Skip to main content

Fiber-Network Modeling in Biomechanics: Theoretical and Analytical Approaches

  • Chapter
  • First Online:
Biomechanics: Trends in Modeling and Simulation

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 20))

Abstract

Network problems arise in all aspects of bioengineering, including biomechanics. For decades, the mechanical importance of highly interconnected networks of macromolecular fibers, especially collagen fibers, has been recognized, but models at any scale that explicitly incorporate fiber-fiber interactions into a mechanical description of the tissue have only started to emerge more recently. The purpose of this chapter is to provide the reader with the basic tools to develop next-generation, fiber-based models of tissue mechanics, a goal that is pursued in three steps. First, we provide a brief introduction to the mathematical language for describing networks in general. Second, existing single-scale mechanical network models are reviewed, including a short discussion of how the different models differ in approach based on the biophysics of their specific problems. Third, and finally, we describe a multiscale approach in which individual network problems at the small scale are coupled to a macroscopic finite element scheme. This approach is general and can be applied with any microstructural model but has significant computational demands, so it should be used only when the value of the scale coupling is great.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghvami, M., Barocas, V.H., Sander, E.A.: Multiscale mechanical simulations of cell compacted collagen gels. J. Biomech. Eng. 135, 71004 (2013)

    Article  Google Scholar 

  • Amini, R., Voycheck, C.A., Debski, R.E.: A method for predicting collagen fiber realignment in non-planar tissue surfaces as applied to glenohumeral capsule during clinically relevant deformation. J. Biomech. Eng. 136, 031003 (2014)

    Article  Google Scholar 

  • Annaidh, A.N., Bruyere, K., Destrade, M., Gilchrist, M.D., Maurini, C., Ottenio, M., Giuseppe, S.: Automated estimation of collagen fiber dispersion in the dermis and its contribution to the anisotropic behavior of skin. Ann. Biomed. Eng. 40, 1666–1678 (2012)

    Article  Google Scholar 

  • Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  Google Scholar 

  • Ateshian, G.A., Costa, K.D.: A frame-invariant formulation of Fung elasticity. J. Biomech. 42, 781–785 (2009)

    Article  Google Scholar 

  • Avril, S., Badel, P., Gabr, M., Sutton, M.A., Lessner, S.M.: Biomechanics of porcine renal arteries and role of axial stretch. J. Biomech. Eng. 135, 081007-1–081007-10 (2013)

    Google Scholar 

  • Baek, S., Gleason, R.L., Rajagopal, K.R., Humphrey, J.D.: Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput. Meth. Appl. Mech. Eng. 196, 3070–3078 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Barnard, K., Burgess, S.A., Carter, D.A., Woolley, D.M.: Three-dimensional structure of type IV collagen in the mammalian lens capsule. J. Struct. Biol. 108, 6–13 (1992)

    Article  Google Scholar 

  • Bausch, A.R., Ziemann, F., Boulbitch, A.A., Jacobson, K., Sackmann, E.: Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75, 2038–2049 (1998)

    Article  Google Scholar 

  • Bennet, V.: The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu. Rev. Biochem. 54, 273–304 (1985)

    Article  Google Scholar 

  • Black, L.D., Allen, P.G., Morris, S.M., Stone, P.J., Suki, B.: Mechanical and failure properties of extracellular matrix sheets as a function of structural protein composition. Biophys. J. 94, 1916–1929 (2008)

    Article  Google Scholar 

  • Boal, D.H.: Computer simulation of a model network for the erythrocyte cytoskeleton. Biophys. J. 67, 521–529 (1994)

    Article  Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  • Bottino, D.C.: Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method. J. Comput. Phys. 147, 86–113 (1998)

    Article  MATH  Google Scholar 

  • Burd, H.J.: A structural constitutive model for the human lens capsule. Biomech. Model Mechanobiol. 8, 217–231 (2008)

    Article  Google Scholar 

  • Chandran, P.L., Barocas, V.H.: Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J. Biomech. Eng. 128, 259–270 (2006)

    Article  Google Scholar 

  • Chandran, P.L., Barocas, V.H.: Deterministic material-based averaging theory model of collagen gel micromechanics. J. Biomech. Eng. 129, 137–147 (2007)

    Article  Google Scholar 

  • Chandran, P.L., Sylianopoulos, T., Barocas, V.H.: Multiscale modeling for the poro-elastic behavior of collagen networks. SIAM J. Multiscale Model. Simul. 7, 22–43 (2008)

    Article  Google Scholar 

  • Deng, S.X., Tomioka, J., Debes, J.C., Fung, Y.C.: New experiments on shear modulus of elasticity of arteries. Am. J. Physiol. 266, H1–H10 (1994)

    Google Scholar 

  • Discher, D.E., Boal, D.H., Boey, S.K.: Phase transitions and anisotropic responses of planar triangular nets under large deformation. Phys. Rev. E 55, 521–529 (1994)

    Google Scholar 

  • Driessen, N.J.B., Bouten, C.V.C., Baaijens, F.P.T.: A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J. Biomech. Eng. 127, 494–503 (2005)

    Article  Google Scholar 

  • Fata, B., Zhang, W., Amini, R., Sacks, M.S.: Insights into regional adaptations in the growing pulmonary artery using a meso-scale structural model: effects of ascending aorta impingement. J. Biomech. Eng. 136, 021009 (2014)

    Article  Google Scholar 

  • Feng, L., Bhanu, B.: Understanding dynamic social grouping behaviors of pedestrians. IEEE J. Sel. Top. Signal Process. 9, 317–329 (2015)

    Article  Google Scholar 

  • Fisher, R.F.: Elastic constants of the human lens capsule. J. Physiol. 201, 1–19 (1969)

    Article  Google Scholar 

  • Flory, P.J., Rehner, J.J.: Statistical mechanics of crosslinked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 11, 512 (1943)

    Article  Google Scholar 

  • Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, Berlin (1993)

    Book  Google Scholar 

  • Fung, Y.C., Fronek, K., Patitucci, P.: Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237, H620–H631 (1979)

    Google Scholar 

  • Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1768–1783 (2006)

    Article  Google Scholar 

  • Gyoneva, L., Segal, Y., Dorfman, K.D., Barocas, V.H.: Mechanical response of wild-type and alport murine lens capsules during osmotic swelling. Exp. Eye Res. 113, 87–91 (2013)

    Article  Google Scholar 

  • Hadi, M.F., Sander, E.A., Barocas, V.H.: Multiscale model predicts tissue-level failure from collagen fiber-level damage. J. Biomech. Eng. 134, 091005 (2012a)

    Article  Google Scholar 

  • Hadi, M.F., Sander, E.A., Ruberti, J.W., Barocas, V.H.: Simulated remodeling of loaded collagen networks via strain-dependent enzymatic degradation and constant-rate fiber growth. Mech. Mater 44, 72–82 (2012b)

    Article  Google Scholar 

  • Hansen, J.C., Skalak, R., Chien, S., Hoger, A.: An elastic network model based on the structure of the red blood cell membrane skeleton. Biophys. J. 70, 146–166 (1996)

    Article  Google Scholar 

  • Hao, T., Ma, H.W., Zhao, X.M., Goryanin, I.: The reconstruction and analysis of tissue specific human metabolic networks. Mol. BioSyst. 8, 663–670 (2012)

    Article  Google Scholar 

  • Hibbit, Karlsson, Sorensen. ABAQUS/Standard Analysis User’s Manual. Hibbit, Karlsson, Sorensen Inc., USA (2007)

    Google Scholar 

  • Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Huisman, E.M., van Dillen, T., Onck, P.R., van der Giessen, E.: Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior. Phys. Rev. Lett. 99, 208103 (2007)

    Article  Google Scholar 

  • Humphrey, J.D.: Mechanics of arterial wall: review and directions. Crit. Rev. Biomed. Eng. 23, 1–162 (1995)

    Google Scholar 

  • Hwang, S., Lee, D.S., Kahng, B.: Blind and myopic ants in heterogeneous networks. Phys. Rev. E 90, 052814-1–052814-9 (2014)

    Google Scholar 

  • Inoue, S., Leblond, C.P.: Three-dimensional network of cords: the main component of basement membranes. Am. J. Anat. 181, 341–358 (1988)

    Article  Google Scholar 

  • Ionescu, I., Guilkey, J.E., Berzins, M., Kirby, R.M., Weiss, J.A.: Simulation of soft tissue failure using the material point method. J. Biomech. Eng. 128, 917–924 (2006)

    Article  Google Scholar 

  • Janmey, P.A., Weitz, D.A.: Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem. Sci. 29, 364–370 (2004)

    Article  Google Scholar 

  • Kamenskiy, A.V., Mactaggart, J.N., Pipinos, I.I., Bikhchandani, J., Dzenis, Y.A.: Three-dimensional geometry of the human carotid artery. J. Biomech. Eng. 134, 064502 (2012)

    Article  Google Scholar 

  • Kas’yanov, V.A., Rachev, A.I.: Deformation of blood vessels upon stretching, internal pressure, and torsion. Mech. Comput. Mater. 16, 76–80 (1980)

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Lai, V.K., Frey, C.R., Kerandi, A.M., Lake, S.P., Tranquillo, R.T., Barocas, V.H.: Microstructural and mechanical differences between digested collagenfibrin co-gels and pure collagen and fibrin gels. Acta. Biomat. 8, 4031–4042 (2012)

    Article  Google Scholar 

  • Lai, V.K., Hadi, M.F., Tranquillo, R.T., Barocas, V.H.: A multiscale approach to modeling the passive mechanical contribution of cells in tissues. J. Biomech. Eng. 135, 71007 (2013)

    Article  Google Scholar 

  • Lake, S.P., Barocas, V.H.: Mechanical and structural contribution of non-fibrillar matrix in uniaxial tension: a collagen-agarose co-gel model. Ann. Biomed. Eng. 39, 1891–1903 (2011)

    Article  Google Scholar 

  • Lake, S.P., Hadi, M.F., Lai, V.K., Barocas, V.H.: Mechanics of a fiber network within a non-fibrillar matrix: model and comparison with collagen-agarose co-gels. Ann. Biomed. Eng. 40, 2111–2121 (2012)

    Article  Google Scholar 

  • Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16, 1–12 (1983)

    Article  Google Scholar 

  • Larremore, D.B., Shew, W.L., Restrepo, J.G.: Predicting criticality and dynamic range in complex networks: effects of topology. Phys. Rev. E 106, 058101-1–058101-4 (2012)

    Google Scholar 

  • Li, J., Dao, M., Lim, C.T., Suresh, S.: Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88, 3707–3719 (2005)

    Article  Google Scholar 

  • Li, J., Lykotrafitis, G., Dao, M., Suresh, S.: Cytoskeletal dynamics of human erythrocyte. Proc. Natl. Acad. Sci. USA 104, 4937–4942 (2007)

    Article  Google Scholar 

  • Ma, X., Schickel, M.E., Stevenson, M.D., Sarang-Sieminski, A.L., Gooch, K.J., Ghadiali, S.N., Hart, R.T.: Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys. J. 104, 1410–1418 (2013)

    Article  Google Scholar 

  • Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: Febio: finite elements for biomechanics. J. Biomech. Eng. 134, 1–10 (2012)

    Article  Google Scholar 

  • Maksym, G.N., Fredberg, J.J., Bates, J.H.: Force heterogeneity in a two-dimenstional network model of lung tissue. Appl. Physiol. 85, 1223–1229 (1998)

    Google Scholar 

  • Martufi, G., Gasser, C.T.: Review: the role of biomechanical modeling in the rupture risk assessment for abdominal aortic aneurysms. J. Biomech. Eng. 135, 021010 (2013)

    Article  Google Scholar 

  • Maxwell, J.C.: On the calculation of the equilibrium and stiffness of frames. Philos. Mag. 27, 294–299 (1864)

    Google Scholar 

  • Mizuno, D., Tardin, C., Schmidt, C.F., MacKintosh, F.C.: Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007)

    Article  Google Scholar 

  • Mohandas, N., Evans, E.: Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23, 787–818 (1994)

    Article  Google Scholar 

  • Molloy, L.E., Gest, S.D., Feinberg, M.E., Osgood, D.W.: Emergence of mixed-sex friendship groups during adolescence: developmental associations with substance use and delinquency. Dev. Psychol. 50, 2449–2461 (2014)

    Article  Google Scholar 

  • Morin, K.T., Smith, A.O., Davis, G.E., Tranquillo, R.T.: Aligned human microvessels formed in 3-d fibrin gel by constraint of gel contraction. Microvasc. Res. 190, 12–22 (2013)

    Article  Google Scholar 

  • Nagel, T.M., Hadi, M.F., Claeson, A.A., Nuckley, D.J., Barocas, V.H.: Combining displacement field and grip force information to determine mechanical properties of planar tissue with complicated geometry. J. Biomech. Eng. 136, 114501-1–114501-5 (2014)

    Google Scholar 

  • Nair, A., Baker, B.M., Trappmann, B., Chen, C.S., Shenoy, V.B.: Remodeling of fibrous extracellular matrices by contractile cells: predictions from discrete fiber network simulations. Biophys. J. 107, 1829–1840 (2014)

    Article  Google Scholar 

  • Naug, D.: Structure of the social network and its influence on transmission dynamics in a honeybee colony. Behav. Ecol. Sociobiol. 62, 1719–1725 (2008)

    Article  Google Scholar 

  • Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E. 64, 016132 (2001)

    Article  Google Scholar 

  • Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 70, 056131 (2004)

    Google Scholar 

  • Oliveira, C.L.N., Bates, J.H.T., Suki, B.: A network model of correlated growth of tissue stiffening in pulmonary fibrosis. New J. Phys. 16, 065022 (2014)

    Article  Google Scholar 

  • Pedrigi, R.M., David, G., Dziezyc, J., Humphrey, J.D.: Regional mechanical properties and stress analysis of the human anterior lens capsule. Vis. Res. 47, 1781–1789 (2007)

    Article  Google Scholar 

  • Peskin, C.S., McQueen, D.M.: A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81, 372–405 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Ritter, M.C., Jesudason, R., Majumdar, A., Stamenovi, D., Buczek-Thomas, J.A., Stone, P.J., Nugent, M.A., Suki, B.: A zipper network model of the failure mechanics of extracellular matrices. Proc. Natl. Acad. Sci. USA 106, 1081–1086 (2009)

    Article  Google Scholar 

  • Sacks, M.S.: Incorporation of experimentally derived fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 125, 280–287 (2003)

    Article  Google Scholar 

  • Sander, E.A., Stylianopoulos, T., Tranquillo, R.T., Barocas, V.H.: Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc. Natl. Acad. Sci. USA 106, 17675–17680 (2009)

    Article  Google Scholar 

  • Setnikar, I.: Origin and significance of the mechanical property of the lung. Arch. Fisiol. 55, 349–374 (1955)

    Google Scholar 

  • Shasavari, A., Picu, R.C.: Model selection for athermal cross-linked fiber networks. Phys. Rev. E. Stat. Phys. 86, 011923 (2012)

    Article  Google Scholar 

  • Speck-Planche, A., Kleandrova, V.V., Luan, F., Cordeiro, M.N.D.S.: A ligand-based approach for the in silico discovery of multi-target inhibitors for proteins associated with HIV infection. Mol. Biosyst. 8, 2188–2196 (2012)

    Article  Google Scholar 

  • Stylianopoulos, T., Barocas, V.H.: Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J. Biomech. Eng. 129, 611–618 (2007a)

    Article  Google Scholar 

  • Stylianopoulos, T., Barocas, V.H.: Volume-averaging theory for the study of the mechanics of collagen networks. Comput. Method Appl. Mech. Eng. 196, 2981–2990 (2007b)

    Article  MathSciNet  MATH  Google Scholar 

  • Suki, B., Jesudason, R., Sato, S., Parameswaran, H., Araujo, A.D., Majumdar, A., Allen, P.G., Bartolák-Suki, E.: Mechanical failure, stress redistribution, elastase activity and binding site availability on elastin during the progression of emphysema. Pulm. Pharmacol. Ther. 25, 268–275 (2012)

    Article  Google Scholar 

  • Takamizawa, K., Hayashi, K.: Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20, 7–17 (1987)

    Article  Google Scholar 

  • Timoshenko, S.P.: On the correction factor for shear of the differential equation for transverse vibrations of bars of uniform cross-section. Philos. Mag. 41, 744–746 (1921)

    Article  Google Scholar 

  • Trajkovski, A., Omerovic, S., Hribernik, M., Prebil, I.: Failure properties and damage of cervical spine ligaments, experiments and modeling. J. Biomech. Eng. 136, 031002-1–031002-19 (2014)

    Google Scholar 

  • Treloar, L.: The elasticity of a network of long-chain molecules. III. Trans. Faraday Soc. 42, 83–94 (1946)

    Article  MathSciNet  Google Scholar 

  • van Dillen, T., Onck, P.R., Van der Giessen, E.: Models for stiffening in cross-linked biopolymer networks: a comparative study. J. Mech. Phys. Solids 56, 2240–2264 (2008)

    Article  MATH  Google Scholar 

  • Wang, M.C., Guth, E.: Statistical theory of networks of nongaussian flexible chains. J. Chem. Phys. 20, 1144 (1952)

    Article  MathSciNet  Google Scholar 

  • Wang, C.W., Sastry, A.M.: Structure, mechanics and failure of stochastic fibrous networks: part II - network simulations and applications. J. Eng. Mater. Technol. 122, 460–468 (2000)

    Article  Google Scholar 

  • Wang, H., Abhilash, A.S., Chen, C.S., Wells, R.G., Shenoy, V.B.: Long-range force driven transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophys. J. 107, 2592–2603 (2014)

    Article  Google Scholar 

  • Win, Z., Steucke, K.E., Sevcik, E.N., Hald, E.S., Alford, P.W.: Smooth muscle architecture within cell-dense vascular tissue influences functional contractility. Integr. Biol. 6, 1201–1210 (2014)

    Article  Google Scholar 

  • Witzenburg, C.M., Dhume, R.Y., Lake, S.P., Barocas, V.H.: Automatic segmentation of mechanically inhomogeneous tissues based on deformation gradient jump. IEEE Trans. Med. Imaging (2015) (in press). doi:10.1109/TMI.2015.2453316

  • Yuan, H., Kononov, S., Cavalcante, F.S.A., Lutchen, K.R., Ingenito, E.P., Suki, B.: Effects of collagenase and elastase on the mechanical properties of lung tissue strips. J. Appl. Physiol. 89, 3–14 (2000)

    Google Scholar 

  • Yurchenco, P.D., Ruben, G.C.: Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J. Cell Biol. 105, 2559–2568 (1987)

    Article  Google Scholar 

  • Zagar, G., Onck, P.R., Van der Giessen, E.: Elasticity of rigidly cross-linked networks of athermal filaments. Macromolecules 44, 7026–7033 (2011)

    Article  Google Scholar 

  • Zagar, G., Onck, P.R., van der Giessen, E.: Two fundamental mechanisms govern the stiffening of cross-linked networks. Biophys. J. 108, 1470–1479 (2015)

    Article  Google Scholar 

  • Zhang, L., Lake, S.P., Barocas, V.H., Picu, R.C.: Cross-linked fiber network embedded in an elastic matrix. Soft Matter 9, 6398–6405 (2013a)

    Article  Google Scholar 

  • Zhang, L., Lake, S.P., Lai, V.K., Picu, C.R., Barocas, V.H., Shephard, M.S.: A coupled fiber-matrix model demonstrates highly inhomogeneous microstructural interaction in soft tissues under tensile load. J. Biomech. Eng. 135, 011008 (2013b)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor H. Barocas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dhume, R.Y., Barocas, V.H. (2017). Fiber-Network Modeling in Biomechanics: Theoretical and Analytical Approaches. In: Holzapfel, G., Ogden, R. (eds) Biomechanics: Trends in Modeling and Simulation. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-41475-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41475-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41473-7

  • Online ISBN: 978-3-319-41475-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics