Skip to main content

Analyses of Biomass Products by Nuclear Magnetic Resonance Spectroscopy

  • Chapter
  • First Online:
Analytical Techniques and Methods for Biomass

Abstract

Nuclear magnetic resonance spectroscopy has been one of the most important analytical techniques to analyze biomass materials and their transformation products. 1H, 13C, 15N, and 31P NMR techniques have been used to analyze carbohydrates, proteins, lipids, and polycondensed compounds in raw and processed biomass, from plants, animals, fungi, algae, and other living beings. NMR has been used in qualitative and quantitative analyses of biomass materials, determination of the chemical composition, and structure and dynamics of monomers, oligomers, and polymeric materials. One of the major NMR advantages is its nondestructive nature that maintains sample integrity and the analyzed samples can be analyzed by other methods. This chapter provides basic information about NMR measurements and spectroscopic parameters, analysis in solid state, liquid state and in heterogeneous samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is common referring to SPEMAS as DPMAS (from direct polarization under magic angle spinning).

References

  • Andrew ER, Eades RG (1962) Nuclear magnetic resonance in diamagnetic materials – possibilities for high-resolution nuclear magnetic resonance spectra of crystals. Discuss Faraday Soc 1962:38–42

    Article  Google Scholar 

  • Andrew ER, Bradbury A, Eades RG (1959) Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature 183:1802–1803

    Article  Google Scholar 

  • Ascough PL, Bird MI, Wormald P, Snape CE, Apperley D (2008) Influence of production variables and starting material on charcoal stable isotopic and molecular characteristics. Geochim Cosmochim Acta 72:6090–6102

    Article  Google Scholar 

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally, altered Pinus resinosa (Red Pine) wood. Org Geochem 33:1093–1109

    Article  Google Scholar 

  • Bardet M, Foray MF, Tran QK (2002) High-resolution solid-state CPMAS NMR study of archaeological woods. Anal Chem 74:4386–4390

    Article  Google Scholar 

  • Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958

    Article  Google Scholar 

  • Berman P, Meiri N, Colnago LA, Moraes TB, Linder C, Levi O, Parmet Y, Saunders M, Wiesman Z (2015) Study of liquid-phase molecular packing interactions and morphology of fatty acid methyl esters (biodiesel). Biotechnol Biofuels 8:12

    Article  Google Scholar 

  • Bernardinelli OD, Lima MA, Rezende CA, Polikarpov I, de Azevedo ER (2015) Quantitative 13C MultiCP solid-state NMR as a tool for evaluation of cellulose crystallinity index measured directly inside sugarcane biomass. Biotechnol Biofuels 8:110

    Article  Google Scholar 

  • Brewer CE, Unger R, Schmidt-Rohr K, Brown RC (2011) Criteria to select biochars for field studies based on biochar chemical properties. Bioenerg Res 4:312–323

    Article  Google Scholar 

  • Burum DP, Rhim WK (1979) Analysis of multiple pulse NMR in solids. J Chem Phys 71:944–956

    Article  Google Scholar 

  • Cabeça LF, Marconcini LV, Mambrini GP, Azeredo RBV, Colnago LA (2011) Monitoring the transesterification reaction used in biodiesel production, with a low cost unilateral nuclear magnetic resonance sensor. Energy Fuels 25:2696–2701

    Article  Google Scholar 

  • Cao S, Pu Y, Studer M, Wyman C, Ragauskas A (2012) Chemical transformations of Populus trichocarpa during dilute acid pretreatment. RSC Adv 2:10925–10936

    Article  Google Scholar 

  • Cernansky R (2015) Agriculture: state-of-the-art soil. Nature 517:258–260

    Article  Google Scholar 

  • Chandel AK, Antunes FAF, Anjos V, Bell MJV, Rodrigues LN, Polikarpov I, de Azevedo ER, Bernardinelli OD, Rosa CA, Pagnocca FC, da Silva SS (2014) Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid-base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnol Biofuels 7:63

    Article  Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37

    Article  Google Scholar 

  • Colnago LA, Engelsberg M, Souza AA, Barbosa LL (2007) High-throughput, non-destructive determination of oil content in intact seeds by continuous wave-free precession NMR. Anal Chem 79:1271–1274

    Article  Google Scholar 

  • Colnago LA, Azeredo RB, Marchi Netto A, Andrade FD, Venancio T (2011) Rapid analyses of oil and fat content in agri-food products using continuous wave free precession time domain NMR. Magn Reson Chem 49:S113–S120

    Article  Google Scholar 

  • Colnago LA, Andrade FD, Souza AA, Azeredo RB, Lima AA, Cerioni LM, Osán DJ, Pusiol DJ (2014) Why is inline NMR rarely used as industrial sensor? Challenges and opportunities. Chem Eng Technol 37:191–203

    Article  Google Scholar 

  • Cook RL (2004) Coupling NMR to NOM. Anal Bioanal Chem 378:1484–1503

    Article  Google Scholar 

  • Derenne S, Largeau C (2001) A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments. Soil Sci 166:833–847

    Article  Google Scholar 

  • Dixon WT (1982) NMR spectra in spinning samples (TOSS). J Chem Phys 77:1800

    Article  Google Scholar 

  • Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, Mckay RA (1982) Total suppression of sidebands in CPMAS 13C NMR. J Magn Reson 49:341–345

    Google Scholar 

  • El Hage R, Brosse N, Sannigrahi P, Ragauskas A (2010) Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polym Degrad Stabil 95:997–1003

    Article  Google Scholar 

  • Focher B, Marzetti A, Cattaneo M, Beltrame PL, Carniti P (1981) Effects of structural features of cotton cellulose on enzymatic-hydrolysis. J Appl Polym Sci 26:1989–1999

    Article  Google Scholar 

  • Foston MB, Hubbell CA, Ragauskas AJ (2011) Cellulose isolation methodology for NMR analysis of cellulose ultrastructure. Materials 4:1985–2002

    Article  Google Scholar 

  • Freitas JCC, Bonagamba TJ, Emmerich FG (1999) C-13 High-resolution solid-state NMR study of peat carbonization. Energy Fuel 13:53–59

    Article  Google Scholar 

  • Freitas JCC, Emmerich FG, Cernicchiaro GRC, Sampaio LC, Bonagamba TJ (2001) Magnetic susceptibility effects on C-13 MAS NMR spectra of carbon materials and graphite. Solid State Nucl Magn Reson 20:61–73

    Article  Google Scholar 

  • Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

    Article  Google Scholar 

  • Gharpuray MM, Lee YH, Fan LT (1983) Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis. Biotechnol Bioeng 25:157–172

    Article  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

    Article  Google Scholar 

  • Goldberg ED (ed) (1985) Black carbon in the environment: properties and distribution. Environmental science and technology. Wiley, New York, NY

    Google Scholar 

  • Gollapalli LE, Dale BE, Rivers DM (2002) Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw. Appl Biochem Biotechnol 98–100:23–35

    Article  Google Scholar 

  • Guiotoku M, Hansel FA, Novotny EH, Maia CMBF (2012) Molecular and morphological characterization of hydrochar produced by microwave-assisted hydrothermal carbonization of cellulose. Pesq Agropec Bras 47:687–692

    Article  Google Scholar 

  • Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2009) Biomass characterization of Buddleja davidii: a potential feedstock for biofuel production. J Agric Food Chem 57:1275–1281

    Article  Google Scholar 

  • Hammes K, Schmidt MWI, Smernik RJ, Currie LA, Ball WP, Nguyen TH, Louchouarn P, Houel S, Gustafsson O, Elmquist M, Cornelissen G, Skjemstad JO, Masiello CA, Song J, Peng P, Mitra S, Dunn JC, Hatcher PG, Hockaday WC, Smith DM, Hartkopf-Froeder C, Boehmer A, Luer B, Huebert BJ, Amelung W, Brodowski S, Huang L, Zhang W, Gschwend PM, Flores-Cervantes DX, Largeau C, Rouzaud JN, Rumpel C, Guggenberger G, Kaiser K, Rodionov A, Gonzalez-Vila FJ, Gonzalez-Perez JA, de la Rosa JM, Manning DAC, Lopez-Capel E, Ding L (2007) Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem Cycles 21:1–18

    Article  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  Google Scholar 

  • Johnson RL, Schmidt-Rohr K (2014) Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization. J Magn Reson 239:44–49

    Article  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:247–1253

    Article  Google Scholar 

  • Knicker H (2003) Incorporation of N-15-TNT transformation products into humifying plant organic matter as revealed by one- and two-dimensional solid state NMR spectroscopy. Sci Total Environ 308:211–220

    Article  Google Scholar 

  • Knicker H, Totsche KU, Almendros G, Gonzalez-Vila FJ (2005) Condensation degree of burnt peat and plant residues and the reliability of solid-state VACP MAS C-13 NMR spectra obtained from pyrogenic humic material. Org Geochem 36:1359–1377

    Article  Google Scholar 

  • Knicker H, Hilscher A, Gonzalez-Vila FJ, Almendros G (2008a) A new conceptual model for the structural properties of char produced during vegetation fires. Org Geochem 39:935–939

    Article  Google Scholar 

  • Knicker H, Wiesmeier M, Dick DR (2008b) A simplified method for the quantification of pyrogenic organic matter in grassland soils via chemical oxidation. Geoderma 147:69–74

    Article  Google Scholar 

  • Kramer RW, Kujawinski EB, Hatcher PG (2004) Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 38:3387–3395

    Article  Google Scholar 

  • Krishnan C, Sousa Lda C, Jin M, Chang L, Dale BE, Balan V (2010) Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng 107:441–450

    Article  Google Scholar 

  • Kurakake M, Ide N, Komaki T (2007) Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper. Curr Microbiol 54:424–428

    Article  Google Scholar 

  • Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44

    Article  Google Scholar 

  • Lee M, Goldburg WI (1965) Nuclear-magnetic-resonance line narrowing by a rotating rf field. Phys Rev 140:1261–1271

    Article  Google Scholar 

  • Levitt MH (2008) Spin dynamics: basics of nuclear magnetic resonance, 2nd edn. John Wiley & Sons, Chichester

    Google Scholar 

  • Lima MA, Lavorente GB, da Silva HK, Bragatto J, Rezende CA, Bernardinelli OD, de Azevedo ER, Gomez LD, McQueen-Mason SJ, Labate CA, Polikarpov I (2013) Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production – part 1. Biotechnol Biofuels 6:75

    Article  Google Scholar 

  • Lima MA, Gomez LD, Steele-King CG, Simister R, Bernardinelli OD, Carvalho MA, Rezende CA, Labate CA, Deazevedo ER, McQueen-Mason SJ, Polikarpov I (2014) Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production. Biotechnol Biofuels 7:10

    Article  Google Scholar 

  • Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2:285–287

    Article  Google Scholar 

  • Mansfield P (1971) Symmetrized pulse sequences in high-resolution NMR in solids. J Phys C Solid State Phys 4:1444–1452

    Article  Google Scholar 

  • Mao JD, Schmidt-Rohr K (2003) Recoupled long-range C-H dipolar dephasing in solid-state NMR, and its use for spectral selection of fused aromatic rings. J Magn Reson 162:217–227

    Article  Google Scholar 

  • Mao JD, Schmidt-Rohr K (2004) Accurate quantification of aromaticity and nonprotonated aromatic carbon fraction in natural organic matter by 13C solid-state nuclear magnetic resonance. Environ Sci Technol 38:2680–2684

    Article  Google Scholar 

  • Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92:201–213

    Article  Google Scholar 

  • McBeath AV, Smernik RJ (2009) Variation in the degree of aromatic condensation of chars. Org Geochem 40:1161–1168

    Article  Google Scholar 

  • McBeath AV, Smernik RJ, Schneider MPW, Schmidt MWI, Plant EL (2011) Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR. Org Geochem 42:1194–1202

    Article  Google Scholar 

  • Melligan F, Auccaise R, Novotny EH, Leahy JJ, Hayes MHB, Kwapinski W (2011) Pressurised pyrolysis of Miscanthus using a fixed bed reactor. Bioresour Technol 102:3466–3470

    Article  Google Scholar 

  • Melligan F, Dussan K, Auccaise R, Novotny EH, Leahy JJ, Hayes MHB, Kwapinski W (2012) Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus. Bioresour Technol 108:258–263

    Article  Google Scholar 

  • Metz G, Ziliox M, Smith SO (1996) Towards quantitative CP-MAS NMR. Solid State Nucl Magn Reson 7:155–160

    Article  Google Scholar 

  • Mielenz JR (2009) Biofuels: methods and protocols. Springer protocols, vol 581. Humana, New York, NY

    Book  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  • Novotny EH, Hayes MH, de Azevedo ER, Bonagamba TJ (2006) Characterisation of black carbon-rich samples by (13)C solid-state nuclear magnetic resonance. Naturwissenschaften 93:447–450

    Article  Google Scholar 

  • Novotny EH, de Azevedo ER, Bonagamba TJ, Cunha TJF, Madari BE, Benites VD, Hayes MHB (2007) Studies of the compositions of humic acids from Amazonian Dark Earth soils. Environ Sci Technol 41:400–405

    Article  Google Scholar 

  • Novotny EH, Hayes MHB, Madari BE, Bonagamba TJ, de Azevedo ER, Souza AA, Song G, Nogueira CM, Mangrich AS (2009) Lessons from the Terra Preta de Índio of the Amazon region for the utilization of charcoal for soil amendment. J Braz Chem Soc 20:1003–1010

    Article  Google Scholar 

  • Novotny EH, Auccaise R, Velloso MHR, Correa JC, Higarashi MM, Abreu VMN, Rocha JD, Kwapinski W (2012) Characterization of phosphate structures in biochar from swine bones. Pesq Agropec Bras 47:672–676

    Article  Google Scholar 

  • Novotny EH, Maia CMBD, Carvalho MTD, Madari BE (2015) Biochar: pyrogenic carbon for agricultural use – a critical review. Rev Bras Ciênc Solo 39:321–344

    Article  Google Scholar 

  • Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state C-13 nuclear magnetic resonance. Cellulose 16:641–647

    Article  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  Google Scholar 

  • Paul EA (2007) Soil microbiology, ecology, and biochemistry, 3rd edn. Academic, Amsterdam

    Google Scholar 

  • Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590

    Article  Google Scholar 

  • Prestes RA, Colnago LA, Forato LA, Vizzotto L, Novotny EH, Carrilho E (2007) A rapid and automated low resolution NMR method to analyze oil quality in intact oilseeds. Anal Chim Acta 596:325–329

    Article  Google Scholar 

  • Pu YQ, Ziemer C, Ragauskas AJ (2006) CP/MAS C-13 NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohyd Res 341:591–597

    Article  Google Scholar 

  • Pu Y, Hu F, Huang F, Davison B, Ragauskas A (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:15

    Article  Google Scholar 

  • Rezende CA, de Lima MA, Maziero P, de Azevedo ER, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54

    Article  Google Scholar 

  • Rhim WK, Elleman DD, Vaughan RW (1973) Analysis of multiple pulse NMR in solids. J Chem Phys 59:3740–3749

    Article  Google Scholar 

  • Rittl TF, Novotny EH, Balieiro FC, Hoffland E, Alves BJR, Kuyper TW (2015) Negative priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality. Eur J Soil Sci 66:714–721

    Article  Google Scholar 

  • Rutherford DW, Wershaw RL, Rostad CE, Kelly CN (2012) Effect of formation conditions on biochars: compositional and structural properties of cellulose, lignin, and pine biochars. Biomass Bioenerg 46:693–701

    Article  Google Scholar 

  • Sannigrahi P, Miller SJ, Ragauskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohyd Res 345:965–970

    Article  Google Scholar 

  • Sarles LR, Cotts RM (1958) Double nuclear magnetic resonance and the dipole interaction in solids. Phys Rev 111:853–859

    Article  Google Scholar 

  • Sasaki M, Adschiri T, Arai K (2003) Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresour Technol 86:301–304

    Article  Google Scholar 

  • Schaefer J, Stejskal EO (1976) C-13 Nuclear magnetic-resonance of polymers spinning at magic angle. J Am Chem Soc 98:1031–1032

    Article  Google Scholar 

  • Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic, San Diego, CA

    Google Scholar 

  • Shuai L, Yang Q, Zhu JY, Lu FC, Weimer PJ, Ralph J, Pan XJ (2010) Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresour Technol 101:3106–3114

    Article  Google Scholar 

  • Simpson MJ, Hatcher PG (2004) Overestimates of black carbon in soils and sediments. Naturwissenschaften 91:436–440

    Article  Google Scholar 

  • Skjemstad JO, Clarke P, Taylor JA, Oades JM, McClure SG (1996) The chemistry and nature of protected carbon in soil. Aust J Soil Res 34:251–271

    Article  Google Scholar 

  • Smernik RJ, Oades JM (2000) The use of spin counting for determining quantitation in solid state C-13 NMR spectra of natural organic matter 1. Model systems and the effects of paramagnetic impurities. Geoderma 96:101–129

    Article  Google Scholar 

  • Smernik RJ, Kookana RS, Skjemstad JO (2006) NMR characterization of C-13-benzene sorbed to natural and prepared charcoals. Environ Sci Technol 40:1764–1769

    Article  Google Scholar 

  • Srilatha HR, Nand K, Babu KS, Madhukara K (1995) Fungal pretreatment of orange processing waste by solid-state fermentation for improved production of methane. Process Biochem 30:327–331

    Article  Google Scholar 

  • Stejskal EO, Memory JD (1994) High resolution NMR in the solid state: fundamentals of CP/MAS, 1st edn. Oxford University Press, New York

    Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose [correction of cellose] with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  Google Scholar 

  • Templeton DW, Scarlata CJ, Sluiter JB, Wolfrum EJ (2010) Compositional analysis of lignocellulosic feedstocks. 2. Method uncertainties. J Agric Food Chem 58:9054–9062

    Article  Google Scholar 

  • Tonelli AE (1989) NMR spectroscopy and polymer microstructure – the conformational connection, 1st edn. Methods in stereochemical analysis. VCH Publishers, Inc., New York

    Google Scholar 

  • Tsuchida JE, Rezende CA, de Oliveira-Silva R, Lima MA, d'Eurydice MN, Polikarpov I, Bonagamba TJ (2014) Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse. Biotechnol Biofuels 7:127

    Google Scholar 

  • van Duynhoven J, Voda A, Witek M, Van As H (2010) Time-domain NMR applied to food products. Annu Rep NMR Spectrosc 69:145–197

    Article  Google Scholar 

  • Vinogradov E, Madhu PK, Vega S (2001) Phase modulated Lee-Goldburg magic angle spinning proton nuclear magnetic resonance experiments in the solid state: a bimodal Floquet theoretical treatment. J Chem Phys 115:8983–9000

    Article  Google Scholar 

  • Vliegenthart JFG, Woods RJ (2006) American chemical society meeting: NMR spectroscopy and computer modeling of carbohydrates: recent advances. American Chemical Society, Washington, DC

    Book  Google Scholar 

  • Wall JD, Harwood CS, Demain AL (2008) Bioenergy. ASM Press, Washington, DC

    Google Scholar 

  • Waugh JS, Huber LM, Haeberlen U (1968) Approach to high-resolution NMR in solids. Phys Rev Lett 20:180–182

    Article  Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS C-13 NMR spectroscopy. Carbohyd Res 312:123–129

    Article  Google Scholar 

  • Wiedemeier DB, Abiven S, Hockaday WC, Keiluweit M, Kleber M, Masiello CA, McBeath AV, Nico PS, Pyle LA, Schneider MPW, Smernik RJ, Wiesenberg GLB, Schmidt MWI (2015) Aromaticity and degree of aromatic condensation of char. Org Geochem 78:135–143

    Article  Google Scholar 

  • Wilson MA (1987) NMR techniques and applications in geochemistry and soil chemistry, 1st edn. Pergamon, Oxford

    Google Scholar 

  • Zhang Z, Zhao ZK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydr Res 344:2069–2072

    Article  Google Scholar 

  • Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100:2411–2418

    Article  Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Alberto Colnago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bernardinelli, O.D., Novotny, E.E., de Azevêdo, E.R., Colnago, L.A. (2016). Analyses of Biomass Products by Nuclear Magnetic Resonance Spectroscopy. In: Vaz Jr., S. (eds) Analytical Techniques and Methods for Biomass. Springer, Cham. https://doi.org/10.1007/978-3-319-41414-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41414-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41413-3

  • Online ISBN: 978-3-319-41414-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics