Google Scholar 

  • Voss, M. W., Prakash, R. S., Erickson, K. I., Basak, C., Chaddock, L., Kim, J. S., & Kramer, A. F. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2. doi:10.3389/fnagi.2010.00032.

  • Watkins, M. W., & Smith, L. G. (2013). Long-term stability of the Wechsler intelligence scale for children-fourth edition. Psychological Assessment,. doi:10.1037/a0031653.

    Google Scholar 

  • Wiesel, T. N., & Hubel, D. H. (1965). Comparison of the effect of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology, 26, 1003–1017.

    Google Scholar 

  • Wu, S., Cheng, C. K., Feng, J., D’Angelo, L., Alain, C., & Spence, I. (2012). Playing a first-person shooter video game induces neuroplastic change. Journal of Cognitive Neuroscience, 24(6), 1286–1293.

    PubMed  Google Scholar 

  • Xiao, L., Zhang, J., Wang, R., Klein, S. A., Levi, D. M., & Yu, C. (2008). Complete transfer of perceptual learning across retinal locations enabled by double training. Current Biology, 18, 1922–1926.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, W., Hill, M. D., & Palesch, Y. (2012). Minimal sufficient balance—A new strategy to balance baseline covariates and preserve randomness of treatment allocation. Statistical Methods in Medical Research,. doi:10.1177/0962280212436447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Shawn Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, C.S., Strobach, T. & Schubert, T. On methodological standards in training and transfer experiments. Psychological Research 78, 756–772 (2014). https://doi.org/10.1007/s00426-013-0535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-013-0535-3

Keywords

Navigation