Skip to main content

Lactate—An Integrative Mirror of Cancer Metabolism

  • Chapter
  • First Online:
Metabolism in Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 207))

Abstract

The technique of induced metabolic bioluminescence imaging (imBI) has been developed to obtain a “snapshot” of the momentary metabolic status of biological tissues. Using cryosections of snap-frozen tissue specimens, imBI combines highly specific and sensitive in situ detection of metabolites with a spatial resolution on a microscopic level and with metabolic imaging in relation to tissue histology. Here, we present the application of imBI in human colorectal cancer. Comparing the metabolic information of one biopsy with that of 2 or 3 biopsies per individual cancer, the classification into high versus low lactate tumors, reflecting different glycolytic activities, based on a single biopsy was in agreement with the result from multiple biopsies in 83 % of all cases. We further demonstrate that the metabolic status of tumor tissue can be preserved at least over 10 years by storage in liquid nitrogen, but not by storage at −80 °C. This means that tissue banking with long-term preservation of the metabolic status is possible at −180 °C, which may be relevant for studies on long-term survival of cancer patients. As with other tumor entities, tissue lactate concentration was shown to be correlated with tumor development and progression in colorectal cancer. At first-time diagnosis, lactate values were low in rectal normal tissue and adenomas, were significantly elevated to intermediate levels in non-metastatic adenocarcinomas, and were very high in carcinomas with distant metastasis. There was an inverse behavior of tissue glucose concentration under corresponding conditions. The expression level of monocarboxylate transporter-4 (MCT4) was positively correlated with the tumor lactate concentration and may thus contribute to high lactate tumors being associated with a high degree of malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aly A, Mullins CD, Hussain A (2015) Understanding heterogeneity of treatment effect in prostate cancer. Curr Opin Oncol 27(3):209–216

    Article  CAS  PubMed  Google Scholar 

  • Bayley JP, Devilee P (2010) Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree? Curr Opin Genet Dev 20(3):324–329

    Article  CAS  PubMed  Google Scholar 

  • Bayley JP, Devilee P (2012) The Warburg effect in 2012. Curr Opin Oncol 24(1):62–67

    Article  CAS  PubMed  Google Scholar 

  • Bohndiek SE, Kettunen MI, Hu DE, Brindle KM (2012) Hyperpolarized (13)C spectroscopy detects early changes in tumor vasculature and metabolism after VEGF neutralization. Cancer Res 72(4):854–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51(2):349–353

    Article  CAS  PubMed  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  PubMed  Google Scholar 

  • Carroll PA, Diolaiti D, McFerrin L, Gu H, Djukovic D, Du J, Cheng PF, Anderson S, Ulrich M, Hurley JB, Raftery D, Ayer DE, Eisenman RN (2015) Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis. Cancer Cell 27(2):271–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S (2015) Laser capture microdissection: Big data from small samples. Histol Histopathol 30(11):1255–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Day SE, Kettunen MI, Gallagher FA, Hu DE, Lerche M, Wolber J, Golman K, Ardenkjaer-Larsen JH, Brindle KM (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13 (11):1382–1387

    Google Scholar 

  • Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18(10):1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Espina V, Wulfkuhle J, Liotta LA (2009) Application of laser microdissection and reverse-phase protein microarrays to the molecular profiling of cancer signal pathway networks in the tissue microenvironment. Clin Lab Med 29(1):1–13

    Article  PubMed  Google Scholar 

  • Gallagher FA, Kettunen MI, Hu DE, Jensen PR, Zandt RI, Karlsson M, Gisselsson A, Nelson SK, Witney TH, Bohndiek SE, Hansson G, Peitersen T, Lerche MH, Brindle KM (2009) Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci USA 106(47):19801–19806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herling A, Konig M, Bulik S, Holzhutter HG (2011) Enzymatic features of the glucose metabolism in tumor cells. FEBS J 278(14):2436–2459

    Article  CAS  PubMed  Google Scholar 

  • Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71(22):6921–6925

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Zhu M, Yoshihara HA, Wilson DM, Keshari KR, Shin P, Reed G, von MC, Bok R, Larson PE, Kurhanewicz J, Vigneron DB (2011) In vivo measurement of normal rat intracellular pyruvate and lactate levels after injection of hyperpolarized [1-(13)C]alanine. Magn Reson Imaging 29(8):1035–1040

    Google Scholar 

  • Icard P, Poulain L, Lincet H (2012) Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 1825(1):111–116

    Google Scholar 

  • Israel M, Schwartz L (2011) The metabolic advantage of tumor cells. Mol Cancer 10:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeng KS, Chang CF, Jeng WJ, Sheen IS, Jeng CJ (2015) Heterogeneity of hepatocellular carcinoma contributes to cancer progression. Crit Rev Oncol Hematol 94(3):337–347

    Article  PubMed  Google Scholar 

  • Kim JK, Haselgrove JC, Shapiro IM (1993) Measurement of metabolic events in the avian epiphyseal growth cartilage using a bioluminescence technique. J Histochem Cytochem 41(5):693–702

    Article  CAS  PubMed  Google Scholar 

  • Kricka LJ (2000) Application of bioluminescence and chemiluminescence in biomedical sciences. Methods Enzymol 305:333–345

    Article  CAS  PubMed  Google Scholar 

  • Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, Deberardinis RJ, Green GG, Leach MO, Rajan SS, Rizi RR, Ross BD, Warren WS, Malloy CR (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13(2):81–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luc R, Tortorella SM, Ververis K, Karagiannis TC (2015) Lactate as an insidious metabolite due to the Warburg effect. Mol Biol Rep 42(4):835–840

    Article  CAS  PubMed  Google Scholar 

  • Nishimura Y, Tomita Y, Yuno A, Yoshitake Y, Shinohara M (2015) Cancer immunotherapy using novel tumor-associated antigenic peptides identified by genome-wide cDNA microarray analyses. Cancer Sci 106(5):505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paschen W (1985) Regional quantitative determination of lactate in brain sections. A bioluminescent approach. J Cereb Blood Flow Metab 5(4):609–612

    Article  CAS  PubMed  Google Scholar 

  • Paschen W, Niebuhr I, Hossmann KA (1981) A bioluminescence method for the demonstration of regional glucose distribution in brain slices. J Neurochem 36(2):513–517

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro C, Longatto-Filho A, zevedo-Silva J, Casal M, Schmitt FC, Baltazar F (2012) Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr 44(1): 127–139

    Google Scholar 

  • Reed GD, Larson PE, Morze C, Bok R, Lustig M, Kerr AB, Pauly JM, Kurhanewicz J, Vigneron DB (2012) A method for simultaneous echo planar imaging of hyperpolarized (13)C pyruvate and (13)C lactate. J Magn Reson 217:41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Enriquez S, Gallardo-Perez JC, Marin-Hernandez A, guilar-Ponce JL, Mandujano-Tinoco EA, Meneses A, Moreno-Sanchez R (2011) Oxidative phosphorylation as a target to arrest malignant neoplasias. Curr Med Chem 18(21):3156–3167

    Google Scholar 

  • Sethi S, Chourasia D, Parhar IS (2015) Approaches for targeted proteomics and its potential applications in neuroscience. J Biosci 40(3):607–627

    Article  CAS  PubMed  Google Scholar 

  • Silasi DA, Alvero AB, Mor J, Chen R, Fu HH, Montagna MK, Mor G (2008) Detection of cancer-related proteins in fresh-frozen ovarian cancer samples using laser capture microdissection. Methods Mol Biol 414:35–45

    CAS  PubMed  Google Scholar 

  • Teutsch HF, Goellner A, Mueller-Klieser W (1995) Glucose levels and succinate and lactate dehydrogenase activity in EMT6/Ro tumor spheroids. Eur J Cell Biol 66(3):302–307

    CAS  PubMed  Google Scholar 

  • Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 14(3):267–274

    Article  PubMed  Google Scholar 

  • Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60(4):916–921

    CAS  PubMed  Google Scholar 

  • Walenta S, Chau TV, Schroeder T, Lehr HA, Kunz-Schughart LA, Fuerst A, Mueller-Klieser W (2003) Metabolic classification of human rectal adenocarcinomas: a novel guideline for clinical oncologists? J Cancer Res Clin Oncol 129(6):321–326

    Article  PubMed  Google Scholar 

  • Walenta S, Voelxen NF, Sattler UGA, Mueller-Klieser W (2014) Localizing and quantifying metabolites in situ with luminometry: induced metabolic bioluminescence imaging (imBI). In: Hirrlinger J, Waagepetersen HS (eds) Brain energy metabolism. Humana Press (Springer), New York, pp 195–216

    Google Scholar 

  • Walther V, Hiley CT, Shibata D, Swanton C, Turner PE, Maley CC (2015) Can oncology recapitulate paleontology? Lessons from species extinctions. Nat Rev Clin Oncol 12(5):273–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Witney TH, Kettunen MI, Brindle KM (2011) Kinetic modeling of hyperpolarized 13C label exchange between pyruvate and lactate in tumor cells. J Biol Chem 286(28):24572–24580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanni KL, Chan GK (2011) Laser capture microdissection: understanding the techniques and implications for molecular biology in nursing research through analysis of breast cancer tumor samples. Biol Res Nurs 13(3):297–305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft: Mu 576/15-1, 15-2, and by the German Federal Ministry of Education and Research (“ISIMEP”; 02NUK016A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Mueller-Klieser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Walenta, S., Voelxen, N.F., Mueller-Klieser, W. (2016). Lactate—An Integrative Mirror of Cancer Metabolism. In: Cramer, T., A. Schmitt, C. (eds) Metabolism in Cancer. Recent Results in Cancer Research, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-319-42118-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42118-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42116-2

  • Online ISBN: 978-3-319-42118-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics